Skip to main content
Log in

Coordinate descent based ontology sparse vector computing strategy and its applications

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In recent years, as a semantic analysis and computational tool, ontology has been widely applied in many engineering applications. Many cases suggests that it’s confronted with countless big data source with the complex data structures. In order to relieve the dilemma, the sparse learning algorithms are introduced into the ontology similarity measuring and ontology mapping. In this setting, it should be a high dimensional expression of each ontology vertex, and the ontology algorithm should extract key component information effectively. Under such background, we consider the ontology sparse vector learning algorithm and application in different engineering applications. In this article, by means of coordinate descent minimization tricks, we present the ontology sparse vector optimization strategy and discuss the different transformation in different settings. At last, the new ontology sparse vector learning proceeding is applied to four engineering applications respectively to get its efficiency verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gregor, D., Toral, S., Ariza, T., Barrero, F., Gregor, R., Rodas, J., Arzamendia, M.: A methodology for structured ontology construction applied to intelligent transportation systems. Comput. Stand. Interfaces 47, 108–119 (2016)

    Google Scholar 

  2. Kaminski, M., Nenov, Y., Grau, B.C.: Datalog rewritability of Disjunctive Datalog programs and non-Horn ontologies. Artif. Intell. 236, 90–118 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Forsati, R., Shamsfard, M.: Symbiosis of evolutionary and combinatorial ontology mapping approaches. Inf. Sci. 342, 53–80 (2016)

    MathSciNet  Google Scholar 

  4. Pesaranghader, A., Matwin, S., Sokolova, M., Beiko, R.G.: simDEF: definition-based semantic similarity measure of gene ontology terms for functional similarity analysis of genes. Bioinformatics 32(9), 1380–1387 (2016)

    Google Scholar 

  5. Huntley, R.P., Sitnikov, D., Orlic-Milacic, M., et al.: Guidelines for the functional annotation of microRNAs using the Gene Ontology. RNA 22(5), 667–676 (2016)

    Google Scholar 

  6. Brown, R.B.K., Beydoun, G., Low, G., Tibben, W., Zamani, R., Garcia-Sanchez, F., Martinez-Bejar, R.: Computationally efficient ontology selection in software requirement planning. Inf. Syst. Front. 18(2), 349–358 (2016)

    Google Scholar 

  7. Palmer, C., Urwin, E.N., Pinazo-Sanchez, J.M., Cid, F.S., Rodriguez, E.P., Pajkovska-Goceva, S., Young, R.I.M.: Reference ontologies to support the development of global production network systems. Comput. Ind. 77, 48–60 (2016)

    Google Scholar 

  8. Terblanche, C., Wongthongtham, P.: Ontology-based employer demand management. Softw.-Pract. Exp. 46(4), 469–492 (2016)

    Google Scholar 

  9. Farid, H., Khan, S., Javed, M.Y.: DSont: DSpace to ontology transformation. J. Inf. Sci. 42(2), 179–199 (2016)

    Google Scholar 

  10. Suarez-Figuero, C.M., Gomez-Perez, A., Fernandez-Lopez, M.: Scheduling ontology development projects. Data Knowl. Eng. 102, 1–21 (2016)

    Google Scholar 

  11. Agapito, G., Milano, M., Guzzi, P.H., Cannataro, M.: Extracting cross-ontology weighted association rules from gene ontology annotations. IEEE-ACM Trans. Comput. Biol. Bioinform. 13(2), 197–208 (2016)

    Google Scholar 

  12. Chicco, D., Masseroli, M.: Ontology-based prediction and prioritization of gene functional annotations. IEEE-ACM Trans. Comput. Biol. Bioinform. 13(2), 248–260 (2016)

    Google Scholar 

  13. Umadevi, S., Premkumar, K., Valarmathi, S., Ayyasamy, P.M., Rajakumar, S.: Identification of novel genes related to diabetic retinopathy using protein-protein interaction network and gene ontologies. J. Biol. Syst. 24(1), 117–127 (2016)

    MathSciNet  Google Scholar 

  14. Bajenaru, L., Smeureanu, I., Balog, A.: An ontology-based e-learning framework for healthcare human resource management. Stud. Inf. Control 25(1), 99–108 (2016)

    Google Scholar 

  15. Sherimon, P.C., Krishnan, R.: OntoDiabetic: an ontology-based clinical decision support system for diabetic patients. Arab. J. Sci. Eng. 41(3), 1145–1160 (2016)

    Google Scholar 

  16. Bobillo, F., Straccia, U.: The fuzzy ontology reasoner fuzzyDL. Knowl.-Based Syst. 95, 12–34 (2016)

    Google Scholar 

  17. Trokanas, N., Cecelja, F.: Ontology evaluation for reuse in the domain of process systems engineering. Comput. Chem. Eng. 85, 177–187 (2016)

    Google Scholar 

  18. Mazandu, G.K., Chimusa, E.R., Mbiyavanga, M., Mulder, N.J.: A-DaGO-fun: an adaptable gene ontology semantic similarity-based functional analysis tool. Bioinformatics 32(3), 477–479 (2016)

    Google Scholar 

  19. Auffeves, A., Grangier, P.: Contexts, systems and modalities: a new ontology for quantum mechanics. Found. Phys. 46(2), 121–137 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Hoyle, D.C., Brass, A.: Statistical mechanics of ontology based annotations. Phys. A-Stat. Mech. Its Appl. 442, 284–299 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Gao, W., Zhu, L.L., Wang, K.Y.: Ranking based ontology scheming using eigenpair computation. J. Intell. Fuzzy Syst. 31(4), 2411–2419 (2016)

    Google Scholar 

  22. Gao, W., Guo, Y., Wang, K.Y.: Ontology algorithm using singular value decomposition and applied in multidisciplinary. Clust. Comput.-J. Netw. Softw. Tools Appl. 19(4), 2201–2210 (2016)

    Google Scholar 

  23. Gao, W., Zhu, L.L., Wang, K.Y.: Ontology sparse vector learning algorithm for ontology similarity measuring and ontology mapping via ADAL technology. Int. J. Bifurc. Chaos 25(14), 1540034 (2015). https://doi.org/10.1142/S0218127415400349. (12 pages)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gao, Y., Farahani, M.R., Gao, W.: Ontology optimization tactics via distance calculating. Appl. Math. Nonlinear Sci. 1(1), 159–174 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Gao, W., Gao, Y., Zhang, Y.G.: Strong and weak stability of \(k\)-partite ranking algorithm. Information 15(11A), 4585–4590 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Gao, W., Xu, T.W.: Stability analysis of learning algorithms for ontology similarity computation. Abstract Appl. Anal. https://doi.org/10.1155/2013/174802 (2013)

  27. Gao, W., Zhu, L.L.: Gradient learning algorithms for ontology computing. Comput. Intell. Neurosci. https://doi.org/10.1155/2014/438291 (2014)

  28. Gao, W., Baig, A.Q., Ali, H., Sajjad, W., Farahani, M.R.: Margin based ontology sparse vector learning algorithm and applied in biology science. Saudi J. Biol. Sci. 24(1), 132–138 (2017)

    Google Scholar 

  29. Gao, W., Wang, W.F.: The fifth geometric arithmetic index of bridge graph and carbon nanocones. J. Differ. Equ. Appl. 23(1–2), 100–109 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Gao, W., Yan, L., Shi, L.: Generalized Zagreb index of polyomino chains and nanotubes. Optoelectron. Adv. Mater. Rapid Commun. 11(1–2), 119–124 (2017)

    Google Scholar 

  31. Beck, A.: The 2-coordinate descent method for solving double-sided simplex constrained minimization problems. J. Optim. Theory Appl. 162(3), 892–919 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Arablouei, R., Dogancay, K., Adali, T.: Unbiased recursive least-squares estimation utilizing dichotomous coordinate-descent Iterations. IEEE Trans. Signal Process. 62(11), 2973–2983 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Richtarik, P., Takac, M.: Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Math. Program. 144(1–2), 1–38 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Necoara, I., Patrascu, A.: A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints. Comput. Optim. Appl. 57(2), 307–337 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Patrascu, A., Necoara, I.: Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization. J. Glob. Optim. 61(1), 19–46 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Fercoq, O., Richtarik, P.: Accelerated, parallel, and proximal coordinate descent. SIAM J. Optim. 25(4), 1997–2023 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Patrascu, A., Necoara, I.: Random coordinate descent methods for l(0) regularized convex optimization. IEEE Trans. Autom. Control 60(7), 1811–1824 (2015)

    MathSciNet  MATH  Google Scholar 

  38. McGaffin, M.G., Fessler, J.A.: Edge-preserving image denoising via group coordinate descent on the GPU. IEEE Trans. Image Process. 24(4), 1273–1281 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Dumitrescu, B.: On the relation between the randomized extended Kaczmarz algorithm and coordinate descent. BIT Numer. Math. 55(4), 1005–1015 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Rinaldi, M., Tampere, C.M.J.: An extended coordinate descent method for distributed anticipatory network traffic control. Transp. Res. Part B-Methodol. 80, 107–131 (2015)

    Google Scholar 

  41. Park, H., Konishi, S.: Robust coordinate descent algorithm robust solution path for high-dimensional sparse regression modeling. Commun. Stat.-Simul. Comput. 45(1), 115–129 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Bayon, L., Fortuny, A.P., Otero, J.A., Suarez, P.M., Tasis, C.: Cyclic coordinate descent in a class of bang-singular-bang problems. J. Comput. Appl. Math. 291, 304–316 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Nguyen, V.D.L., Minh, L.Q., Tram, N.P., Bahadori, A., Lee, M.: Novel retrofit designs using a modified coordinate descent methodology for improving energy efficiency of natural gas liquid fractionation process. J. Nat. Gas Sci. Eng. 33, 458–468 (2016)

    Google Scholar 

  44. Michoel, T.: Natural coordinate descent algorithm for L1-penalised regression in generalised linear models. Comput. Stat. Data Anal. 97, 60–70 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Jabr, R.A., Dzafic, I.: Sensitivity-based discrete coordinate-descent for Volt/VAr control in distribution networks. IEEE Trans. Power Syst. 31(6), 4670–4678 (2016)

    Google Scholar 

  46. Richtarik, P., Takac, M.: On optimal probabilities in stochastic coordinate descent methods. Optim. Lett. 10(6), 1233–1243 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Craswell, N., Hawking, D.: Overview of the TREC: web track. In: Proceeding of the Twelfth Text Retrieval Conference, Gaithersburg, Maryland, NIST Special Publication, vol. 2003, pp. 78–92 (2003)

Download references

Acknowledgements

We thank the reviewers for their constructive comments in improving the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Gao.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Sardar, M.S., Zafar, S. et al. Coordinate descent based ontology sparse vector computing strategy and its applications. Cluster Comput 22 (Suppl 4), 10309–10323 (2019). https://doi.org/10.1007/s10586-017-1283-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1283-8

Keywords

Navigation