Skip to main content

Advertisement

Log in

Response time optimization with enhanced fault-tolerant wireless sensor network design for on-board rapid transit applications

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In the recent decades, rapid transit system (RTS) plays a significant key role to form most affordable and comfort travel zone to humans. With increase in population and usage of RTS, safety measures are concerned to be most notable factor in the world. Moreover, during emergency cases internal wired safety setups of any RTS does not prevents drastic disaster and allows negative impact for on-demand reliable changes. As an alternative to other expensive technologies, wireless sensor network (WSN) system provides fast communicative and compact applications to RTS. Inorder to reduce causalities, designing such a network application to RTS always poses challenging problems in terms of fault tolerance and time bounded packet delivery. Integrated fuzzy-logic based synchronized data transmission (IFSDT) algorithm has been designed to optimize those challenges, especially in RTS. IFSDT is a synchronized energy aware algorithm that prevents the occurrence of potential faults during unexpected emergencies in the coaches of RTS and ensures the fast transmission of critical broadcast signal and response in a limited time span. Furthermore, the results of the proposed design performs better than the existing reliable and energy optimized WSN design and exhibits the optimized response time for broadcasting emergency signals which is below 0.02 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Col Bingham, S.H.: Trends in rapid-transit car design. IEEE Electr. Eng. 72(4), 352–355 (1953)

    Article  Google Scholar 

  2. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. Int. J. Comput. Telecommun. Netw. 38(4), 393–422 (2002)

    Google Scholar 

  3. Maksimovic, M., Vujovic, V., Milosevi, V.: Fuzzy logic and wireless sensor networks-a survey. J. Intell. Fuzzy Syst. 27(2), 877–890 (2014)

    MathSciNet  Google Scholar 

  4. Briff, P., Lutenberg, A., Vega, L.R., Vargas, F., Patwary, M.: A primer on energy-efficient synchronization of WSN nodes over correlated Rayleigh fading channels. IEEE Wirel. Commun. Lett. 3(1), 38–41 (2014)

    Article  Google Scholar 

  5. Arifuzzaman, M., Matsumoto, M., Sato, T.: An intelligent hybrid MAC with traffic-differentiation-based QoS for wireless sensor networks. IEEE Sens. J. 13(6), 2391–2399 (2013)

    Article  Google Scholar 

  6. Economist Intelligence Unit: The Safe Cities Index 2015: Assessing Urban Security in the Digital Age. The Economist, London. http://docplayer.net/377855-The-safe-cities-index-2015-assessing-urban-security-in-the-digital-age.html (2015)

  7. Litman, T.: Safer than You Think! Revising the Transit Safety Narrative. Victoria Transport Policy Institute, Victoria. http://www.vtpi.org/safer.pdf (2012)

  8. Huang, W.L., Tang, S., Li, Z., Ai, Y.: A hierarchical bus rapid transit system based on wireless sensor networks. In: International IEEE Conference on Intelligent Transportation Systems (2008). https://doi.org/8.4732717

  9. Torres, C., Glosekotter, P.: Reliable and energy optimized WSN design for a train application. J. Syst. Archit. 57(10), 896–904 (2011)

    Article  Google Scholar 

  10. Guo, P., Jiang, T., Zhang, Q., Zhang, K.: Sleep scheduling for critical event monitoring in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 23(2), 345–352 (2012)

    Article  Google Scholar 

  11. Ngai, E.C.H., Lyu, M.R., Liu, J.: A real-time communication framework for wireless sensor–actuator networks. In: IEEE Aerospace Conference (2006). https://doi.org/10.1109/aero.2006.1655885

  12. Gungor, V.C., Akan, O.B., Akyildiz, I.F.: A real-time and reliable transport (RT)\(^{2}\) protocol for wireless sensor and actor networks. IEEE/ACM Trans. Netw. 16(2), 359–370 (2008)

    Article  Google Scholar 

  13. He, T., Stankovic, J.A., Lu, C., Abdelzaher, T.: SPEED: a stateless protocol for real-time communication in sensor networks. In: 23rd IEEE International Conference on Distributed Computing System (ICDCS), 2003. https://doi.org/10.21236/ada436741

  14. Felemban, E., Lee, C., Ekici, E.: MMSPEED: multipath multi-SPEED protocol for QoS guarantee of reliability and timeliness in wireless sensor networks. IEEE Tran. Mob. Comput. 5(6), 738–754 (2006)

    Article  Google Scholar 

  15. Zeng, Y., Murphy, S.O., Sitanayah, L., Tabirca, T., Truong, T., Brown, K., Sreenan, C.: Building fire emergency detection and response using wireless sensor networks. In: Proceedings of 9th Information Technology and Telecommunications Conference, Dublin, Ireland (2009)

  16. Vasanthi, N.A., Annadurai, S.: Pattern based routing for event driven wireless sensor-actor networks. In: Proceedings of the 1st Amrita ACM-W Celebration on Women in Computing in India (A2CWiC ’10) (2010). https://doi.org/10.1145/1858378.1858421

  17. Le, D.T., Le-Duc, T., Kong, T., Zalyubovskiy, V.V., Choo, H.: Exploring energy-latency trade-off for broadcast in duty-cycled wireless sensor networks. In: International Conference on Information Networking (ICOIN) (2016). https://doi.org/10.1109/icoin.2016.7427095

  18. Sahoo, A., Chilukuri, S.: DGRAM: a delay guaranteed routing and MAC protocol for wireless sensor networks. IEEE Trans. Mob. Comput. 9(10), 1407–1423 (2010)

    Article  Google Scholar 

  19. Li, Y., Chen, C.S., Song, Y., Wang, Z., Sun, Y.: Enhancing real-time delivery in wireless sensor networks with two-hop information. IEEE Trans. Ind. Inform. 5(2), 113–122 (2009)

    Article  Google Scholar 

  20. Manjeshwar, A., Agrawal, D.P.: TEEN: a routing protocol for enhanced efficiency in wireless sensor networks. In: Proceedings of 15th International Parallel and Distributed Processing Symposium (IPDPS) (2001). https://doi.org/10.1109/ipdps.2001.925197

  21. Boukerche, A., Pazzi, R.W.N., Araujo, R.B.: A fast and reliable protocol for wireless sensor networks in critical conditions monitoring applications. In: Proceedings of the 7th ACM International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM ’04) (2004). https://doi.org/10.1145/1023663.1023692

  22. Chang, S.H., Huang, T.S.: A fuzzy knowledge based fault tolerance algorithm in wireless sensor network. In: 26th International Conference on Advanced Information Networking and Applications Workshop (2012). https://doi.org/10.1109/waina.2012.48

  23. Boukerche, A., Pazzi, R.W.N., Araujo, R.B.: HPEQ: a hierarchical periodic, event-driven and query-based WSN protocol. In: IEEE Conference on Local Computer Networks (LCN’05) (2005). https://doi.org/10.1109/lcn.2005.75

  24. Chipara, O., He, Z., Xing, G., Chen, Q., Wang, X., Lu, C., Stankovic, J., Abdelzaher, T.: Real-time power-aware routing in sensor networks. In: 14th IEEE International Workshop on Quality of Service (2006). https://doi.org/10.1109/iwqos.2006.250454

  25. Ahmed, A.A., Fisal, N.: A real-time routing protocol with load distribution in wireless sensor networks. Comput. Commun. 31(14), 3190–3203 (2008)

    Article  Google Scholar 

  26. Dong, W., Liu, Y., He, Y., Zhu, T., Chen, C.: Measurement and analysis on the packet delivery performance in a large-scale sensor network. IEEE/ACM Trans. Netw. 22(6), 1952–1963 (2014)

    Article  Google Scholar 

  27. Wang, Y., Henning, I.: A deterministic distributed TDMA scheduling algorithm for Wireless Sensor Networks. In: IEEE International Conference on Wireless Communications, Networking and Mobile Computing (2007). https://doi.org/10.1109/wicom.2007.685

  28. Raghunath, K.M.K., Rengarajan, N.: Investigation of faults, errors and failures in wireless sensor network: a systematical survey. Int. J. Adv. Comput. Res. 3(3), 151–163 (2013)

    Google Scholar 

  29. Nguyen, H.T., Sugeno, M., Tong, R.M., Yager, R.R.: Theoretical Aspects of Fuzzy Control. Wiley, New York (1995)

    MATH  Google Scholar 

  30. Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A.: Uncertainty in Intelligent and Information Systems. World Scientific, Singapore (2000)

    Book  Google Scholar 

  31. Logambigai, R., Kannan, A.: Fuzzy logic based unequal clustering for wireless sensor networks. Wirel. Netw. 23(3), 945–957 (2015)

    Article  Google Scholar 

  32. S70 Low-Floor Light Rail Vehicle Datasheet. Siemens Industry, Inc., New York. https://www.siemens.com/content/dam/webassetpool/mam/tag-siemens-com/smdb/mobility/rail/rolling-stock/trams-and-light-rail-vehicles/s70/documents/brochures/portland-s70-data-sheet.pdf (2016)

  33. Heffes, H.: Analysis of first-come first-served queuing systems with peaked inputs. Bell Syst. Tech. J. 52(7), 1215–1228 (1973)

    Article  MathSciNet  Google Scholar 

  34. Izadi, D., Abawajy, J., Ghanavati, S.: An alternative node deployment scheme for WSNs. IEEE Sens. J. 15(2), 667–675 (2015)

    Article  Google Scholar 

  35. Nayak, P., Devulapalli, A.: A fuzzy logic-based clustering algorithm for WSN to extend the network lifetime. IEEE Sens. J. 16(1), 137–144 (2016)

    Article  Google Scholar 

  36. Nalini, S., Valarmathi, A.: Fuzzy association rule based cluster head selection in wireless sensor network. In: 2nd IEEE International Conference on Green High Performance Computing (2016). https://doi.org/10.1109/icghpc.2016.7508073

  37. Saade, J.J., Diab, H.B.: Defuzzification techniques for fuzzy controllers. IEEE Trans. Syst. Man Cybern. B 30(1), 223–229 (2000)

    Article  Google Scholar 

  38. Chin, K.W.: Pairwise: a time hopping medium access control protocol for wireless sensor networks. IEEE Trans. Consum. Electron. 55(4), 1898–1906 (2009)

    Article  Google Scholar 

  39. Abo-Zahhad, M., Farrag, M., Ali, A., Amin, O.: C20. Energy consumption and lifetime analysis for wireless sensor networks. In: 32nd National Radio Science Conference—IEEE (NRSC) (2015). https://doi.org/10.1109/nrsc.2015.7117839

  40. Wang, Q., Hempstead, M., Yang, W.: A realistic power consumption model for wireless sensor network devices. In: 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks (2006). https://doi.org/10.1109/sahcn.2006.288433

  41. Transport for London. Annual Report and Statement of Accounts 2013–2014. http://content.tfl.gov.uk/annual-report-2013-14.pdf (2016)

  42. Zahlenspiegel 2014 [Statistics 2014] (pdf in German). Berliner Verkehrsbetriebe (BVG), (Dec 2012)

  43. UITP: Advancing public transport. Statistics Brief—World Metro Figures. http://www.uitp.org/sites/default/files/cck-focus-papers-files/Metro%20report%20Stat%20brief-web_oct2014.pdf (2014)

  44. American Public Transportation Association: Public Transportation Ridership Report. American Public Transportation Association, Washington, DC. http://www.apta.com/resources/statistics/Documents/Ridership/2014-q4-ridership-APTA.pdf (2014)

  45. National Economic and Social Development Statistics Bulletin. http://www.stats.gov.cn/english/pressrelease/201602/t20160229_1324019.html (2015)

  46. Washington Metropolitan Area Transit Authority: Public Transportation Ridership Report. http://www.apta.com/resources/statistics/Documents/Ridership/2016-q4-ridership-APTA.pdf (2016)

  47. METRO RIO - Concessao Metroviara Do Rio De Janeiro S/A (pdf in Portuguese). http://www.metrorio.com.br/Content/Upload/ArqConteudo/Demonstracoes_Financeiras_2014.pdf (2014)

  48. Cairo Metro Statistics (in Arabic). http://cairometro.gov.eg/UIPages/Statistics.aspx (2016)

  49. Land Transport Authority of Singapore: Singapore Land Transport Statistics. http://www.lta.gov.sg/content/dam/ltaweb/corp/PublicationsResearch/files/FactsandFigures/Stats_in_Brief_2013.pdf

  50. Seoul Statistical Tables. http://stat.seoul.go.kr/octagonweb/jsp/WWS7/WWSDS7100.jsp (in Korean) (2013)

  51. Delhi Metro Rail Corporation Limited: Annual Report 2013–14. http://www.delhimetrorail.com/OtherDocuments/EnglishAR201314Low.pdf (2014)

  52. Paris Metro Ridership Report. http://www.uitp.org/sites/default/files/cck-focus-papers-files/UITP-Statistic%20Brief-Metro-A4-WEB_0.pdf (2015)

  53. Tokyo Metro Ridership Report. http://www.tokyometro.jp/corporate/enterprise/passenger_rail/transportation/lines/index.html (2008)

  54. EMBARQ: Bus Rapid Transit: Across Latitude and Culture. Global BRT Data. https://brtdata.org/ (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Karthick Raghunath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghunath, K.M.K., Rengarajan, N. Response time optimization with enhanced fault-tolerant wireless sensor network design for on-board rapid transit applications. Cluster Comput 22 (Suppl 4), 9737–9753 (2019). https://doi.org/10.1007/s10586-017-1473-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1473-4

Keywords

Navigation