Skip to main content

Advertisement

Log in

Research on the parameter inversion problem of prestack seismic data based on improved differential evolution algorithm

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The parameter inversion technology composed by intelligent algorithm and AVO inversion for prestack seismic data provides a comparatively effective identification method for oil-gas exploration. However, traditionally intelligent iterative algorithm, such as, genetic algorithm, shows many disadvantages in solving this problem, including highly depending on initial model, fast convergence in algorithm and being easy to fall into local optimal. Therefore, an unsatisfied inversion performance is produced. In order to solve the above problems, this paper proposes a parameter inversion method based on improved differential evolution algorithm which is better in solving parameter inversion problems of prestack seismic data. In the proposed algorithm, aims at the Aki and Rechard approximation formula used specific initialization strategy, then the initialization parameter curve more smooth. Otherwise, the new algorithm has many advantages, such as, fast computing speed, simple operation, a low independence to initial model and good global convergence, this algorithm is the right choice in solving the parameter inversion problem based on pre-stack seismic data of real number encoding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Neidell, N.S.: Amplitude variation with offset. Lead. Edge 5(3), 47–51 (1986)

    Article  Google Scholar 

  2. Li, S.: Study and Application About Inversion Method of Seismic Parameters of AVO. China University of Petroleum, Beijing (2009)

    Google Scholar 

  3. Chen, J.: AVO Three Parameter Inversion Method Research. China University of Petroleum, Beijing (2007)

    Google Scholar 

  4. Hongming, L.: Research on Quantum Genetic Algorithm and its Application in Geophysical Inversion. China University of Geosciences, Wuhan (2007)

    Google Scholar 

  5. Jiaying, W.: A lecture on nonlinear inversion of geophysical data (one): an overview of geophysical inversion problems. J. Eng. Geophys. 4(1), 1–3 (2007)

    Article  Google Scholar 

  6. Jiaying, W.: A lecture on nonlinear inversion method of geophysical data (two)—Monte Carlo method. J. Eng. Geophys. 4(2), 81–85 (2007)

    Google Scholar 

  7. Xueming, S., Xueming, S., Jia Ying, W.: A lecture on nonlinear inversion method of geophysical data (three)—simulated annealing method. J. Eng. Geophys. 4(3), 165–174 (2007)

    Google Scholar 

  8. Xueming, S., Jia Ying, W.: A lecture on nonlinear inversion method of geophysical data (four)—genetic algorithm. J. Eng. Geophys. 5(2), 129–140 (2008)

    Article  Google Scholar 

  9. Jiaying, W.: A lecture on nonlinear inversion method of geophysical data (five): artificial neural network inversion method. J. Eng. Geophys. 5(3), 255–265 (2008)

    Google Scholar 

  10. Peimin, Z., Jiaying, W.: A lecture on nonlinear inversion method of geophysical data (six)—conjugate gradient method. J. Eng. Geophys. 5(4), 381–386 (2008)

    Google Scholar 

  11. Shuming, W., Yulan, L., Jia Ying, W.: A lecture on the method of nonlinear inversion of geophysical data (nine)—ant colony algorithm. J. Eng. Geophys. 2, 131–136 (2009)

    Google Scholar 

  12. Yuanyuan, Y., Jiaying, W.: A lecture on nonlinear inversion of geophysical data (ten)—particle swarm inversion method. J. Eng. Geophys. 6(4), 385–389 (2009)

    Google Scholar 

  13. Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces, Technical Report: TR-95-012, 1995

  14. Aid, K., Richards, P.G.: Quantitative Seismology: Theory and Methods. Freeman, San Francisco (1980)

    Google Scholar 

  15. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach for Global Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  17. Zielinski, K., Peters, D., Laur, R.: Run time analysis regarding stopping criteria for differential evolution and particle swarm optimization. In: Proceedings of the 1st International Conference on Experiments/Process/System Modelling/Simulation/Optimization (2005)

  18. Gong, W., Cai, Z.: Differential evolution with ranking-based mutation operators. IEEE Trans. Cybern. 43(6), 2066–2081 (2013)

    Article  Google Scholar 

  19. Sarker, R.A., Elsayed, S.M., Ray, T.: Differential evolution with dynamic parameters selection for optimization problems. IEEE Trans. Evolut. Comput. 18(5), 689–707 (2014)

    Article  Google Scholar 

  20. Lu, X., Tang, K., Sendhoff, B., et al.: A new self-adaptation scheme for differential evolution. Neurocomputing 146, 2–16 (2014)

    Article  Google Scholar 

  21. Gong, W., Cai, Z., Liang, D.: Adaptive ranking mutation operator based differential evolution for constrained optimization. IEEE Trans. Cybern. 45(4), 716–727 (2015)

    Article  Google Scholar 

  22. Gong, W., Zhou, A., Cai, Z.: A multioperator search strategy based on cheap surrogate models for evolutionary optimization. IEEE Trans. Evolut. Comput. 19(5), 746–758 (2015)

    Article  Google Scholar 

  23. Gong, W., Yan, X., Liu, X., et al.: Parameter extraction of different fuel cell models with transferred adaptive differential evolution. Energy 86, 139–151 (2015)

    Article  Google Scholar 

  24. Wang, L., Zhang, Q., Zhou, A., et al.: Constrained sub problems in a decomposition-based multiobjective evolutionary algorithm. IEEE Trans. Evolut. Comput. 20(3), 475–480 (2016)

    Article  Google Scholar 

  25. Qiu, X., Xu, J.X., Tan, K.C., et al.: Adaptive cross-generation differential evolution operators for multiobjective optimization. IEEE Trans. Evolut. Comput. 20(2), 232–244 (2016)

    Article  Google Scholar 

  26. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution-an updated survey. Swarm Evolut. Comput. 27, 1–30 (2016)

    Article  Google Scholar 

  27. Awad, N.H., Ali, M.Z., Suganthan, P.N., et al.: CADE: a hybridization of cultural algorithm and differential evolution for numerical optimization. Inf. Sci. 378, 215–241 (2017)

    Article  Google Scholar 

  28. Wang, L., Zeng, Y., Chen, T.: Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Syst. Appl. 42(2), 855–863 (2015)

    Article  Google Scholar 

  29. Bandyopadhyay, S., Mukherjee, A.: An algorithm for many-objective optimization with reduced objective computations: a study in differential evolution. IEEE Trans. Evolut. Comput. 19(3), 400–413 (2015)

    Article  Google Scholar 

  30. Guo, S.M., Yang, C.C.: Enhancing differential evolution utilizing eigenvector-based crossover operator. IEEE Trans. Evolut. Comput. 19(1), 31–49 (2015)

    Article  MathSciNet  Google Scholar 

  31. Biswas, S., Kundu, S., Das, S.: Inducing niching behavior in differential evolution through local information sharing. IEEE Trans. Evolut. Comput. 19(2), 246–263 (2015)

    Article  Google Scholar 

  32. Li, Y.L., Zhan, Z.H., Gong, Y.J., et al.: Differential evolution with an evolution path: a DEEP evolutionary algorithm. IEEE Trans. Cybern. 45(9), 1798–1810 (2015)

    Article  Google Scholar 

  33. Guo, S.M., Yang, C.C., Hsu, P.H., et al.: Improving differential evolution with a successful-parent-selecting framework. IEEE Trans. Evolut. Comput. 19(5), 717–730 (2015)

    Article  Google Scholar 

  34. Yao, Y.X., Yao, K., Fanchang, Z., et al.: Prestack AVO inversion based on differential evolution algorithm. Pet. Geophys. Explor. 48(4), 591–596 (2013)

    Google Scholar 

  35. Brest, J., Greiner, S., Boskovic, B., et al.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evolut. Comput. 10(6), 646–657 (2006)

    Article  Google Scholar 

  36. Wang, L.: Prestack AVO Nonlinear Inversion of Intelligent Optimization Algorithms. China University of Geosciences, Beijing (2015)

    Google Scholar 

Download references

Acknowledgements

This paper is supported by Natural Science Foundation of China. (Nos. 41404076, 61673354), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan), and the State Key Laboratory of Intelligent Control and Decision of Complex Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuesong Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Zhu, Z. & Yan, X. Research on the parameter inversion problem of prestack seismic data based on improved differential evolution algorithm. Cluster Comput 20, 2881–2890 (2017). https://doi.org/10.1007/s10586-017-0895-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-0895-3

Keywords

Navigation