Skip to main content
Log in

Noisy image reconstruction based on low-rank in UAV wireless transmission

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Compressed sensing changes the conventional image processing model of full collection-sampling-compression-transmission-reconstruction and provides a more feasible way to the UAV wireless transmission. Existing matching pursuit algorithms cannot simultaneously meet the requirements of reconstruction accuracy and reconstruction efficiency in UAV wireless transmission, especially when the images are polluted by some noise. Hence, we propose an effective noisy image reconstruction algorithm based on low-rank which introduces the low-rank matrix decomposition and the Augmented Lagrange Multiplier to realize the tradeoff between reconstruction accuracy and reconstruction efficiency. Experimental results verify that the proposed LR algorithm has a superior and stable reconstruction performance on noisy image reconstruction compared with the matching pursuit algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li, Z., Liu, Y., Walker, R., et al.: Towards automatic power line detection for a UAV surveillance system using pulse coupled neural filter and an improved Hough transform. Mach. Vis. Appl. 21(5), 677–686 (2010)

    Article  Google Scholar 

  2. Merino, L., Caballero, F., Martínez-de-Dios, J.R., et al.: An unmanned aircraft system for automatic forest fire monitoring and measurement. J. Intell. Robot. Syst. 65(1), 533–548 (2012)

    Article  Google Scholar 

  3. Liang, X., Meng, G., Luo, H., et al.: Dynamic path planning based on improved boundary value problem for unmanned aerial vehicle. Clust. Comput. 19(4), 2087–2096 (2016)

    Article  Google Scholar 

  4. Ran, C.Q., Wang, Z.M.: Super-resolution processing of SAR image by basis pursuit method. J. Astronaut. 27(1), 51–56 (2006)

    Google Scholar 

  5. Candes E., Romberg, J.: L1-magic: Recovery of sparse signals via convex programming. URL: www.acm.caltech.edu/l1magic/downloads/l1magic.pdf. 4, 14 (2005)

  6. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signa. 1, 586–597 (2007)

    Article  Google Scholar 

  7. Blumensath, T., Davies, M.E.: Iterative thresholding for sparse approximations. J. Fourier Anal. Appl. 14(5), 629–654 (2008)

    Article  MathSciNet  Google Scholar 

  8. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, pp. 1–3 (1995)

  9. Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(12), 93–100 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 55(5), 2230–2249 (2009)

    Article  MathSciNet  Google Scholar 

  11. Needell, D., Vershynin, R.: Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J. Sel. Top. Signal Process. 4(2), 310–316 (2010)

    Article  Google Scholar 

  12. Wang, J., Kwon, S., Shim, B.: Generalized orthogonal matching pursuit. IEEE Trans. Signal Process. 60(12), 6202–6216 (2011)

    Article  MathSciNet  Google Scholar 

  13. Do, T.T., Gan, L., Nguyen. N., et al.: Sparsity adaptive matching pursuit algorithm for practical compressed sensing. In: 42nd Asilomar IEEE Conference on Signals, Systems and Computers, pp. 581–587 (2008)

  14. Blumensath, Thomas: Mike E. Davies Stagewiseweak gradient pursuits. IEEE Trans. Signal Process. 57(11), 4333–4346 (2009)

    Article  MathSciNet  Google Scholar 

  15. Donoho, D.L., Tsaig, Y., Ri, I., et al.: Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans. Inf. Theory 58(2), 1094–1121 (2012)

    Article  MathSciNet  Google Scholar 

  16. Li, L., Li, S., Fu, Y.: Learning low-rank and discriminative dictionary for image classification. Image Vis. Comput. 32(10), 814–823 (2014)

    Article  Google Scholar 

  17. He, Z., Liu, L., Deng, R., et al.: Low-rank group inspired dictionary learning for hyperspectral image classification. Signal Process. 120(C), 209–221 (2016)

    Article  Google Scholar 

  18. Zhou, X., Yang, C., Yu, W.: Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 597 (2013)

    Article  Google Scholar 

  19. Jing, X.Y., Wu, F., Zhu, X., et al.: Multi-spectral low-rank structured dictionary learning for face recognition. Pattern Recognit. 59, 14–25 (2016)

    Article  Google Scholar 

  20. Liu, G., Lin, Z., Yan, S., et al.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)

    Article  Google Scholar 

  21. Wu, S., Bai, Y., Chen, H.: Change detection methods based on low-rank sparse representation for multi-temporal remote sensing imagery. Cluster Computing, 1-16 (2017)

  22. Zhao, Y.Q., Yang, J.: Hyperspectral image denoising via sparse representation and low-rank constraint. IEEE Trans. Geosci. Remote Sens. 53(1), 296–308 (2015)

    Article  Google Scholar 

  23. Elad, M., Bruckstein, A.M.: A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. Inf. Theory 48(9), 2558–2567 (2002)

    Article  MathSciNet  Google Scholar 

  24. Sharon, Y., Wright, J., Ma, Y.: Computation and relaxation of conditions for equivalence between L1 and L0 minimization. CSL Technical Report UILU-ENG-07-2208, Univ. of Illinois, Urbana-Champaign (2007)

  25. Lin Z, Liu R, Su Z.: Linearized alternating direction method with adaptive penalty for low-rank representation. Advances in Neural Information Processing Systems: 612–620 (2011)

  26. Wang, J., Li, T., Shi, Y.Q., et al.: Forensics feature analysis in quaternion wavelet domain for distinguishing photographic images and computer graphics. Multimed. Tools Appl. 1-17 (2016)

  27. Xia, Z., Wang, X., Sun, X., et al.: Steganalysis of LSB matching using differences between nonadjacent pixels. Multimed. Tools Appl. 75(4), 1947–1962 (2016)

    Article  Google Scholar 

  28. Chen, Y., Hao, C., Wu, W., et al.: Robust dense reconstruction by range merging based on confidence estimation. Sci. China Inf. Sci. 59(9), 092103 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The research work reported in this paper is supported by the Fundamental Research Funds for the Central Universities (2042017kf0044), China Postdoctoral Science Foundation (Grant Nos. 2016M592409, 2017M612511), the National Natural Science Foundation of China (Nos. 61701453, 61572372) and National Program on Key Basic Research Project (No. 2011CB302306). In addition, this work is partially supported by the LIESMARS Special Research Funding and Open Funding of NUIST, PAPD and CICAEET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Wang, T., Guan, Q. et al. Noisy image reconstruction based on low-rank in UAV wireless transmission. Cluster Comput 22 (Suppl 5), 10717–10728 (2019). https://doi.org/10.1007/s10586-017-1163-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1163-2

Keywords

Navigation