Skip to main content
Log in

RP2: a high-performance data center network architecture using projective planes

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

A data center network (DCN) plays a crucial role in data center communications and provides the infrastructure for cloud computing services and data-intensive applications in a cloud data center. Network performance is determined by DCN architecture, whose effective design critically depends on ensuring low cost, high availability, and high scalability. Currently, DCNs face undesirable trade-off between high availability, scalability and performance. In this paper, first, we propose a hybrid projective plane-based DCN architecture called the recursive projective plane (RP2). RP2 is underlain by the use of multi-port servers and mini-switches in DCN development and the application of a recursive method for scaling up a data center. It deals with the construction and properties of combinatorial designs with arrangements that satisfy the concepts of an efficient DCN. Then, we propose single-path and multi-path routing algorithms for RP2. Theoretical analysis indicates that RP2 provides a scalable architecture with a low diameter, wherein the maximum shortest distance between any pair of servers can be limited by level of extension. An empirical simulation that compares BCube, DCell, and RP2 indicates that under 0–20% server failure, RP2 exhibits efficient fault tolerance. Despite the higher cost and wiring complexity of RP2, it constitutes a high-performance and highly scalable DCN architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Analyst briefing: Global cloud computing market: 270 billion by 2020 (2015). http://www.cloudcomputingmarket.com/

  2. Mearian, L.: By 2020, there will be 5,200 GB of data for every person on Earth, Computerworld website, article 2493701 (2012). http://www.computerworld.com/article/2493701/data-center/by-2020--there-will-be-5-200-gb-of-data-for-every-person-on-earth.html

  3. Chen, T., Gao, X., Chen, G.: The features, hardware, and architectures of data center networks: a survey. J. Parallel Distrib. Comput. 96, 45–74 (2016)

    Article  Google Scholar 

  4. Wang, B., Qi, Z., Ma, R., Guan, H., Vasilakos, A.V.: A survey on data center networking for cloud computing. Comput. Netw. 91, 528–547 (2015)

    Article  Google Scholar 

  5. Li, D., Shen, Y., Li, K.: FleCube: a flexibly-connected architecture of data center networks on multi-port servers. Comput. Commun. 77, 62–71 (2016)

    Article  Google Scholar 

  6. Sreekumari, P., Jung, J., Lee, M.: A simple and efficient approach for reducing TCP timeouts due to lack of duplicate acknowledgments in data center networks. Clust. Comput. 19(2), 633–645 (2016)

    Article  Google Scholar 

  7. Tian, W., Zhao, Y.: Optimized cloud resource management and scheduling theory and practice, pp. 51–77. Morgan Kaufmann, Waltham (2015). ISBN: 978-0-12-801476-9

  8. Wang, T., Su, Z., Xia, Y., Hamdi, M.: Rethinking the data center networking: architecture, network protocols, and resource sharing. IEEE Access 2, 1481–1496 (2014)

    Article  Google Scholar 

  9. Liu, Y., Muppala, J.K., Veeraraghavan, M., Lin, D., Hamdi, M.: Data Center Networks: Topologies, Architectures and Fault-Tolerance Characteristics. Springer Briefs in Computer Science. Springer, Cham (2013)

    Book  Google Scholar 

  10. Qi, H., Shiraz, M., Gani, A., Whaiduzzaman, M.D., Khan, S.: Sierpinski triangle based data center architecture in cloud computing. J. Supercomput. 69(2), 887–907 (2014)

    Article  Google Scholar 

  11. Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., Lu, S.: Bcube: a high performance, server-centric network architecture for modular data centers. ACM SIGCOMM Comput. Commun. Rev. 39, 63–74 (2009)

    Article  Google Scholar 

  12. Sun’s Modular Datacenter. http://docs.oracle.com/cd/E1911501/mod.dc.s20/index.html

  13. IBM Portable modular data center. http://www935.ibm.com/services/us/en/it-services/data-center/it-facilitiesassessment-design-and-construction-services-portable-modular-datacenter/index.html

  14. Asghari, V., Farrahi Moghaddam, R., Cheriet, M.: Performance analysis of modified BCube topologies for virtualized data center networks. Comput. Commun. 96, 52–61 (2016)

    Article  Google Scholar 

  15. Dzmitry Kliazovich, D., Bouvry, P., Ullah Khan, S.: DENS: data center energy-efficient network-aware scheduling. Clust. Comput. 16(1), 65–75 (2013)

    Article  Google Scholar 

  16. Hammadi, A., Mhamdi, L.: A survey on architectures and energy efficiency in data center networks. Comput. Commun. 40, 1–21 (2014)

    Article  Google Scholar 

  17. Greenberg, A., Hamilton, J.R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz, D.A., Patel, P., Sengupta, S.: Vl2: a scalable and flexible data center network. ACM SIGCOMM Comput. Commun. Rev. 39, 51–62 (2009)

    Article  Google Scholar 

  18. Niranjan, R., Mysore, A., Pamboris, N., Farrington, N., Huang, P., Miri, S., Radhakrishna, V., Subramanya, A., Vahdat, A.: Portland: a scalable fault-tolerant layer data center network fabric. ACM SIGCOMM Comput. Commun. Rev. 39(4), 39–50 (2009)

    Article  Google Scholar 

  19. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. ACM SIGCOMM Comput. Commun. Rev. 38, 63–74 (2008)

    Article  Google Scholar 

  20. Costa, P., Donnelly, A., O’Shea, G., Rowstron, A.: CamCubeOS: a key-based network stack for 3D Torus cluster topologies. In: The 22nd ACM International Symposium on High Performance Parallel and Distributed Computing (HPDC’13), ACM Press, New York, pp. 73–84 (2013)

  21. Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., Lu, S.: Dcell: a scalable and fault-tolerant network structure for data centers. ACM SIGCOMM Comput. Commun. Rev. 38, 75–86 (2008)

    Article  Google Scholar 

  22. Li, D., Guo, C., Wu, H., Tan, K., Zhang, Y., Lu, S.: Ficonn: using backup port for server interconnection in data centers. In: IEEE INFOCOM. IEEE, pp. 2276–2285 (2009)

  23. Wang, T., Su, Z., Xia, Y., Muppala, J., Hamdi, M.: Designing efficient high performance server-centric data center network architecture. Comput. Netw. 79, 283–296 (2015)

    Article  Google Scholar 

  24. Dukes, P., Lamken, E., Wilson, R.: Combinatorial Design Theory. Banff International Research Station for Mathematical Innovation and Discovery, Banff (2008)

    Google Scholar 

  25. Stinson, D.R.: Combinatorial Designs: Constructions and Analysis. Springer, New York (2003)

    MATH  Google Scholar 

  26. Gross, J.L.: Combinatorial Methods with Computer Applications (Discrete Mathematics and Its Applications), 1st edn. Chapman and Hall/CRC, Hoboken (2007). ISBN-10: 1584887435

  27. Grimaldi, R.P.: Discrete and Combinatorial Mathematics: An Applied Introduction, 5th edn. Pearson Education, Harlow (2006). ISBN: 9788177584240

  28. Colbourn, C.J.P., Dinitz, J.H.: Handbook of Combinatorial Designs, 2nd edn. CRC Press, Boca Raton (2006). ISBN-10: 1584885068

  29. Hirschfeld, J. Projective Geometries Over Finite Fields, 2nd edn. Clarendon Press, Oxford (1998). ISBN-10: 0198502958

  30. Arista Networks, Data Center Class: Scaling Data Center Networks (2016). https://www.arista.com/assets/data/pdf/Network_Scalability_AAG.pdf

  31. Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The cost of a cloud: research problems in data center networks. ACM SIGCOMM Comput. Commun. Rev. 39(1), 68–73 (2009)

    Article  Google Scholar 

  32. Knuth, D.: A generalization of Dijkstra’s algorithm. Info. Proc. Lett. 6(1), 1–5 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  33. Akhter, N., Othman, M.: Energy aware resource allocation of cloud data center: review and open issues. Clust. Comput. 19(3), 1163–1182 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hosein Kashefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashefi, A.H., Mohammad-Khanli, L. & Soltankhah, N. RP2: a high-performance data center network architecture using projective planes. Cluster Comput 20, 3499–3513 (2017). https://doi.org/10.1007/s10586-017-1024-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1024-z

Keywords

Navigation