Skip to main content
Log in

Spatiotemporal regression Kriging to predict precipitation using time-series MODIS data

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Accurate prediction of the spatiotemporal distribution of precipitation is an important guide for more efficient agricultural production. However in the Xinjiang Uygur Autonomous Region, China, it is difficult to ensure accuracy due to sparse and unevenly distributed precipitation monitoring stations. The precipitation on raster grids must be predicted from point data. The combined China monthly mean meteorological data sets were used to build spatiotemporal geostatistical models to predict mean monthly precipitation in Xinjiang. Predictions in space and time were made for precipitation using spatiotemporal regression Kriging with some covariates. The Moderate Resolution Imaging Spectroradiometer 1-month images time series, topographic layers representing the normalized difference vegetation index and digital elevation model, and a temporal index to adjust for yearly periodic were used as covariates. The optimal covariates were selected by the all subset regression method to determine which predictor variables to be included in the multiple regression models. The accuracy of our mean monthly precipitation predictions was assessed by leave-one-out cross-validation. The prediction accuracy of the proposed spatiotemporal regression Kriging approach was compared with spatiotemporal multi-linear regression and spatiotemporal Kriging. These experimental results show that the normalized difference vegetation index, latitude, longitude, elevation, and time periodicity index are the optimal covariates for mean monthly precipitation prediction. The spatiotemporal distribution of precipitation in Xinjiang exhibits a distinctive pattern; in the north and west, there is more precipitation than in the south and east, respectively and more precipitation in the mountains than on the plains. Precipitation is closely related to topography. Annually, summer precipitation is the highest, followed by, spring and autumn, with winter the driest season in Xinjiang. Considering regression residuals the product–sum model was found to be suitable to fit the spatiotemporal variogram at higher accuracy. Precipitation maps generated by spatiotemporal regression Kriging were more accurate than those produced by the other tested methods, with lower MAE, RMSE, and BIAS values, and higher COR values for validation sampling sites. Spatiotemporal regression Kriging is an efficient method for accurate spatiotemporal prediction of precipitation in Xinjiang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li, X., et al.: Spatial and temporal variability of precipitation concentration index, concentration degree and concentration period in Xinjiang, China. Int. J. Climatol. 31(11), 1679–1693 (2011)

    Google Scholar 

  2. Haberlandt, U.: Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event. J. Hydrol. 332(1–2), 144–157 (2007)

    Article  Google Scholar 

  3. Price, D.T., et al.: A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data. Agric. For. Meteorol. 101(2–3), 81–94 (2000)

    Article  Google Scholar 

  4. Accadia, C., et al.: Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Weather Forecast. 18(5), 918–932 (2003)

    Article  Google Scholar 

  5. Chang, C.L., Lo, S.L., Yu, S.L.: Applying fuzzy theory and genetic algorithm to interpolate precipitation. J. Hydrol. 314(1–4), 92–104 (2005)

    Article  Google Scholar 

  6. Martínez-Cob, A.: Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain. J. Hydrol. 174(1–2), 19–35 (1996)

    Article  Google Scholar 

  7. Haylock, M.R., et al.: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. 113(D20) (2008)

  8. Goovaerts, P.: Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol. 228(1–2), 113–129 (2000)

    Article  Google Scholar 

  9. Lloyd, C.D.: Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J. Hydrol. 308(1–4), 128–150 (2005)

    Article  Google Scholar 

  10. Moral, F.J.: Comparison of different geostatistical approaches to map climate variables: application to precipitation. Int. J. Climatol. 30(4), 620–631 (2010)

    Google Scholar 

  11. Boer, E.P.J., de Beurs, K.M., Hartkamp, A.D.: Kriging and thin plate splines for mapping climate variables. Int. J. Appl. Earth Obs. Geoinf. 3(2), 146–154 (2001)

    Article  Google Scholar 

  12. Hengl, T., Heuvelink, G.B.M., Rossiter, D.G.: About regression-kriging: from equations to case studies. Comput. Geosci. 33(10), 1301–1315 (2007)

    Article  Google Scholar 

  13. Carrera-Hernández, J.J., Gaskin, S.J.: Spatio temporal analysis of daily precipitation and temperature in the Basin of Mexico. J. Hydrol. 336(3–4), 231–249 (2007)

    Article  Google Scholar 

  14. Kilibarda, M., et al.: Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. J. Geophys. Res. 119(5), 2294–2313 (2014)

    Google Scholar 

  15. Bargaoui, Z.K., Chebbi, A.: Comparison of two Kriging interpolation methods applied to spatiotemporal rainfall. J. Hydrol. 365(1–2), 56–73 (2009)

    Article  Google Scholar 

  16. Spadavecchia, L., Williams, M.: Can spatio-temporal geostatistical methods improve high resolution regionalisation of meteorological variables? Agric. For. Meteorol. 149(6–7), 1105–1117 (2009)

    Article  Google Scholar 

  17. Schuurmans, J., et al.: Automatic prediction of high-resolution daily rainfall fields for multiple extents: the potential of operational radar. J. Hydrometeorol. 8(6), 1204–1224 (2007)

    Article  Google Scholar 

  18. Carrera-Hernández, J., Gaskin, S.: Spatiotemporal analysis of daily precipitation and temperature in the Basin of Mexico. J. Hydrol. 336(3), 231–249 (2007)

    Article  Google Scholar 

  19. Bargaoui, Z.K., Chebbi, A.: Comparison of two kriging interpolation methods applied to spatiotemporal rainfall. J. Hydrol. 365(1), 56–73 (2009)

    Article  Google Scholar 

  20. Spadavecchia, L., Williams, M.: Can spatio-temporal geostatistical methods improve high resolution regionalisation of meteorological variables? Agric. For. Meteorol. 149(6), 1105–1117 (2009)

    Article  Google Scholar 

  21. Di, L., Rundquist, D.C., Han, L.: Modelling relationships between NDVI and precipitation during vegetative growth cycles. Int. J. Remote Sens. 15(10), 2121–2136 (1994)

    Article  Google Scholar 

  22. Propastin, P.A., Kappas, M.: Reducing uncertainty in modeling the NDVI-precipitation relationship: a comparative study using global and local regression techniques. GIScience Remote Sens. 45(1), 47–67 (2008)

    Article  Google Scholar 

  23. Wang, J., Price, K.P., Rich, P.M.: Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. Int. J. Remote Sens. 22(18), 3827–3844 (2001)

    Article  Google Scholar 

  24. Wang, J., Rich, P.M., Price, K.P.: Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int. J. Remote Sens. 24(11), 2345–2364 (2003)

    Article  Google Scholar 

  25. Zhang, L., et al.: Spatial-temporal changes of NDVI and their relations with precipitation and temperature in Yangtze River basin from 1981 to 2001. Geo-spat. Inf. Sci. 13(3), 186–190 (2010)

    Article  Google Scholar 

  26. Xingang, D., et al.: Water-vapor source shift of Xinjiang region during the recent twenty years. Progr. Nat. Sci. 17(5), 569–575 (2007)

    Article  Google Scholar 

  27. Huete, A., et al.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83(1–2), 195–213 (2002)

    Article  Google Scholar 

  28. Berry, P.A.M., Garlick, J.D., Smith, R.G.: Near-global validation of the SRTM DEM using satellite radar altimetry. Remote Sens. Environ. 106(1), 17–27 (2007)

    Article  Google Scholar 

  29. Hengl, T.: A practical guide to geostatistical mapping of environmental variables. Geoderma (2007)

  30. Heuvelink, G.B.M., Griffith, D.A.: Space-time geostatistics for geography: a case study of radiation monitoring across parts of Germany. Geogr. Anal. 42(2), 161–179 (2010)

    Article  Google Scholar 

  31. Wasserman, G.S., Sudjianto, A.: All subsets regression using a genetic search algorithm. Comput. Ind. Eng. 27(1–4), 489–492 (1994)

    Article  Google Scholar 

  32. Berk, K.N.: Comparing subset regression procedures. Technometrics 20(1), 1–6 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  33. Iaco, S.D., Myers, D.E., Posa, D.: Space-time analysis using a general product-sum model. Stat. Probab. Lett. 52(1), 21–28 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nash, J.C., Varadhan, R.: Unifying optimization algorithms to aid software system users: optimx for R. J. Stat. Softw. 43(9), 1–4 (2011)

    Article  Google Scholar 

  35. De Cesare, L., Myers, D.E., Posa, D.: Product-sum covariance for space-time modeling: an environmental application. Environmetrics 12(1), 11–23 (2001)

    Article  Google Scholar 

  36. Kearns, M., Ron, D.: Algorithmic stability and sanity-check bounds for leave-one-out cross-validation. Neural Comput. 11(6), 1427–1453 (1999)

    Article  Google Scholar 

  37. Pebesma, E., Grler, B.: Introduction to Spatio-Temporal Variography (2015)

  38. Evans, J.J., Lucas, C.E.: Parallel application-level behavioral attributes for performance and energy management of high-performance computing systems. Clust. Comput. 3(16), 91–115 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank the anonymous reviewers for their helpful comments and suggestions on our article. This work was jointly supported by LIESMARS Special Research Funding, the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2015BAJ05B01), the Fundamental Research Funds for the Central Universities (Grant Nos. 2042016kf1076/2042016kf1035), the Key Program of National Natural Science Foundation of China (Grant No. 41331175) and the Science and Technology Planning Project of Guangdong Province (Grant No. 2016A020210059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Shu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Shu, H., Hu, H. et al. Spatiotemporal regression Kriging to predict precipitation using time-series MODIS data. Cluster Comput 20, 347–357 (2017). https://doi.org/10.1007/s10586-016-0708-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-016-0708-0

Keywords

Navigation