Skip to main content
Log in

The first-principle calculation method for thermal structure stability analysis based on the simulation and sensing on cohesive energy

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Thermal stability of a series of B-doped diamond models has been resolved by means of the simulations. And the accuracy of the model is proved by simulation computation. It was performed by adopting the first-principles calculation of plane wave ultra-soft pseudo-potential technology based upon the density function theory. The calculated values of cohesive energy and heats of formation showed that B4C60 has the weakest crystal stability, and lowest structure stability. Lattice constant, elastic constant have been calculated. Cohesive energy, heats of formation, Debye temperature is discussed. The calculation values of bulk moduli, shear moduli, Young’s moduli and Poisson ratio have also been given. The electronic properties of these B-doped models have been investigated using the functional theory within a local density approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Field, J.E.: The properties of diamond. Academic Press, Cambridge (1979)

    Google Scholar 

  2. Yoshida, K., Morigami, H.: Thermal properties of diamond/copper composite material. Microelectron. Reliab. 44(2), 303–308 (2004)

    Article  Google Scholar 

  3. Yuan, Z.J., Zhou, M., Dong, S.: Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultra precision machining. J. Mater. Process. Technol. 62(4), 327–330 (1996)

    Article  Google Scholar 

  4. Wentorf, R.H., Rocco, W.A.: Diamond tools for machining: US, US3745623 (1973)

  5. Chrenko, R.M.: Boron, the dominant acceptor in semiconducting diamond. Phys. Rev. B 7(10), 4560 (1973)

    Article  Google Scholar 

  6. Takano, Y., Nagao, M., Tachiki, M., et al.: Superconductivity in boron-doped diamond thin film. US, US 7976893 B2 (2011)

  7. Gong, J.H., Mu-Sen, L.I., Yong-Xin, Q.I., et al.: Study on the crystal structure and oxidation resistance of boron-doped synthetic diamond. Superhard Mater. Eng. 4, 019 (2009)

    Google Scholar 

  8. Linares, R.C.: Boron-doped diamond semiconductor. US, US8158455 (2012)

  9. Bustarret, E., Kacmarcik, J., Marcenat, C., et al.: Dependence of the superconducting transition temperature on the doping level in single-crystalline diamond films. Phys. Rev. Lett. 93(23), 237005 (2004)

    Article  Google Scholar 

  10. Wang, Z.L., Luo, Q., Liu, L.W., et al.: The superconductivity in boron-doped polycrystalline diamond thick films. Diam. Relat. Mater. 15(4–8), 659–663 (2006)

    Article  Google Scholar 

  11. Kopelevich, Y., Esquinazi, P.: Ferromagnetism and superconductivity in carbon-based systems. J. Low Temp. Phys. 146(5–6), 629–639 (2007)

    Article  Google Scholar 

  12. Umezawa, H., Takenouchi, T., Takano, Y., et al.: Advantage on superconductivity of heavily boron-doped (111) diamond films. Physics (2005)

  13. Winzer, K., Bogdanov, D., Wild, C.: Electronic properties of boron-doped diamond on the border between the normal and the superconducting state. Physica C (Amsterdam, Neth.) 432(1–2), 65–70 (2005)

    Article  Google Scholar 

  14. Bustarret, E., Achatz, P., Sacépé, B., et al.: Metal-to-insulator transition and superconductivity in boron-doped diamond. Phys. Rev. B 75(16), 1418–1428 (2007)

    Google Scholar 

  15. Ma, Y., Tse, J.S., Cui, T., Klug, D.D., Zhang, L., Xie, Y., Niu, Y., Zou, G.: First-principles study of electron-phonon coupling in hole-and electron-doped diamonds in the virtual crystal approximation. Phys. Rev. B 72, 014306 (2005)

    Article  Google Scholar 

  16. Blase, X., Adessi, C., Connétable, D.: Superconductivity in boron-doped diamond. Phys. Rev. Lett. 93(23), 237003 (2004)

    Article  Google Scholar 

  17. Xiang, H.J., Li, Z., Yang, J., et al.: Electron-phonon coupling in boron-doped diamond superconductor. Phys. Rev. B 70(21), 155–163 (2004)

    Article  Google Scholar 

  18. Sque, S.J., Jones, R., Briddon, P.R.: Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces. Phys. Rev. B 73(8), 085313 (2006)

    Article  Google Scholar 

  19. Giustino, F., Yates, J.R., Souza, I., et al.: Electron-phonon interaction via electronic and lattice Wannier functions: superconductivity in boron-doped diamond reexamined. Phys. Rev. Lett. 98(4), 047005 (2007)

    Article  Google Scholar 

  20. Bourgeois, E., Bustarret, E., Achatz, P., et al.: Impurity dimers in superconducting B-doped diamond: experiment and first-principles calculations. Phys. Rev. B 74(9), 094509 (2006)

    Article  Google Scholar 

  21. Long, R., Dai, Y., Guo, M., Yu, L., Huang, B.B., Zhang, R.Q., Zhang, W.J.: Effect of B-complexes on lattice structure and electronic properties in heavily boron-doped diamond. Diam. Relat. Mater. 17, 234 (2008)

    Article  Google Scholar 

  22. Zhang, R.J., Lee, S.T., Lam, Y.W.: Characterization of heavily boron-doped diamond films. Diam. Relat. Mater. 5(5), 1288–1294 (1996)

    Article  Google Scholar 

  23. Ushizawa, K., Watanabe, K., Ando, T., Sakaguchi, I., Nishitani-Gamo, M., Sato, Y., Kanda, H.: Boron concentration dependence of Raman spectra on {100} and {111} facets of B-doped CVD diamond. Diam. Relat. Mater. 7, 1719 (1998)

    Article  Google Scholar 

  24. Suli: Microstructure and properties of boron-dopped diamond synthesized by fe-based catalyst. Doctoral dissertation, Shandong University

  25. Stotter, J., Zak, J., Behler, Z., et al.: Optical and electrochemical properties of optically transparent, boron-doped diamond thin films deposited on quartz. Anal. Chem. 74(23), 5924–5930 (2003)

    Article  Google Scholar 

  26. Unwin, P., Macpherson, J., Newton, M.: Boron-doped diamond: EP, WO/2010/029277 (2010)

  27. Payne, M.C.: MC Payne, MP Teter, DC Allan, TA Arias, and JD Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992). Rev. Mod. Phys. 64, 1045 (1992)

    Article  Google Scholar 

  28. Tiwari, A.K., Goss, J.P.: Electronic and structural properties of diamond (001) surfaces terminated by selected transition metals. Phys. Rev. B 86(15), 155301 (2012)

    Article  Google Scholar 

  29. Long, Run: Diamond and zinc nitride semiconductor electronic properties. Shandong University, Jinan (2008)

    Google Scholar 

Download references

Acknowledgements

The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center, Shandong University, Weihai. And this paper is supported by the Natural Science Foundation of Shandong Province (No. ZR2014EMM011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhong Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Gong, J., Chen, Q. et al. The first-principle calculation method for thermal structure stability analysis based on the simulation and sensing on cohesive energy. Cluster Comput 22 (Suppl 3), 6197–6208 (2019). https://doi.org/10.1007/s10586-018-1897-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-1897-5

Keywords

Navigation