Skip to main content
Log in

Distance learning techniques for ontology similarity measuring and ontology mapping

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Recent years, a large amount of ontology learning algorithms have been applied in different disciplines and engineering. The ontology model is presented as a graph and the key of ontology algorithms is similarity measuring between concepts. In the learning frameworks, the information of each ontology vertex is expressed as a vector, thus the similarity measuring can be determined via the distance of the corresponding vector. In this paper, we study how to get an optimal distance function in the ontology setting. The tricks we presented are divided into two parts: first, the ontology distance learning technology in the setting that the ontology data have no labels; then, the distance learning approaches in the setting that the given ontology data are carrying real numbers as their labels. The result data of the four simulation experiments reveal that our new ontology trick has high efficiency and accuracy in ontology similarity measure and ontology mapping in special engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim, H.H., Lee, S.Y., Baik, S.Y., Kim, J.H.: MELLO: medical lifelog ontology for data terms from self-tracking and lifelog devices. Int. J. Med. Inform. 84(12), 1099–1110 (2015)

    Article  Google Scholar 

  2. Slota, M., Leite, J., Swift, T.: On updates of hybrid knowledge bases composed of ontologies and rules. Nucleic Acids Res. 229, 33–104 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Azevedo, C.L.B., Iacob, M.E., Almeida, J.P.A., van Sinderen, M., Pires, L.F., Guizzardi, G.: Modeling resources and capabilities in enterprise architecture: a well-founded ontology-based proposal for archimate. Inf. Syst. 54, 235–262 (2015)

    Article  Google Scholar 

  4. Nardi, J.C., Falbo, R.D., Almeida, J.P.A., Guizzardi, G., Pires, L.F., van Sinderen, M.J., Guarino, N., Fonseca, C.M.: A commitment-based reference ontology for services. Inf. Syst. 54, 263–288 (2015)

    Article  Google Scholar 

  5. Wimmer, H., Rada, R.: Good versus bad knowledge: ontology guided evolutionary algorithms. Expert Syst. Appl. 42(21), 8039–8051 (2015)

    Article  Google Scholar 

  6. Herrmann-Pillath, C.: Energy, growth, and evolution: towards a naturalistic ontology of economics. Ecol. Econ. 119, 432–442 (2015)

    Article  Google Scholar 

  7. Dececchi, T.A., Balhoff, J.P., Lapp, H., Mabee, P.M.: Toward synthesizing our knowledge of morphology: using ontologies and machine reasoning to extract presence/absence evolutionary phenotypes across studies. Syst. Biol. 64(6), 936–952 (2015)

    Article  Google Scholar 

  8. Santos, G.: Ontological emergence: how is that possible? towards a new relational ontology. Found. Sci. 20(4), 429–446 (2015)

    Article  Google Scholar 

  9. Morente-Molinera, J.A., Perez, I.J., Urena, M.R., Herrera-Viedma, E.: Building and managing fuzzy ontologies with heterogeneous linguistic information. Knowl. Syst. 88, 154–164 (2015)

    Article  Google Scholar 

  10. Santipantakis, G., Vouros, G.A.: Distributed reasoning with coupled ontologies: the E-SHIQ representation framework. Knowl. Inf. Syst. 45(2), 491–534 (2015)

    Article  Google Scholar 

  11. Wang, Y.Y., Gao, W., Zhang, Y.G., Gao, Y.: Ontology similarity computation use ranking learning method. In: The 3rd International Conference on Computational Intelligence and Industrial Application, pp. 20–22. Wuhan, China (2010)

  12. Huang, X., Xu, T.W., Gao, W., Jia, Z.Y.: Ontology similarity measure and ontology mapping via fast ranking method. Int. J. Appl. Phys. Math. 1(1), 54–59 (2011)

    Article  Google Scholar 

  13. Gao, W., Liang, L.: Ontology similarity measure by optimizing NDCG measure and application in physics education. Future Commun. Comput. Control Manag. 142, 415–421 (2011)

    Article  Google Scholar 

  14. Gao, W., Guo, Y., Wang, K.Y.: Ontology algorithm using singular value decomposition and applied in multidisciplinary. Clust. Comput. 19(4), 2201–2210 (2016)

    Article  Google Scholar 

  15. Gao, W., Gao, Y., Liang, L.: Diffusion and harmonic analysis on hypergraph and application in ontology similarity measure and ontology mapping. J. Chem. Pharm. Res. 5(9), 592–598 (2013)

    Google Scholar 

  16. Gao, W., Baig, A.Q., Ali, H., Sajjad, W., Farahani, M.R.: Margin based ontology sparse vector learning algorithm and applied in biology science. Saudi J. Biol. Sci. 24(1), 132–138 (2017)

    Article  Google Scholar 

  17. Gao, W., Zhu, L.L., Wang, K.Y.: Ranking based ontology scheming using eigenpair computation. J. Intell. Fuzzy Syst. 31(4), 2411–2419 (2016)

    Article  Google Scholar 

  18. Gao, W., Gao, Y., Zhang, Y.G.: Strong and weak stability of \(k\)-partite ranking algorithm. Information 15(11(A)), 4585–4590 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Gao, W., Farahani, M.R.: Generalization bounds and uniform bounds for multi-dividing ontology algorithms with convex ontology loss function. Comput. J. doi:10.1093/comjnl/bxw107

  20. Gao, W., Zhu, L.L.: Gradient learning algorithms for ontology computing. Comput. Intell. Neurosci (2014). Article ID 438291. doi:10.1155/2014/438291

  21. Gao, W., Wang, W.F.: The fifth geometric arithmetic index of bridge graph and carbon nanocones. J. Differ. Equ. Appl. (2016). doi:10.1080/10236198.2016.1197214

  22. Gao, W., Wang, W.F.: The eccentric connectivity polynomial of two classes of nanotubes. Chaos Solitons Fractals 89, 290–294 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sachnev, V., Ramasamy, S., Sundaram, S., Kim, H.J., Hwang, H.J.: A cognitive ensemble of extreme learning machines for steganalysis based on risk-sensitive hinge loss function. Cogn. Comput. 7(1), 103–110 (2015)

    Article  Google Scholar 

  24. Lee, C.P., Lin, C.J.: A study on L\(_{2}\)-loss (squared hinge-loss) multiclass SVM. Neural Comput. 25(5), 1302–1323 (2013)

    Article  MathSciNet  Google Scholar 

  25. Sen, M.U., Erdogan, H.: Linear classifier combination and selection using group sparse regularization and hinge loss. Pattern Recognit. Lett. 34(3), 265–274 (2013)

    Article  Google Scholar 

  26. Anguita, D., Ghio, A., Oneto, L., Ridella, S.: In-sample model selection for trimmed hinge loss support vector machine. Neural Process. Lett. 36(3), 275–283 (2012)

    Article  Google Scholar 

  27. Bartlett, P.L., Wegkamp, M.H.: Classification with a reject option using a hinge loss. J. Mach. Learn. Res. 9, 1823–1840 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Chassein, A.B., Goerigk, M.: A new bound for the midpoint solution in minmax regret optimization with an application to the robust shortest path problem. Eur. J. Oper. Res. 244(3), 739–747 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ehrgott, M., Ide, J., Schoebel, A.: Minmax robustness for multi-objective optimization problems. Eur. J. Oper. Res. 239(1), 17–31 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Le, D.M., Le, Q.T.: On DC optimization algorithms for solving minmax flow problems. Math. Methods Oper. Res. 80(1), 83–97 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Natarajan, K., Shi, D.J., Toh, K.C.: A probabilistic model for minmax regret in combinatorial optimization. Oper. Res. 62(1), 160–181 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Brittain, K., Silva, M., Tortorelli, D.A.: Minmax topology optimization. Struct. Multidiscip. Optim. 45(5), 657–668 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Candia-Vejar, A., Alvarez-Miranda, E., Maculan, N.: Minmax regret combinational optimization problems: an algorithmic perspective. Rairo-Oper. Res. 45(2), 101–129 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kasperski, A., Zielinski, P.: Minmax regret approach and optimality evaluation in combinatorial optimization problems with interval and fuzzy weights. Eur. J. Oper. Res. 200(3), 680–687 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kasperski, A., Zieliniski, P.: On the approximability of minmax (regret) network optimization problems. Inf. Process. Lett. 109(5), 262–266 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sagol, G., Yildirim, E.A.: Analysis of copositive optimization based linear programming bounds on standard quadratic optimization. J. Global Optim. 63(1), 37–59 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Atalay, K.D., Eraslan, E., Cinar, M.O.: A hybrid algorithm based on fuzzy linear regression analysis by quadratic programming for time estimation: An experimental study in manufacturing industry. J. Manufact. Syst. 36, 182–188 (2015)

    Article  Google Scholar 

  38. Saberian, F., Ghate, A., Kim, M.: A two-variable linear program solves the standard linear-quadratic formulation of the fractionation problem in cancer radiotherapy. Oper. Res. Lett. 43(3), 254–258 (2015)

    Article  MathSciNet  Google Scholar 

  39. Hoang, N.T.: Linear convergence of a type of iterative sequences in nonconvex quadratic programming. J. Math. Anal. Appl. 423(2), 1311–1319 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Adams, W., Waddell, L.: Linear programming insights into solvable cases of the quadratic assignment problem. Discret. Opt. 14, 46–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Craswell, N., Hawking, D.: Overview of the TREC: web track. In: Proceeding of the Twelfth Text Retrieval Conference, pp. 78–92, Gaithersburg, Maryland, NIST Special Publication(2003)

  42. Gao, Y., Gao, W.: Ontology similarity measure and ontology mapping via learning optimization similarity function. Int. J. Mach. Learn. Comput. 2(2), 107–112 (2012)

    Article  Google Scholar 

  43. Gao, W., Lan, M.H.: Ontology mapping algorithm based on ranking learning method. Microelectron. Comput. 28(9), 59–61 (2011)

    Google Scholar 

Download references

Acknowledgements

We thank all the reviewers for their constructive suggestions on how to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Farahani, M.R., Aslam, A. et al. Distance learning techniques for ontology similarity measuring and ontology mapping. Cluster Comput 20, 959–968 (2017). https://doi.org/10.1007/s10586-017-0887-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-0887-3

Keywords

Navigation