Skip to main content

Advertisement

Log in

The mechanical arm control based on harmony search genetic algorithm

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Considering the low efficiency and instability of traditional genetic algorithm optimized PID controller, an improved algorithm named harmony search genetic algorithm to optimize PID controller’s parameters of mechanical arm is proposed in this paper. Using harmony search algorithm in the initial population generation process of genetic algorithm improved the algorithm’s performance. Harmony search genetic algorithm is more suitable to optimize PID controller’s parameters than traditional genetic algorithm in six degrees of freedom mechanical arm system. Compared to the traditional control optimization method, as shown in the simulation results, the new kind of optimization method is better in both validity and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xu, R.R., Yao, L.: Robot nonsingular terminal synovial control based on genetic algorithm. J. Qingdao Univ. Sci. Technol. 35(4), 422–427 (2014)

    Google Scholar 

  2. Yoshiyuki, T., Naoki, Y., Toshio, T., Takamasa, S.: Vehicle active steering control system based on human mechanical impedance properties of the arms. IEEE Trans. Intell. Transp. Syst. 15(4), 1758–1769 (2014)

    Article  Google Scholar 

  3. Serra Ginalber, L.O., Silva, J.A.: Robust PID TS fuzzy control methodology based on gain and phase margins specifications. J. Intell. Fuzzy Syst. 26(2), 869–888 (2014)

    MATH  MathSciNet  Google Scholar 

  4. Tumari, M.Z.M., Ahmad, M.A., Saealal, M.S., Zawawi, M.A., Mohamed, Z., Yusop, N.M. The direct strain feedback with PID control approach for a flexible manipulator: experimental results. In: International Conference on Control, Automation and Systems, pp. 7–12 (2011)

  5. Chang, T.K., Spowage, A., Chan, K.Y.: Review of control and sensor system of flexible manipulator. J. Intell. Robot. Syst. 77(1), 187–213 (2015)

    Article  Google Scholar 

  6. Lee, C.S., Gonzalez, R.V.: Fuzzy logic versus a PID controller for position control of a muscle-like actuated arm. J. Mech. Sci. Technol. 22(8), 1475–1482 (2008)

    Article  Google Scholar 

  7. Mahmoodabadi, M.J., Taherkhorsandi, M., Talebipour, M., Castillo-Villar, K.K.: Adaptive robust PID control subject to supervisory decoupled sliding mode control based upon genetic algorithm optimization. Trans. Inst. Meas. Control 37(4), 505–514 (2015)

    Article  Google Scholar 

  8. Neath, M.J., Swain, A.K., Madawala, U.K., Thrimawithana, D.J.: An optimal PID controller for a bidirectional inductive power transfer system using multiobjective genetic algorithm. IEEE Trans. Power Electron. 29(3), 1523–1531 (2014)

    Article  Google Scholar 

  9. Katal, N., Singh, S.K.: Multi-objective optimisation of PID controller for DC servo motor using genetic algorithm. Eng. Intell. Syst. 23(1), 7–16 (2015)

    Google Scholar 

  10. Chen, Y., Ma, Y., Yun, W.: Application of improved genetic algorithm in PID controller parameters optimization. Telkomnika Indonesian J. Electr. Eng. 11(3), 1524–1530 (2013)

    Google Scholar 

  11. Taherkhorsandi, M., Mahmoodabadi, M.J., Talebipour, M., Castillo-Villar, K.K.: Pareto design of an adaptive robust hybrid of PID and sliding control for a biped robot via genetic algorithm optimization. Nonlinear Dyn. 79(1), 251–263 (2015)

    Article  Google Scholar 

  12. Ambia, M.N., Hasanien, H.M., Al-Durra, A., Muyeen, S.M.: Harmony search algorithm-based controller parameters optimization for a distributed-generation system. IEEE Trans. Power Deliv. 30(1), 246–255 (2015)

    Article  Google Scholar 

  13. Wang, G., Gandomi, A.H., Zhao, X., Chu, H.: Hybridizing harmony search algorithm with cuckoo search for global numerical optimization. Soft. Comput. 20(1), 273–285 (2016)

    Article  Google Scholar 

  14. Upadhyay, P., Kar, R., Mandal, D., Ghoshal, S.P., Mukherjee, V.: A novel design method for optimal IIR system identification using opposition based harmony search algorithm. J. Franklin Inst. 351(5), 2454–2488 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Alia, O.M., Mandava, R.: The variants of the harmony search algorithm: an overview. Artif. Intell. Rev. 36(1), 49–68 (2011)

    Article  Google Scholar 

  16. Rafe, V., Paiandeh, Z., Nikanjam, A.: A hybrid optimization algorithm based on harmony search and differential evolution for continuous domain. J. Intell. Fuzzy Syst. 29(5), 2169–2176 (2015)

    Article  Google Scholar 

  17. Mahamood, R.M.: Adaptive Controller Design for Two-Link Flexible Manipulator. Springer, Berlin (2014)

    Book  Google Scholar 

  18. Das, S.K., Amitava, C., Rakshit, A.: Harmony search-based hybrid stable adaptive fuzzy tracking controllers for vision-based mobile robot navigation. Mach. Vis. Appl. 25(2), 405–419 (2014)

    Article  Google Scholar 

  19. Nadi, F., Khader, A.T., Al-Betar, M.A.: Adaptive genetic algorithm using harmony search. In: Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference, pp. 819–820 (2010)

  20. Talebpour, M.H., Kaveh, A., Kalatjari, V.R.: Optimization of skeletal structures using a hybridized ant colony-harmony search-genetic algorithm. Iran. J. Sci. Technol. Trans. Civil Eng. 38(C1), 1–20 (2014)

    Google Scholar 

  21. Ko, K.E., Park, S.M., Park, J., et al.: Training HMM structure and parameters with genetic algorithm and harmony search algorithm. J. Electr. Eng. Technol. 7(7), 109–114 (2012)

    Article  Google Scholar 

  22. Shi, W.W., Han, W., Si, W.C.: A hybrid genetic algorithm based on harmony search and its improving. Inform. Manag. Sci. I, 101–109 (2013)

    Google Scholar 

  23. Mao, C.: Harmony search-based test data generation for branch coverage in software structural testing. Neural Comput. Appl. 25(1), 199–216 (2014)

    Article  Google Scholar 

  24. Ho, M.T., Tu, Y.W.: Position control of a single-link flexible manipulator using H\(\infty \)-based PID control. IEE Proc. Control Theory Appl. 153(5), 615–622 (2006)

    Article  MathSciNet  Google Scholar 

  25. Ligang, W., Xiaozhan, Y., Hak-Keung, L.: Dissipativity analysis and synthesis for discrete-time t-s fuzzy stochastic system swith time-varying delay. IEEE Trans. Fuzzy Syst. 22(2), 380–394 (2014)

    Article  Google Scholar 

  26. Hu, X., Wu, L., Hu, C., Wang, Z., Gao, H.: Dynamic output feedback control of a flexible air-breathing hypersonic vehicle via T-S fuzzy approach. Int. J. Syst. Sci. 45(8), 1740–1756 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper is supported by State Key Laboratory of Robotics and Systems (HIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaolan He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Pan, B., Liu, Z. et al. The mechanical arm control based on harmony search genetic algorithm. Cluster Comput 20, 3251–3261 (2017). https://doi.org/10.1007/s10586-017-1053-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1053-7

Keywords

Navigation