Skip to main content
Log in

SOC estimation optimization method based on parameter modified particle Kalman Filter algorithm

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Traditional Kalman Filter algorithm requires the system noise to be Gaussian distribution, but the power battery operating condition generally can not meet the requirement due to complexity and disturbance by the environment. However, the Particle Filter algorithm can adapt to various forms of system noise. In this work, the calculation process of the standard Particle Filter algorithm is improved based on the engineering characteristics of SOC estimation. In the calculation process, the key parameters including the total number of particles and the effective particle threshold are optimized and verified under FTP75 and NEDC conditions. The systematic error under different conditions is evaluated, based on the vehicle platform computing capacity, the proposed total number of particles is 1000, the effective particle threshold is 0.01. In this case, the SOC estimation accuracy can reach 1–2%, meeting the practical requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lu, L., Han, X., Li, J., et al.: A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013)

    Article  Google Scholar 

  2. Waag, W., Fleischer, C., Sauer, D.U.: Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. J. Power Sources 258, 321–339 (2014)

    Article  Google Scholar 

  3. Andre, D., Appel, C., Soczka-Guth, T., et al.: Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries. J. Power Sources 224, 20–27 (2013)

    Article  Google Scholar 

  4. Kim, J., Cho, B.H.: Screening process-based modeling of the multi-cell battery string in series and parallel connections for high accuracy state-of-charge estimation. Energy 57, 581–599 (2013)

    Article  Google Scholar 

  5. Vasebi, A., Bathaee, S.M.T., Partovibakhsh, M.: Predicting state of charge of lead-acid batteries for hybrid electric vehicles by extended Kalman filter. Energy Convers. 49, 75–82 (2008)

    Article  Google Scholar 

  6. He, Z., Chen, D., Pan, C., Chen, L., et al.: State of charge estimation of power Li-ion batteries using a hybrid estimation algorithm based on UKF. Electrochim Acta 211, 101–109 (2016)

    Article  Google Scholar 

  7. Sun, F., Hu, X., Zou, Y., Li, S.: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles. Energy 36, 3531–3540 (2011)

    Article  Google Scholar 

  8. KIM, K.H., JEE, G.I., PARK, C.G.: The stability analysis of the adaptive fading extended Kalman filter using the innovation covariance. Int. J. Control Autom. Syst. 7(1), 49–56 (2009)

    Article  Google Scholar 

  9. Li, Z., Huang, J., Zhang, J.: On state-of-charge determination for lithium-ion batteries. J. Power Sources 348, 281–301 (2017)

    Article  Google Scholar 

  10. Sepasi, S., Ghorbani, R., Liaw, B.Y.: Online state of health estimation of lithium-ion batteries using state of charge calculation. J. Power Sources 299, 246–254 (2015)

    Article  Google Scholar 

  11. Xiong, B., Zhao, J., Wei, Z.: Extended Kalman filter method for state of charge estimation of vanadium redox flow battery using thermal-dependent electrical model. J. Power Sources 262, 50–61 (2014)

    Article  Google Scholar 

  12. He, Y., Liu, X.T., Zhang, C.B., et al.: A new model for state-of-charge (SOC) estimation for high-power Li-ion batteries. Appl. Energy 101, 808–814 (2013)

    Article  Google Scholar 

  13. Xiong, R., Gong, X., Mi, C.C., et al.: A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter. J. Power Sources 243, 805–816 (2013)

    Article  Google Scholar 

  14. Ouyang, M.G., Zhang, M., Feng, X., et al.: Internal short circuit detection for battery pack using equivalent parameter and consistency method. J. Power Sources 294, 272–283 (2015)

    Article  Google Scholar 

  15. Sepasi, S., Ghorbani, R., Liaw, B.Y.: A novel on-board state-of-charge estimation method for aged Li-ion batteries based on model adaptive extended Kalman filter. J. Power Sources 245, 337–347 (2014)

    Article  Google Scholar 

  16. Zhang, S.M., Yang, L., Zhao, X.W., et al.: A GA optimization for lithium-ion battery equalization based on SOC estimation by NN and FLC. Electr. Power Energy Syst. 73, 318–328 (2015)

    Article  Google Scholar 

  17. Xie, C.J., Xu, X.Y., Piotr, B., et al.: Fuel cell and lithium iron phosphate battery hybrid powertrain with an ultracapacitor bank using direct parallel structure. J. Power Sources 279, 487–494 (2015)

    Article  Google Scholar 

  18. Weigert, T., Tian, Q., Lian, K.: State-of-charge prediction of batteries and battery-supercapacitor hybrids using artificial neural networks. J. Power Sources 196, 4061–4066 (2011)

    Article  Google Scholar 

  19. Tong, S., Lacap, J.H., Park, J.W.: Battery state of charge estimation using a load-classifying neural network. Energy Storage 7, 236–243 (2016)

    Article  Google Scholar 

  20. Singh, P., Fennie, C., Reisner, D.: Fuzzy logic modelling of state-of-charge and available capacity of nickel/metal hydride batteries. J. Power Sources 136, 322–333 (2004)

    Article  Google Scholar 

  21. Singh, P., Vinjamuri, R., Wang, X., Reisner, D.: Design and implementation of a fuzzy logic-based state-of-charge meter for Li-ion batteries used in portable defibrillators. J. Power Sources 162, 829–836 (2006)

    Article  Google Scholar 

  22. Hu, J., Lin, H., Li, X.: State-of-charge estimation for battery management system using optimized support vector machine for regression. J. Power Sources 269, 682–693 (2014)

    Article  Google Scholar 

  23. Meng, J., Luo, G., Gao, F.: Lithium polymer battery state-of-charge estimation based on adaptive unscented kalman filter and support vector machine. IEEE Trans. Power Electron. 31, 2226–2238 (2016)

    Article  Google Scholar 

  24. Sheng, H., Xiao, J., et al.: Electric vehicle state of charge estimation nonlinear correlation and fuzzy support vector machine. J. Power Sources 281, 131–137 (2015)

    Article  Google Scholar 

  25. Pathuri, B.V., Unterrieder, C., Huemer, M.: Battery internal state estimation: a comparative study of non-linear state estimation algorithms. In: Proceedings of the 2013 IEEE Vehicle Power and Propulsion Conference (VPPC), Beijing, China, 15–18, pp. 1–6 (October 2013)

  26. Ye, M., Guo, H., Cao, B.: A model-based adaptive state of charge estimator for a lithium-ion battery using an improved adaptive particle filter. Appl. Energy 190, 740–748 (2017)

    Article  Google Scholar 

  27. Sbarufatti, C., Corbetta, M., Giglio, M., et al.: Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks. J. Power Sources 344, 128–140 (2017)

    Article  Google Scholar 

  28. Barbuto, M., Trotta, F., Bilotti, F., et al.: Filtering chiral particle for rotating the polarization state of antennas and waveguides components. IEEE Trans. Antennas Propag. 65(3), 1468–1471 (2017)

    Article  MathSciNet  Google Scholar 

  29. Sharifiana, M.S., Rahimib, A., Pariza, N.: Classifying the weights of particle filter in nonlinear systems. Commun. Nonlinear Sci. Numer. Simul. 44, 526–534 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (51477125), the Hubei Science Fund for Distinguished Young Scholars (2017CFA049), the Wuhan youth morning project (2016070204010155), and the Fundamental Research Funds for the Central Universities (WUT: 2017II40GX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhai Quan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Xie, C., Zeng, C. et al. SOC estimation optimization method based on parameter modified particle Kalman Filter algorithm. Cluster Comput 22 (Suppl 3), 6009–6018 (2019). https://doi.org/10.1007/s10586-018-1784-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-1784-0

Keywords

Navigation