Skip to main content

Advertisement

Log in

Energy efficient node selection algorithm based on node performance index and random waypoint mobility model in internet of vehicles

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Internet of vehicles (IoV) is an improved version of internet of things to resolve a number of issues in urban traffic environment. In this paper IoV technology is used to select the best ambulance based on a novel node selection algorithm. The proposed IoT healthcare monitoring system consists of number of mobile doctors, patient and mobile ambulance. Performance rank (PR) index is calculated for each mobile ambulance based on the medical capacity (b) of the mobile ambulance, the number of patients currently using the mobile ambulance (n), and the Euclidean distance from a neighboring mobile ambulance. The minimum PR index is considered as best ambulance to provide a service to the patient. Random waypoint mobility model is used to simulate the proposed IoT based healthcare monitoring system. The proposed energy efficient node selection algorithm is compared with various node selection algorithms such as cluster based routing protocol, workload-aware channel assignment algorithm and scenario-based clustering algorithm for performance evaluation. The packet delivery fraction, normalized routing load and average end-to-end delay are calculated to evaluate the performance of the proposed energy efficient node selection algorithm. We have used NS-2 simulator for the node simulation to show the performance of the energy efficient node selection framework. Experimental results prove that the efficiency of the proposed energy efficient node selection algorithm in IoT healthcare environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lorincz, K., Malan, D.J., Fulford-Jones, T.R., Nawoj, A., Clavel, A., Shnayder, V., Moulton, S.: Sensor networks for emergency response: challenges and opportunities. IEEE Pervasive Comput. 3(4), 16–23 (2004)

    Article  Google Scholar 

  2. Tracey, D., Sreenan, C.: A holistic architecture for the internet of things, sensing services and big data. In: 2013 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) (pp. 546–553). IEEE (2013)

  3. Mavromoustakis, C.X.: Mitigating file-sharing misbehavior with movement synchronization to increase end-to-end availability for delay sensitive streams in vehicular P2P devices. Int. J. Commun. Syst. 26(12), 1599–1616 (2013)

    Article  Google Scholar 

  4. Tao, F., Zuo, Y., Da Xu, L., Zhang, L.: IoT-based intelligent perception and access of manufacturing resource toward cloud manufacturing. IEEE Trans. Ind. Inform. 10(2), 1547–1557 (2014)

    Article  Google Scholar 

  5. Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The rise of “big data” on cloud computing: review and open research issues. Inform. Syst. 47, 98–115 (2015)

    Article  Google Scholar 

  6. Shafiq, M.Z., Ji, L., Liu, A.X., Pang, J., Wang, J.: A first look at cellular machine-to-machine traffic: large scale measurement and characterization. ACM SIGMETRICS Perform. Eval. Rev. 40(1), 65–76 (2012)

    Article  Google Scholar 

  7. Kryftis, Y., Mavromoustakis, C.X., Mastorakis, G., Pallis, E., Batalla, J.M., Skourletopoulos, G. Resource usage prediction for optimal and balanced provision of multimedia services. In: 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD) (pp. 255–259). IEEE (2014)

  8. Mavromoustakis, C.X., Karatza, H.D.: Embedded socio-oriented model for end-to-end reliable stream schedules by using collaborative outsourcing in MP2P systems. Comput. J. 54, 1235–1247 (2011)

    Article  Google Scholar 

  9. Nambiar, R., Bhardwaj, R., Sethi, A., Vargheese, R.: A look at challenges and opportunities of big data analytics in healthcare. In: 2013 IEEE International Conference on Big Data (pp. 17–22). IEEE (2013)

  10. Botta, A., De Donato, W., Persico, V., Pescapé, A.: On the integration of cloud computing and internet of things. In: 2014 International Conference on Future Internet of Things and Cloud (FiCloud) (pp. 23–30). IEEE (2014)

  11. Biswas, A.R., Giaffreda, R.: IoT and cloud convergence: opportunities and challenges. In: 2014 IEEE World Forum on Internet of Things (WF-IoT) (pp. 375–376). IEEE (2014)

  12. Wang, L., Ranjan, R.: Processing distributed internet of things data in clouds. IEEE Cloud Comput. 2(1), 76–80 (2015)

    Article  Google Scholar 

  13. Jiang, L., Da Xu, L., Cai, H., Jiang, Z., Bu, F., Xu, B.: An IoT-oriented data storage framework in cloud computing platform. IEEE Trans. Ind. Inform. 10(2), 1443–1451 (2014)

    Article  Google Scholar 

  14. Barnaghi, P., Sheth, A., Henson, C.: From data to actionable knowledge: big data challenges in the web of things [guest editors’ introduction]. IEEE Intell. Syst. 28(6), 6–11 (2013)

    Article  Google Scholar 

  15. Mongay Batalla, J., Gajewski, M., Latoszek, W., Krawiec, P., Mavromoustakis, C.X., Mastorakis, G.: ID-based service-oriented communications for unified access to IoT. Comput. Electric. Eng. 52(C), 98–113 (2016)

    Article  Google Scholar 

  16. Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M.: Modeling and optimization in science and technologies. In: Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M. (eds.) Internet of Things (IoT) in 5G Mobile Technologies, pp. 56–93. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  17. Hadjioannou, V., Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M., Kopanakis, I., Perakakis, E., Panagiotakis, S.: Security in Smart Grids and Smart Spaces for Smooth IoT Deployment in 5G. In: Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M. (eds.) Internet of Things (IoT) in 5G Mobile Technologies, vol. 8, p. 371. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  18. Goleva, R., Stainov, R., Wagenknecht-Dimitrova, D., Mirtchev, S., Atamian, D., Mavromoustakis, C.X., et al.: Data and traffic models in 5G network. In: Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M. (eds.) Internet of Things (IoT) in 5G Mobile Technologies, p. 485. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  19. Batalla, J.M., Mavromoustakis, C.X., Mastorakis, G., Sienkiewicz, K.: On the track of 5G radio access network for IoT wireless spectrum sharing in device positioning applications. In: Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M. (eds.) Internet of Things (IoT) in 5G Mobile Technologies, pp. 25–35. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  20. Vakintis, I., Panagiotakis, S., Mastorakis, G., Mavromoustakis, C.X.: Evaluation of a Web crowd-sensing IoT ecosystem providing Big data analysis. In: Pop, F., et al. (eds.) Resource Management for Big Data Platforms, pp. 461–488. Springer International Publishing, Cham (2016)

    Google Scholar 

  21. Booysen, M.J., Gilmore, J.S., Zeadally, S., Van Rooyen, G.J.: Machine-to-machine (M2M) communications in vehicular. KSII Trans. Internet Inform. Syst. 6(2), 529–546 (2012)

    Google Scholar 

  22. Verma, P.K., Verma, R., Prakash, A., Agrawal, A., Naik, K., Tripathi, R., Abogharaf, A.: Machine-to-machine (M2M) communications: a survey. J. Netw. Comput. Appl. 66, 83–105 (2016)

    Article  Google Scholar 

  23. Soorki, M.N., Mozaffari, M., Saad, W., Manshaei, M.H., Saidi, H.: Resource allocation for machine-to-machine communications with unmanned aerial vehicles. (2016). arXiv:1608.07632

  24. Sinha, R., Narula, A., Grundy, J.: Parametric statecharts: designing flexible IoT apps: deploying android m-health apps in dynamic smart-homes. In: Proceedings of the Australasian Computer Science Week Multiconference (p. 28). ACM, New York (2017)

  25. Azimi, I., Anzanpour, A., Rahmani, A.M., Liljeberg, P., Tenhunen, H.: Self-aware early warning score system for iot-based personalized healthcare. In: Giokas, K., Bokor, L., Hopfgartner, F. (eds.) eHealth 360\(^{\circ }\), pp. 49–55. Springer International Publishing, Cham (2017)

    Google Scholar 

  26. Dey, N., Ashour, A.S., Bhatt, C.: Internet of things and big data technologies for next generation healthcare. In: Bhatt, C., Dey, N., Ashour, A.S. (eds.) Internet of Things Driven Connected Healthcare, pp. 3–12. Springer International Publishing, Cham (2017)

    Google Scholar 

  27. Manogaran, G., Lopez, D., Thota, C., Abbas, K.M., Pyne, S., Sundarasekar, R.: Big data analytics in healthcare internet of things. In: Qudrat-Ullah, H., Tsasis, P. (eds.) Innovative Healthcare Systems for the 21st Century. Springer International Publishing, Cham (2017)

    Google Scholar 

  28. Malan, D., Fulford-Jones, T., Welsh, M., Moulton, S.: Codeblue: an ad hoc sensor network infrastructure for emergency medical care. In: International workshop on wearable and implantable body sensor networks, vol. 5 (2004)

  29. Kumar, P., Lee, H.J.: Security issues in healthcare applications using wireless medical sensor networks: a survey. Sensors 12(1), 55–91 (2011)

    Article  Google Scholar 

  30. Ng, J.W., Lo, B.P., Wells, O., Sloman, M., Peters, N., Darzi, A., Toumazou, C., Yang, G.Z.: Ubiquitous monitoring environment for wearable and implantable sensors (UbiMon). In: International Conference on Ubiquitous Computing (Ubicomp) (2004)

  31. Ning, H., Wang, Z.: Future internet of things architecture: like mankind neural system or social organization framework? IEEE Commun. Lett. 15(4), 461–463 (2011)

    Article  Google Scholar 

  32. Chakravorty, R.: A programmable service architecture for mobile medical care. In: Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops, 2006.PerCom Workshops (p. 5). IEEE (2006)

  33. Blum, J.M., Magill, E.H.: The design and evaluation of personalised ambient mental health monitors. In: 2010 7th IEEE Consumer Communications and Networking Conference (CCNC) (pp. 1–5). IEEE (2010)

  34. Doppler, K., Rinne, M., Wijting, C., Ribeiro, C.B., Hugl, K.: Device-to-device communication as an underlay to LTE-advanced networks. IEEE Commun. Mag. 47(12), 42–49 (2009)

    Article  Google Scholar 

  35. Jänis, P., Yu, C.H., Doppler, K., Ribeiro, C., Wijting, C., Hugl, K., Koivunen, V.: Device-to-device communication underlaying cellular communications systems. Int. J. Commun. Netw. Syst. Sci. 2(3), 169 (2009)

    Google Scholar 

  36. Tehrani, M.N., Uysal, M., Yanikomeroglu, H.: Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions. IEEE Commun. Mag. 52(5), 86–92 (2014)

    Article  Google Scholar 

  37. Baoyun, W.: Review on internet of things. J. Electron. Meas. Instrum. 23(12), 1–7 (2009)

    Google Scholar 

  38. Manogaran, G., Thota, C., Lopez, D., Sundarasekar, R.: Big data security intelligence for healthcare industry 4.0. In: Cybersecurity for Industry 4.0: Analysis for Design and Manufacturing, vol. 103 (2017)

  39. Hu, J.X., Chen, C.L., Fan, C.L., Wang, K.H.: An intelligent and secure health monitoring scheme using IoT sensor based on cloud computing. J. Sensors (2017). doi:10.1155/2017/3734764

  40. Manogaran, G., Lopez, D.: Spatial cumulative sum algorithm with big data analytics for climate change detection. Comput. Electric. Eng. (2017). doi:10.1016/j.compeleceng.2017.04.006

  41. Baktha, K., Dev, M., Gupta, H., Agarwal, A., Balamurugan, B.: Social network analysis in healthcare. In: Bhatt, C., Dey, N., Ashour, A.S. (eds.) Internet of Things and Big Data Technologies for Next Generation Healthcare, pp. 309–334. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  42. Park, S.J., Subramaniyam, M., Kim, S.E., Hong, S., Lee, J.H., Jo, C.M., Seo, Y.: Development of the elderly healthcare monitoring system with IoT. In: Duffy, V., Lightner, N. (eds.) Advances in Human Factors and Ergonomics in Healthcare, pp. 309–315. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  43. Manogaran, G., Thota, C., Lopez, D., Vijayakumar, V., Abbas, K.M., Sundarsekar, R.: Big data knowledge system in healthcare. In: Bhatt, C., Dey, N., Ashour, A.S. (eds.) Internet of Things and Big Data Technologies for Next Generation Healthcare, pp. 133–157. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Priyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyan, M.K., Devi, G.U. Energy efficient node selection algorithm based on node performance index and random waypoint mobility model in internet of vehicles. Cluster Comput 21, 213–227 (2018). https://doi.org/10.1007/s10586-017-0998-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-0998-x

Keywords

Navigation