Skip to main content
Log in

Analysis and optimization of beamforming methods for high frequency mobile broadband communication system

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The explosive growth of wireless data services demands higher capacity of future wireless communication systems to meet this trend. One efficient solution to this problem is to look for more spectral resource. To fully exploit the high potential rates of high frequency in mobile networks, in this paper, we propose a novel beamforming method based on iterative adaptive method, pre-defined selection and compressed sensing, effectively reducing the pilot and feedback overhead of mobile broadband communication with high-frequency band, and suppressing inter-cell interference and extending system coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Andrews, J.G., et al.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)

    Article  MathSciNet  Google Scholar 

  2. Chih-Lin, I., Rowell, C., Han, S., Xu, Z., Li, G., Pan, Z.: Toward green and soft: a 5G perspective. IEEE Commun. Mag. 52(2), 66–73 (2014)

    Article  Google Scholar 

  3. Higuchi, K., Benjebbour, A.: Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. IEICE Trans. Commun. 98(3), 403–414 (2015)

    Article  Google Scholar 

  4. Du, J., Valenzuela, R.A.: How much spectrum is too much in millimeter wave wireless access. IEEE J. Sel. Areas Commun. 35(7), 1444–1458 (2017)

    Article  Google Scholar 

  5. Rangan, S., Rappaport, T.S., Erkip, E.: Millimeter-wave cellular wireless networks: potentials and challenges. Proc. IEEE 102(3), 366–385 (2014)

    Article  Google Scholar 

  6. Ghosh, A., et al.: Millimeter-wave enhanced local area systems: a high-data-rate approach for future wireless networks. IEEE J. Sel. Areas Commun. 32(6), 1152–1163 (2014)

    Article  Google Scholar 

  7. Heath, R.W., González-Prelcic, N., Rangan, S., Roh, W., Sayeed, A.M.: An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J. Sel. Top. Signal Process. 10(3), 436–453 (2016)

    Article  Google Scholar 

  8. Ding, Z., Yang, Z., Fan, P., Poor, H.V.: On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process. 21(12), 1501–1505 (2014)

    Article  Google Scholar 

  9. You, L., Gao, X., Li, G.Y., Xia, X.-G., Ma, N.: BDMA for millimeter-wave/terahertz massive MIMO transmission with per-beam synchronization. IEEE J. Sel. Areas Commun. 35(7), 1550–1563 (2017)

    Article  Google Scholar 

  10. Rappaport, T.S., Maccartney, G.R., Samimi, M.K., Sun, S.: Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Trans. Commun. 63(9), 3029–3056 (2015)

    Article  Google Scholar 

  11. Gao, Z., Dai, L., Mi, D., Wang, Z., Imran, M.A., Shaki, M.Z.: MmWave massive-MIMO-based wireless backhaul for the 5G ultra-dense network. IEEE Wirel. Commun. 22(5), 13–21 (2015)

    Article  Google Scholar 

  12. Ding, Z., Fan, P., Poor, H.V.: Random beamforming in millimeter-wave NOMA networks. IEEE Access 5(1), 7667–7681 (2017)

    Article  Google Scholar 

  13. Song, L., Li, Y., Han, Z.: Game-theoretic resource allocation for full-duplex communications. IEEE Commun. Mag. 23(3), 50–56 (2016)

    Google Scholar 

  14. Wang, P., Li, Y., Song, L., Vucetic, B.: Multi-gigabit millimetre wave wireless communications for 5G: from fixed access to cellular networks. IEEE Commun. Mag. 53(1), 168–178 (2015)

    Article  Google Scholar 

  15. Yu, X., Zhang, J., Haenggi, M., Letaief, K.B.: Coverage analysis for millimeter wave networks: the impact of directional antenna arrays. IEEE J. Sel. Areas Commun. 35(7), 1498–1512 (2017)

    Article  Google Scholar 

  16. Roivainen, A., Dias, C.F., Tervo, N., Hovinen, V., Sonkki, M., Latva-Aho, M.: Geometry-based stochastic channel model for two-story lobby environment at 10 GHz. IEEE Trans. Antennas Propag. 64(9), 3990–4003 (2016)

    Article  MathSciNet  Google Scholar 

  17. Feng, W., Wang, Y., Lin, D., Ge, N., Lu, J., Li, S.: When mmWave communications meet network densification: a scalable interference coordination perspective. IEEE J. Sel. Areas Commun. 35(7), 1459–1471 (2017)

    Article  Google Scholar 

  18. Lin, X., Andrews, J.G.: Connectivity of millimeter wave networks with multi-hop relaying. IEEE Wirel. Commun. Lett. 4(2), 209–212 (2015)

    Article  Google Scholar 

  19. Maamari, D., Devroye, N., Tuninetti, D.: Coverage in mmwave cellular networks with base station co-operation. IEEE Trans. Wirel. Commun. 15(4), 2981–2994 (2016)

    Article  Google Scholar 

  20. Singh, S., Kulkarni, M.N., Ghosh, A., Andrews, J.G.: Tractable model for rate in self-backhauled millimeter wave cellular networks. IEEE J. Sel. Areas Commun. 33(10), 2196–2211 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported by Guangdong IIOT(M-S) Engineering Technology Center (No. 2015-1487) and Shenzhen IIOT Engineering Laboratory (No. 2017-713).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhao, J. & Wang, S. Analysis and optimization of beamforming methods for high frequency mobile broadband communication system. Cluster Comput 22 (Suppl 4), 8597–8604 (2019). https://doi.org/10.1007/s10586-018-1928-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-1928-2

Keywords

Navigation