Skip to main content
Log in

Integrating predicate reasoning and reactive behaviors for coordination of multi-robot systems

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

To overcome computational expensive problem in coordination of multi-robot systems (MRS) for unknown environment explorations, an integrated coordinated algorithm is proposed in this paper. The algorithm integrated predicate based reasoning and reactive behaviors to realize coordination and obstacle avoidance. An MRS partitioning strategy is proposed to reduce the scale of problem. Then, an initialization strategy realizes dispersion of robots over the environment, and task assignments at the beginning. When a robot has finished its task, predicate based reasoning is used to assign task and to realize cooperative exploration among robots. Robots explore the unknown environment through a series of zigzag trajectories. To deal with obstacle avoidance, a few of reactive behaviors are defined. Supervisors are resident in middle level of a hierarchical architecture for each robot. The results are validated by computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dias, M.B., Zlot, R., Kalra, N., Stentz, A.: Market-based multi-robot coordination: a survey and analysis. Proc. IEEE 94(7), 1257–1270 (2006)

    Article  Google Scholar 

  2. Nanjanath, M., Gini, M.: Repeated auctions for robust task execution by a robot team. Robot. Auton. Syst. 58(7), 900–909 (2010)

    Article  Google Scholar 

  3. Ercan, U.A., Howie, C., Alfred, R., Prasad, A., Douglas, H.: Sensor-based coverage of unknown environments: incremental construction of Morse decompositions. Int. J. Robot. Res. 21(4), 345–366 (2002)

    Article  Google Scholar 

  4. Rekleitis, I., New, A.P., Rankin, E.S., Choset, H.: Efficient Boustrophedon multi-robot coverage: an algorithmic approach. Ann. Math. Artif. Intell. 52(2–4), 109–142 (2008)

    Article  MathSciNet  Google Scholar 

  5. Xu, B., Chen, L.P., Tan, Y., Xu, M.: Path planning based on minimum energy consumption for plant protection UAVs in sorties. Trans. Chin. Soc. Agric. Mach. 46(11), 36–42 (2015). (in Chinese)

    Google Scholar 

  6. Chen, H., He, K.F., Qian, W.Q.: Cooperative coverage path planning for multiple UAVs. Acta Aeronaut. Astronaut. Sin. 37(3), 928–935 (2016). (in Chinese)

    Google Scholar 

  7. Zhang, K., Collins, J.G., Barbu, A.: An efficient stochastic clustering auction for heterogeneous robotic collaborative teams. J. Intell. Robot. Syst. 72(3–4), 541–558 (2013)

    Article  Google Scholar 

  8. Ozturk, S., Kuzucuoglu, A.E.: Optimal bid valuation using path finding for multi-robot task allocation. J. Intell. Manuf. 26(5), 1049–1062 (2015)

    Article  Google Scholar 

  9. Tsalatsanis, A., Yalcin, A., Valavanis, K.P.: Dynamic task allocation in cooperative robot reams. Int. J. Adv. Robot. Syst. 6(4), 309–318 (2009)

    Article  Google Scholar 

  10. Burgard, W., Moors, M., Stachniss, C., et al.: Coordinated multi-robot exploration. IEEE Trans. Robot. 21(3), 376–386 (2005)

    Article  Google Scholar 

  11. Puig, D., Garcia, M.A., Wu, L.: A new global optimization strategy for coordinated multi-robot exploration: development and comparative evaluation. Robot. Auton. Syst. 59(9), 635–653 (2011)

    Article  Google Scholar 

  12. Julia, M., Gil, A., Reinoso, O.: A comparison of path planning strategies for autonomous exploration and mapping of unknown environments. Auton. Robot. 33(4), 427–444 (2012)

    Article  Google Scholar 

  13. Roy, N., Dudek, G.: Collaborative robot exploration and rendezvous: Algorithms, performance bounds and observations. Auton. Robot. 11(2), 117–136 (2001)

    Article  Google Scholar 

  14. Kuyucu, T., Tanev, I., Shimohara, K.: Super additive effect of multi-robot coordination in the exploration of unknown environments via stigmergy. Neurocomputing 148, 83–90 (2015)

    Article  Google Scholar 

  15. Iocchi, L., Nardi, D.: Salerno M. Reactivity and deliberation: a survey on multi-robot systems. In: Hannebauer, M., et al. (eds.) Reactivity and Deliberation in MAS. LNAI 2103, pp. 9–32. Springer, Berlin (2001)

    MATH  Google Scholar 

  16. Korsah, G.A., Stentz, A., Dias, M.B.: A comprehensive taxonomy for multi-robot task allocation. Int. J. Robot. Res. 32(12), 1495–1512 (2013)

    Article  Google Scholar 

  17. Balch, T.R., Arkin, R.C.: Behavior based formation control for multi-robot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  18. Ramadge, P.J., Wonham, W.M.: The control of discrete event systems. Proc. IEEE 77(1), 81–98 (1989)

    Article  Google Scholar 

  19. Sharifi, F., Chamseddine, A., Mahboubi, H., et al.: A distributed deployment strategy for a network of cooperative autonomous vehicles. IEEE Trans. Control Syst. Technol. 23(2), 737–745 (2015)

    Article  Google Scholar 

  20. Schwager, M., Rus, D., Slotine, J.J.: Unifying geometric, probabilistic, and potential field approaches to multi-robot deployment. Int. J. Robot. Res. 30(3), 371–383 (2010)

    Article  Google Scholar 

  21. Yamauchi, B.: Decentralized coordination for multirobot exploration. Robot. Auton. Syst. 29(2–3), 111–118 (1999)

    Article  Google Scholar 

  22. Dai, X.F., Jiang, L.H., Zhao, Y.: Cooperative exploration based on supervisory control of multi-robot systems. Appl. Intell. 45(1), 18–29 (2016)

    Article  Google Scholar 

  23. Gerkey, B.P., Mataric, M.J.: A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res. 23(9), 939–954 (2004)

    Article  Google Scholar 

  24. Lozenguez, G., Adouane, L., Beynier, A., et al.: Punctual versus continuous auction coordination for multi-robot and multi-task topological navigation. Auton. Robot. 40(4), 599–613 (2016)

    Article  Google Scholar 

  25. Andre, T., Bettstetter, C.: Collaboration in multi-robot exploration: to meet or not to meet? J. Intell. Robot. Syst. 82(2), 1–13 (2016)

    Article  Google Scholar 

  26. Nagarajan, T., Thondiyath, A.: An algorithm for cooperative task allocation in scalable, constrained multiple robot systems. Intell. Serv. Robot. 7(4), 221–233 (2014)

    Article  Google Scholar 

  27. Nieto-Granda, C., Rogers, J.G., Christensen, H.I.: Coordination strategies for multi-robot exploration and mapping. Int. J. Robot. Res. 33(4), 519–533 (2014)

    Article  Google Scholar 

  28. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  29. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping: part II. IEEE Robot. Autom. Mag. 13(3), 108–117 (2006)

    Article  Google Scholar 

  30. Cai, Z.X., Meng, Z.Q.: Fundamentals of Artificial Intelligence, 2nd edn, pp. 43–46. Higher Education Press, Beijing (2010). (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Fund of Heilongjiang Province, China under Grant F201331 and also National Natural Science Fund of China (Grant No. 61672304). The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Jiang, L. & Li, D. Integrating predicate reasoning and reactive behaviors for coordination of multi-robot systems. Cluster Comput 22 (Suppl 3), 7413–7421 (2019). https://doi.org/10.1007/s10586-017-1676-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1676-8

Keywords

Navigation