Skip to main content

Advertisement

Log in

Fault diagnosis of a transformer based on polynomial neural networks

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In view of the low accuracy of transformer fault diagnosis with traditional method, a novel multi-input and multi-output polynomial neural network (PNN) is proposed and used for transformer fault diagnosis. Firstly, single output PNN I classification model is trained and constructed according to the five kinds of characteristic gas corresponding four fault types (high-energy discharge, low-energy discharge, superheat and normal state) sample data, the transformer states are divided into normal state and abnormal state, then a transformer fault diagnosis model based on multiple output PNN II is built to aim at the three fault types such as high-energy discharge, low-energy discharge and thermal heating. Simulation and test results show that accuracy can reach 100% by using the presented model, which has excellent anti-interference performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pandya, A.A., Parekh, B.R.: Interpretation of sweep frequency response analysis (SFRA) traces for the open circuit and short circuit winding fault damages of the power transformer. Int. J. Electr. Power Energy Syst. 62(11), 890–896 (2014)

    Article  Google Scholar 

  2. Souahlia, S., Bacha, K., Chaari, A.: MLP neural network-based decision for power transformers fault diagnosis using an improved combination of Rogers and Doernenburg ratios DGA. Int. J. Electr. Power Energy Syst. 43(1), 1346–1353 (2012)

    Article  Google Scholar 

  3. Sun, Y.J., Zhang, S., Miao, C.X., et al.: Improved BP neural network for transformer fault diagnosis. J. China Univ. Min. Technol. 17(1), 138–142 (2007)

    Article  Google Scholar 

  4. Shao, K.: A novel method of transformer fault diagnosis based on extension theory and information fusion in wireless sensor networks. Energy Procedia 12(12), 669–678 (2011)

    Article  Google Scholar 

  5. Han, H., Wang, H.J., Dong, X.C.: Transformer fault Diagnosis based on feature selection and parameter optimization. Energy Procedia 12(39), 662–668 (2011)

    Article  Google Scholar 

  6. Zhang, Y.X., Bai, J., Zhang, S.P.: Fault diagnosis of power transformer based on immune particle swarm and BP neural network. J. Beihua Univ. (Nat. Sci.) 15(2), 269–273 (2014)

  7. Fei, S.W., Miao, Y.B., Liu, C.L., et al.: Fault diagnosis of transformer based on particle swarm optimization-based support vector machine. High Volt. Eng. 35(3), 509–513 (2009)

    Google Scholar 

  8. Al-Janabi, S., Rawat, S., Patel, A., et al.: Design and evaluation of a hybrid system for detection and prediction of faults in electrical transformers. Int. J. Electr. Power Energy Syst. 67(67), 324–335 (2015)

    Article  Google Scholar 

  9. Sheng, W.F., Xiao, B.Z.: Fault diagnosis of power transformer based on support vector machine with genetic algorithm. Expert Syst. Appl. 36(8), 11352–11357 (2009)

    Article  Google Scholar 

  10. Mohamed, E.A., Abdelaziz, A.Y., Mostafa, A.S.: A neural network-based scheme for fault diagnosis of power transformers. Electr. Power Syst. Res. 75(1), 29–39 (2005)

    Article  Google Scholar 

  11. Hung, C.P., Wang, M.H.: Diagnosis of incipient faults in power transformers using CMAC neural network approach. Electr. Power Syst. Res. 71(1), 235–244 (2004)

    Article  Google Scholar 

  12. Yadaiah, N., Ravi, N.: Internal fault detection techniques for power transformers. Appl. Soft Comput. 11(8), 5259–5269 (2011)

    Article  Google Scholar 

  13. Sun, H.C., Huang, Y.C., Huang, C.M.: Fault diagnosis of power transformers using computational intelligence: a review. Energy Procedia 14, 1226–1231 (2012)

    Article  Google Scholar 

  14. Chen, A.P., Lin, C.C.: Fuzzy approaches for fault diagnosis of transformers. Fuzzy Sets Syst. 118(1), 139–151 (2001)

    Article  MathSciNet  Google Scholar 

  15. Abu-Siada, A., Hmood, S.: A new fuzzy logic approach to identify power transformer criticality using dissolved gas-in-oil analysis. Electr. Power Energy Syst. 67, 401–408 (2015)

    Article  Google Scholar 

  16. Bacha, K., Souahlia, S., Gossa, M.: Power transformer fault diagnosis based on dissolved gas analysis by support vector machine. Electr. Power Syst. Res. 83(1), 73–79 (2012)

    Article  Google Scholar 

  17. Ganyun, L.V., Cheng, H.Z., Zhai, H.B., et al.: Fault diagnosis of power transformer based on multi-layer SVM classifier. Electr. Power Syst. Res. 74(1), 1–7 (2005)

    Article  Google Scholar 

  18. Zhang, J., Zou, A.J., Tong, T.S.: A neural network based on polynomial basis functions. 1995 Conference Paper. Establishment of Intelligent Automation Committee, vol. 1, pp. 287–292. Intelligent Automation Association of China, Beijing (1995)

  19. Zhang, J., Zou, A.J., Tong, T.S.: A neural network based on polynomial basis functions. J. Hunan Univ. 44, 84–89 (1996)

    Google Scholar 

  20. Xiao, X.C., Jiang, X.H., Zhang, Y.N.: Implicit surface reconstruction from point cloud data based on generalized polynomials neural network. J. Comput. Appl. 29(8), 2043–2045, 2064 (2009)

  21. Patra, J.C., Van den Bos, A.: Modeling of an intelligent pressure sensor using functional link artificial neural networks. ISA Trans. 39(1), 15–27 (2000)

    Article  Google Scholar 

  22. Zou, A.J., Shen, H.Y.: Identifier based on Chebyshev neural network. Coal Mine Autom. 4, 10–11 (1998)

    Google Scholar 

  23. Akritas, P., Antoniou, I., Ivanov, V.V.: Identification and prediction of discrete chaotic maps applying a Chebyshev neural network. Chaos Solitons Fractals 11(1), 337–344 (2000)

    Article  MathSciNet  Google Scholar 

  24. Patra, J.C., Kot, A.C.: Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Trans. Syst. Man Cybern. B 32(4), 505–511 (2002)

    Article  Google Scholar 

  25. Zou, A.J., Wu, W., Li, R.F., et al.: Construction of the encryption matrix based on Chebyshev chaotic neural networks. J. Electron. (China) 29, 248–253 (2012)

    Article  Google Scholar 

  26. Zou, A.J., Shen, J.Z.: A neural network model structure study based on Fourier. Nat. Sci. J. Xiangtan Univ. 23(2), 23–26 (2001)

    MATH  Google Scholar 

  27. Zou, A.J., Luo, Y.X.: Modeling and stock prediction based on Legender neural networks. Comput. Simul. 22(11), 241–242, 246 (2005)

  28. Zou, A.J., Zhang, Y.N., Xiao, X.C.: An asynchronous encryption algorithm based on Hermite chaotic neural networks. CAAI Trans. Intell. Syst. 4(5), 458–462 (2009)

    Google Scholar 

  29. Zhang, Y.N., Liu, J.R., Yin, Y.H., et al.: Weights and structure determination of multi-input Laguerre orthogonal polynomial feed-forward neural network. Comput. Sci. 39(12), 249–251, 277 (2012)

  30. Dhahri, H., Alimi, A.M., Abraham, A.: Hierarchical multi-dimensional differential evolution for the design of beta basis function neural network. Neurocomputing 97(1), 131–140 (2012)

    Article  Google Scholar 

  31. Li, C., Shi, D., Zou, Y.P.: A feedback neural network with weights of sinusoidal functions. Acta Phys. Sin. 61(7), 070701–070708 (2012)

    Google Scholar 

  32. Nan, D., Liu, L.J.: Relationship between basis-function neural networks and reproducing kernel function. J. Beijing Univ. Technol. 40(9), 1428–1431 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Xiao, X.C., Zhang, Y.N., Jiang, X.H., et al.: Approximation-performance and global-convergence analysis of basis-function feedforward neural network. Mod. Comput. 2, 4–8 (2009)

    Google Scholar 

  34. Zhang, Y.N., Liu, W., Yi, C., et al.: Weights immediate determination for feed-forward neural network with Legendre orthogonal basis function. J. Dalian Marit. Univ. 34(1), 32–36 (2008)

    Google Scholar 

  35. Zhang, Y.N., Li, W., Cai, B.H., et al.: A Chebyshev orthogonal basis neural network with direct weight determination. Comput. Simul. 26(1), 157–161 (2009)

    Google Scholar 

  36. Zhang, Y.N., Yang, Y.W., Xiao, X.C., et al.: Weights direct determination of a spline neural network. Syst. Eng. Electron. 31(38), 2685–2688 (2009)

    Google Scholar 

  37. Zhang, Y.N., Chen, Y.L., Jiang, X.H., et al.: Weights-directly-determined and structure-adaptively-tuned neural network based on Chebyshev basis functions. Comput. Sci. 36(6), 210–213 (2009)

    Google Scholar 

  38. Zhang, Y.N., Qu, L., Chen, J.W., et al.: Weights and structure determination method of multiple-input sigmoid activation function neural network. Appl. Res. Comput. 29(11), 4113–4116, 4151 (2012)

  39. Zhang, Y.N., Lao, W.C., Yu, X.T., et al.: Weights and structure determination of two-input power-activation feed-forward neural network. Comput. Eng. Appl. 48(15), 102–106 (2012)

    Google Scholar 

  40. Xing, Y.K., Shi, Y., Mou, C.: Multivariate Chebyshev neural network and quick learning algorithm. Comput. Eng. Appl. 49(13), 36–39 (2013)

    Google Scholar 

  41. Tian, Q.C., Tian, M.X., Yang, X.F.: Weights-direct-determination for image restoration of basis function neural network. Comput. Eng. Appl. 49(8), 178–181 (2013)

    Google Scholar 

  42. Zhang, Y.N., Luo, F.H., Chen, J.H.: Weights and structure determination of 3-input Bernoulli polynomial neural net. Comput. Eng. Sci. 35(5), 142–148 (2013)

    Google Scholar 

  43. Yang, W.G.: Weights direct determination of triangular fuzzy feed-forward neural network. Acta Sci. Nat. Univ. Sunyatseni 2(2), 33–37 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Zou, A.J., Zhang, Y.N.: Basis Function Neural Network and Application, pp. 106–109. Sun Yat-sen University Press, Guangzhou (2009)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (Nos. 61173036, 61272534), the “Climbing Plan” Special Fund Project of Guangdong Province (No. pdjh2017a0233) and the Science and Technology Project of Guangdong Province (No. 2016A010101028) for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, A., Deng, R., Mei, Q. et al. Fault diagnosis of a transformer based on polynomial neural networks. Cluster Comput 22 (Suppl 4), 9941–9949 (2019). https://doi.org/10.1007/s10586-017-1020-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1020-3

Keywords

Navigation