Skip to main content

Advertisement

Log in

Spectral-spatial multi-feature classification of remote sensing big data based on a random forest classifier for land cover mapping

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Supplementary information, such as multi-temporal spectral data and textural features, has the potential to improve land cover classification accuracy. However, given the larger volumes of remote sensing data, it is difficult to utilize all the features of remote sensing big data having different times and spatial resolutions. Inefficiency is also a large problem when dealing with large area land cover mapping. In this study, a new mode of incorporating spatial and temporal dependencies in a complex region employing the random forests (RFs) classifier was utilized. To map land covers, spring and autumn spectral images and their spectral indexes, textural features obtained from Landsat 5 were selected, and an importance measure variable was used to reduce the data’s dimension. In addition to randomly selecting the variable, we used random sampling to furthest decrease the generalization error in RF. The results showed that utilizing random sampling, multi-temporal spectral image and texture features, the classification of the Wuhan urban agglomeration, China, using RF performed well. The RF algorithm yielded an overall accuracy of 89.2% and a Kappa statistic of 0.8522, indicating high model performance. In addition, the variable importance measures demonstrated that the type of textural features was extremely important for intra-class separability. The RF model has transitivity. The algorithm can be extended by choosing a set of appropriate features for signature extension over large areas or in time-series of Landsat imagery. Land cover mapping might be more economical and efficient if no-cost imagery is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Roscher, R., Waske, B.: Shapelet-based sparse image representation for landcover classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 54, 1623–1634 (2016)

    Article  Google Scholar 

  2. Lane, C.R., Liu, H.X., Autrey, B.C., Anenkhonov, O.A., Chepinoga, V.V., Wu, Q.S.: Improved wetland classification using eight-band high resolution satellite imagery and a hybrid approach. Remote Sens. 6, 12187–12216 (2014)

    Article  Google Scholar 

  3. Zheng, H.B., Cheng, T., Yao, X., Deng, X.Q., Tian, Y.C., Cao, W.X., Zhu, Y.: Detection of rice phenology through time series analysis of ground-based spectral index data. Field Crops Res. 198, 131–139 (2016)

    Article  Google Scholar 

  4. Tatsumi, K., Yamashiki, Y., Torres, M.A.C., Taipe, C.L.R.: Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data. Comput. Electron. Agric. 115, 171–179 (2015)

    Article  Google Scholar 

  5. Zhang, X.M., He, G.J., Wang, M.M., Zhang, Z.M., Jiao, W.L., Peng, Y., Wang, G.Z., Liu, H.C., Long, T.F.: Eco-environmental assessment and analysis of Tonglvshan mining area in Daye City, Hubei Province based on spatiotemporal methodology. In: 2015 International Workshop on Spatiotemporal Computing. ISPRS Annals of the Photogrammetry, Fairfax, VA, USA, pp. 211–215 (2015)

  6. Khatami, R., Mountrakis, G., Stehman, V.S.: A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 177, 89–100 (2016)

    Article  Google Scholar 

  7. Tsaneva, M.G., Krezhova, D.D., Yanev, T.K.: Development and testing of a statistical texture model for land cover classification of the Black Sea region with MODIS imagery. Adv. Space Res. 46, 872–878 (2010)

    Article  Google Scholar 

  8. Agüera, F., Aguilar, F.J., Aguilar, M.A.: Using texture analysis to improve perpixel classification of very high resolution images for mapping plastic greenhouses. ISPRS J. Photogramm. Remote Sens. 63, 635–646 (2008)

    Article  Google Scholar 

  9. Asner, G.P., Keller, M., Pereira Jr., R., Zweede, J.C.: Remote sensing of selective logging in Amazonia: assessing limitations based on detailed field observations, Landsat ETM+, and textural analysis. Remote Sens. Environ. 80, 483–496 (2002)

    Article  Google Scholar 

  10. Chica-Olmo, M., Abarca-Hernández, F.: Computing geostatistical image texture for remotely sensed data classification. Comput. Geosci. 26, 373–383 (2000)

    Article  Google Scholar 

  11. Franklin, S.E., Hall, R.J., Moskal, L.M., Maudie, A.J., Lavigne, M.B.: Incorporating texture into classification of forest species composition from airborne multispectral images. Int. J. Remote Sens. 21, 61–79 (2000)

    Article  Google Scholar 

  12. Ghimire, B., Rogan, J., Miller, J.: Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sens. Lett. 1, 45–54 (2010)

    Article  Google Scholar 

  13. Hayes, M.M., Miller, S.N., Murphy, M.A.: High-resolution landcover classification using Random Forest. Remote Sens. Lett. 5, 112–121 (2014)

    Article  Google Scholar 

  14. Berthelot, A., Solberg, A., Gelius, L.J.: Texture attributes for detection of salt. J. Appl. Geophys. 88, 52–69 (2013)

    Article  Google Scholar 

  15. Ghosh, A., Joshi, P.K.: A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution Worldview 2 imagery. Int. J. Appl. Earth Obs. Geoinf. 26, 298–311 (2014)

    Article  Google Scholar 

  16. Eitzel, M.V., Kelly, M., Dronova, I., Valachovic, Y., Quinn-Davidson, L., Solera, J., Valpine, P.: Challenges and opportunities in synthesizing historical geospatial data using statistical models. Ecol. Inform. 31, 100–111 (2016)

    Article  Google Scholar 

  17. Wang, L., Song, W., Liu, P.: Link the remote sensing big data to the image features via wavelet transformation. Cluster Comput. Arch. 19(2), 793–810 (2016)

    Article  Google Scholar 

  18. Li, X., Wang, L.: On the study of fusion techniques for bad geological remote sensing image. J. Ambient Intell. Humaniz. Comput. 6, 141–149 (2015)

    Article  Google Scholar 

  19. Huang, K., Ruimin, H., Jiang, J., Han, Z., Wang, F.: HRM graph constrained dictionary learning for face image super-resolution. Multimed. Tools Appl. 76(2), 3139–3162 (2017)

    Article  Google Scholar 

  20. Wang, L., Ke, L., Liu, P., Ranjan, R., Chen, L.: IK-SVD: dictionary learning for spatial big data via incremental atom update. Comput. Sci. Eng. 16(4), 41–52 (2014)

    Article  Google Scholar 

  21. Wang, L., Zhang, J., Liu, P., Choo, K.-K.R., Huang, F.: Spectral-spatial multi-feature-based deep learning for hyperspectral remote sensing image classification. Soft Comput. 21(1), 213–221 (2017). doi:10.1007/s00500-016-2246-3

    Article  Google Scholar 

  22. Yang, C., Yu, M., Hu, F., Jiang, Y., Li, Y.: Utilizing Cloud Computing to address big geospatial data challenges. Comput. Environ. Urban Syst. 61, 120–128 (2017)

    Article  Google Scholar 

  23. Pal, M.: Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26, 217–222 (2005)

    Article  Google Scholar 

  24. Gislason, P.O., Benediktsson, J.A., Sveinsson, J.R.: Random Forests for land cover classification. Pattern Recogn. Lett. 27, 294–300 (2006)

    Article  Google Scholar 

  25. Adam, E., Mutanga, O., Odindi, J., Abdel-Rahman, E.M.: Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers. Int. J. Remote Sens. 35, 3440–3458 (2014)

    Article  Google Scholar 

  26. Zhu, Z., Gallant, A., Woodcock, C., Pengra, B., Olofsson, P., Loveland, T., Jin, S., Dahal, D., Yang, L., Auch, R.: Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative. ISPRS J. Photogramm. Remote Sens. 122, 206–221 (2016)

    Article  Google Scholar 

  27. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    MATH  Google Scholar 

  28. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  29. Silleos, N.G., Alexandridis, T.K., Gitas, I.Z., Perakis, K.: Vegetation indices: advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto Int. 21, 21–28 (2006)

    Article  Google Scholar 

  30. Rouse, J., Haas, R., Schell, J., Deering, D.: Monitoring vegetation systems in the great plains with ERTS. Third ERTS Symposium, NASA, pp. 309–317 (1973)

  31. Haboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J., Strachan, I.B.: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens. Environ. 90, 337–352 (2004)

    Article  Google Scholar 

  32. Vescovo, L., Gianelle, D.: Using the MIR bands in vegetation indices for the estimation of grassland biophysical parameters from satellite remote sensing in the Alps region of Trentino (Italy). Adv. Space Res. 41, 1764–1772 (2008)

    Article  Google Scholar 

  33. Jiang, Z., Huete, A.R., Chen, J., Chen, Y., Li, J., Yanc, G., Zhang, X.: Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 101(3), 366–378 (2006)

    Article  Google Scholar 

  34. DeFries, R., Hansen, M., Townshend, J.R.G.: Global discrimination of land cover from metrics derived from AVHRR Pathfinder-data sets. Remote Sens. Environ. 54, 209–222 (1995)

    Article  Google Scholar 

  35. Liu, H., Huete, A.R.: A feedback based modification of the NDVI to minimize canopy back ground and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 33, 457–465 (1995)

    Article  Google Scholar 

  36. Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002)

    Article  Google Scholar 

  37. Xu, H.: Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033 (2006)

    Article  Google Scholar 

  38. Pelletiera, C., Valeroa, S., Ingladaa, J., Championb, N., Dedieua, G.: Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 187, 156–168 (2016)

    Article  Google Scholar 

  39. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973)

    Article  Google Scholar 

  40. Beekhuizen, J., Clarke, K.C.: Toward accountable land use mapping: using geocomputation to improve classification accuracy and reveal uncertainty. Int. J. Appl. Earth Obs. Geoinf. 12, 127–137 (2010)

    Article  Google Scholar 

  41. Pacifici, F., Chini, M., Emery, W.J.: A neural network approach using multiscale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens. Environ. 113, 1276–1292 (2009)

    Article  Google Scholar 

  42. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 40, 139–157 (2000)

    Article  Google Scholar 

  43. Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M., Rigol-Sanchez, J.P.: An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 67, 93–104 (2012)

    Article  Google Scholar 

  44. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1), 37–46 (1960)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the National Research Program on Global Changes and Adaptation: Rapid production method of large scale global change products (2016YFA0600302) and by National Ecological Environment Change Assessment by Remote Sensing Survey Project 2000–2010 (STSN-10-03) Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X.M., He, G.J., Zhang, Z.M. et al. Spectral-spatial multi-feature classification of remote sensing big data based on a random forest classifier for land cover mapping. Cluster Comput 20, 2311–2321 (2017). https://doi.org/10.1007/s10586-017-0950-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-0950-0

Keywords

Navigation