Skip to main content

Advertisement

Log in

Hybrid genetic algorithm for engineering design problems

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Genetic algorithm has made lots of achievements in the aspect of solving constrained optimization problems, but engineering design problem is one of typical optimization problems for complicated constraint condition and correlative variable parameters. The results optimized by classical mathematical optimization method are often poor. In this paper, one hybrid search strategy was designed aiming to the defects of simple genetic algorithm. With improvement, the algorithm is less likely to trap in local optimum. And the simulation test shows that the algorithm for engineering design problem has made great effects in stability and convergence precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  2. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  3. Fogel, D., Fogel, L., Atmar, J.W.: Meta-evolutionary programming. In: Proceedings of the of the 24h Asilornar Conference on Signals, Systems, and Computers, pp. 540–545 (1995)

  4. Holland, J.H.: Adaptation in Natural and Artificial Systems, 1st edn. MIT Press, Cambridge (1975)

    Google Scholar 

  5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, Reading (1989)

    MATH  Google Scholar 

  6. Avriel, M.: Nonlinear Programming: Analysis and Methods. Dover Publishing, Mineola (2003)

    MATH  Google Scholar 

  7. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49, 409–436 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ypma, T.J.: Historical development of the Newton–Raphson method. SIAM Rev. 37(4), 531–551 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. He, Q., Wang, L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 20, 89–99 (2007)

    Article  Google Scholar 

  10. Garg, H.: Solving structural engineering design optimization problems using an artificial bee colony algorithm. J. Ind. Manag. Optim. 10(3), 777–794 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inform. 26, 30–45 (1986)

    Google Scholar 

  12. Cagnina, L.C., Esquivel, S.C., Coello, C.A.C.: Solving engineering optimization problems with the simple constrained particle swarm optimizer. Informatica 32, 319–326 (2008)

    MATH  Google Scholar 

  13. Yan, X., Luo, W., Chengyu, H., Yao, H., Qinghua, W.: Constrained engineering optimization algorithm based on elite selection. J. Algorithms Comput. Technol. 8(1), 85–103 (2014)

    Article  Google Scholar 

  14. Guedria, N.B.: Improved accelerated PSO algorithm for mechanical engineering optimization problems. Appl. Soft Comput. 40, 455–467 (2016)

    Article  Google Scholar 

  15. Yan, X., Li, W., Chen, W., Luo, W., Zhang, C., Liu, H.: Cultural algorithm for engineering design problems. Int. J. Comput. Sci. Issues 9(6), 53–61 (2012)

    Google Scholar 

  16. Coello, C.A.C.: Treating constraints as objectives for single-objective evolutionary optimization. Eng. Optim. 32, 275–308 (2000)

    Article  Google Scholar 

  17. Xu, Z., Wei, X., Luo, X., Liu, Y., Mei, L., Hu, C., Chen, L.: Knowle: a semantic link network based system for organizing large scale online news events. Future Gener. Comput. Syst. 43–44, 40–50 (2015)

    Article  Google Scholar 

  18. Coello, C.A.C.: Use of a self -adaptive penalty approach for engineering optimization problems. Comput. Ind. 41, 113–127 (2000)

    Article  Google Scholar 

  19. Xu, Z., Mei, L., Hu, C., Liu, Y.: The big data analytics and applications of the surveillance system using video structured description technology. Clust. Comput. 19(3), 1283–1292 (2016)

    Article  Google Scholar 

  20. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013)

    Article  Google Scholar 

  21. Xu, Z., Zhang, H., Hu, C., Mei, L., Xuan, J., Choo, K.R., Sugumaran, V., Zhu, Y.: Building knowledge base of urban emergency events based on crowdsourcing of social media. Concurr. Comput. Pract. Exp. 28(15), 4038–4052 (2016)

    Article  Google Scholar 

  22. Yu, K., Wang, X., Wang, Z.: An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems. J. Intell. Manuf. 2(2), 1–13 (2014)

  23. Xu, Z., Zhang, H., Sugumaran, V., Choo, K.R., Mei, L., Zhu, Y.: Participatory sensing-based semantic and spatial analysis of urban emergency events using mobile social media. EURASIP J. Wireless Commun. Netw. 2016, 44 (2016)

    Article  Google Scholar 

  24. Zhou, G., Duan, L.B., Zhao, W.Z., et al.: An enhanced hybrid and adaptive meta-model based global optimization algorithm for engineering optimization problems. Sci. China Technol. Sci. 59(8), 1147–1155 (2016)

    Article  Google Scholar 

  25. Xu, Z., Hu, C., Mei, L.: Video structured description technology based intelligence analysis of surveillance videos for public security applications. Multimedia Tools Appl. 75(19), 12155–12172 (2016)

    Article  Google Scholar 

  26. Xu, Z., Luo, X., Wang, L.: Incremental building association link network. Comput. Syst. Sci. Eng. 26(3), 153–162 (2011)

    Google Scholar 

  27. Ray, T., Liew, K.: Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans. Evol. Comput. 7(4), 389–396 (2003)

    Article  Google Scholar 

  28. He, S., Prempain, E., Wu, O.H.: An improved particle swarm optimizer for mechanical design optimization problems. Eng. Optim. 36(5), 585–605 (2004)

    Article  MathSciNet  Google Scholar 

  29. Montes, E.M., Coello, C.A.C.: An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int. J. Gen. Syst. 37, 443–473 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper is supported by Natural Science Foundation of China. (No. 61402425, 61272470, 61305087, 61440060, 41404076, 61501412, 61673354, 61672474,), the Provincial Natural Science Foundation of Hubei (No. 2015CFA065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Liu, H., Zhu, Z. et al. Hybrid genetic algorithm for engineering design problems. Cluster Comput 20, 263–275 (2017). https://doi.org/10.1007/s10586-016-0680-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-016-0680-8

Keywords

Navigation