Skip to main content
Log in

A new canonical polyadic decomposition algorithm with improved stability and its applications to biomedical signal processing

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In biomedical engineering applications, high-order data, also known as tensors, are more and more popular and canonical polyadic decomposition (CPD) is one of the most powerful tool to analyze such high-dimensional high-order data. However, existing CPD algorithms suffer from a serious disadvantage: they are prone to stick into local minima and hence may result in unreasonable components that are hard to interpret. To overcome this problem, we proposed a new CPD algorithm that not only provides significantly improved stability but is also very suitable for parallel computing. The performance of the proposed algorithm was justified by using synthetic data and its applications in biomedical image denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Deflation means that one layer of \(\mathbf{a}_k^{\left( 1 \right) } \circ \mathbf{a}_k^{\left( 2 \right) } \circ \cdots \circ \mathbf{a}_k^{\left( N \right) } \) is estimated first and then is subtracted from the original tensor, and then the next layer of \(\mathbf{a}_{k+1}^{\left( 1 \right) } \circ \mathbf{a}_{k+1}^{\left( 2 \right) } \circ \cdots \circ \mathbf{a}_{k+1}^{\left( N \right) } \) will be estimated, and so on.

  2. Available at: http://www.sandia.gov/tgkolda/TensorToolbox/index2.6.html

References

  1. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.-I.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, Chichester (2009)

    Book  Google Scholar 

  2. Zhou, G., Zhao, Q., Zhang, Y., Adali, T., Cichocki, A.: Linked component analysis from matrices to high order tensors: applications to biomedical data. Proc. IEEE 104(2), 310–331 (2016)

    Article  Google Scholar 

  3. Liu, Y., Yu, R., Pan, M., Zhang, Y., Xie, S.: Sdmac: spectrum database-driven mac protocol for cognitive machine-to-machine networks. IEEE Trans. Veh. Technol. 66(2), 1456–1467 (2017). doi:10.1109/TVT.2016.2555084

    Article  Google Scholar 

  4. Chen, C., Liu, Z., Zhang, Y., Chen, C.L.P., Xie, S.: Saturated Nussbaum function based approach for robotic systems with unknown actuator dynamics. IEEE Trans. Cybern. 46, 2311–2322 (2016). doi:10.1109/TCYB.2015.2475363

    Article  Google Scholar 

  5. Chen, C., Liu, Z., Zhang, Y., Chen, C. L. P., Xie, S.: Asymptotic fuzzy tracking control for a class of stochastic strict-feedback systems. IEEE Trans. Fuzzy Syst. doi:10.1109/TFUZZ.2016.2566807

  6. Zhou, G., Cichocki, A., Zhao, Q., Xie, S.: Efficient nonnegative Tucker decompositions: algorithms and uniqueness. IEEE Trans. Image Process. 24(12), 4990–5003 (2015)

    Article  MathSciNet  Google Scholar 

  7. Rajwade, A., Rangarajan, A., Banerjee, A.: Image denoising using the higher order singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 849–862 (2013)

    Article  Google Scholar 

  8. Zhou, G., Cichocki, A., Zhao, Q., Xie, S.: Nonnegative matrix and tensor factorizations: an algorithmic perspective. IEEE Signal Process. Mag. 31(3), 54–65 (2014)

    Article  Google Scholar 

  9. Li, B., Zhou, G., Cichocki, A.: Two efficient algorithms for approximately orthogonal nonnegative matrix factorization. IEEE Signal Process. Lett. 22(7), 843–846 (2015)

    Article  Google Scholar 

  10. Zhang, Y., Zhou, G., Zhao, Q., Cichocki, A., Wang, X.: Fast nonnegative tensor factorization based on accelerated proximal gradient and low-rank approximation. Neurocomputing 198, 148–154 (2016)

    Article  Google Scholar 

  11. Zhao, Q., Zhou, G., Zhang, L., Cichocki, A., Amari, S.: Bayesian robust tensor factorization for incomplete multiway data. IEEE Trans. Neural Netw. Learn. Syst. (2015). doi:10.1109/TNNLS.2015.2423694

  12. Zhou, G., Cichocki, A., Zhang, Y., Mandic, D.P.: Group component analysis for multiblock data: common and individual feature extraction. IEEE Trans. Neural Netw. Learn. Syst. 27(11), 2426–2439 (2016). doi:10.1109/TNNLS.2015.2487364

    Article  MathSciNet  Google Scholar 

  13. Karfoul, A., Albera, L., Lathauwer, L.D.: Iterative methods for the canonical decomposition of multi-way arrays: application to blind underdetermined mixture identification. Signal Process. 91(8), 1789–1802 (2011)

    Article  MATH  Google Scholar 

  14. Lim, L.-H., Comon, P.: Blind multilinear identification. IEEE Trans. Inf. Theory 60(2), 1260–1280 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhou, G., Cichocki, A.: Canonical polyadic decomposition based on a single mode blind source separation. IEEE Signal Process. Lett. 19(8), 523–526 (2012)

    Article  Google Scholar 

  16. Zhang, Y., Zhou, G., Jin, J., Wang, M., Wang, X., Cichocki, A.: L1-regularized multiway canonical correlation analysis for SSVEP-based BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 21(6), 887–896 (2013)

    Article  Google Scholar 

  17. Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhou, G., Cichocki, A., Xie, S.: Accelerated canonical polyadic decomposition by using mode reduction. IEEE Trans. Neural Netw. Learn. Syst. 24(12), 2051–2062 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported in part by the National Natural Science Foundation of China 61673124 and 61333013, the Guangdong Province Natural Science Foundation under Grant 2014A030308009 and 2014B090907010, the Foundation of Guangdong Provincial Department of Science and Technology under 15ZS0117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinshi Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, K., Yu, J. & Lu, C. A new canonical polyadic decomposition algorithm with improved stability and its applications to biomedical signal processing. Cluster Comput 20, 1449–1455 (2017). https://doi.org/10.1007/s10586-017-0858-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-0858-8

Keywords

Navigation