Skip to main content
Log in

Flower pollination algorithm with runway balance strategy for the aircraft landing scheduling problem

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Aircraft landing scheduling is a challenging problem in the field of air traffic, whose objective is to determine the best combination of assigning the sequence and corresponding landing time for a given set of aircraft to a runway, and then minimize the sum of the deviations of the actual and target landing times under the condition of safe landing. In this paper, a flower pollination algorithm embedded with runway balance is proposed to solve it. Context cognitive learning and runway balance strategy are devised here to enhance its searching ability. 36 scheduling instances are selected from OR-Library to validate its performance. The experimental results show that the proposed algorithm can get the optimal solutions for instances up to 100 aircrafts, and is also capable of obtaining better solutions compared with SS, BA and FCFS for instances up to 500 aircrafts in a shorter time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Tragale, R.: Annual traffic report. http://www.panynj.gov/airports/pdf-traffic/ATR2012.pdf (2012). Retrieved 24 July 2013

  2. Marcell, C.: Preliminary 2012 world airport traffic and rankings. http://www.aci.aero/News/Releases/MostRecent/2013/03/26/Preliminary-2012-World-Airport-Traffic-and-Rankings (2012). Retrieved 24 July 2013

  3. Airports Council International: Annual traffic data http://www.airports.org/ (2009). Accessed 24 Sept 2009

  4. Beasley, J.E., Krishnamoorthy, M., Sharaiha, Y.M., et al.: Scheduling aircraft landings—the static case. Transp. Sci. 34(2), 180–197 (2000)

    Article  Google Scholar 

  5. Pinol, H., Beasley, J.E.: Scatter search and bionomic algorithms for the aircraft landing problem. Eur. J. Oper. Res. 171(2), 439–462 (2006)

    Article  Google Scholar 

  6. Glover, F., Laguna, M., Martí, R.: Fundamentals of scatter search and path relinking. Control Cybern. 29, 653–684 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Ernst, A.T., Krishnamoorthy, M., Storer, R.H.: Heuristic and exact algorithms for scheduling aircraft landings. Networks 34(3), 229–241 (1999)

    Article  Google Scholar 

  8. Hansen, J.V.: Genetic search methods in air traffic control. Comput. Oper. Res. 31(3), 445–459 (2004)

    Article  MathSciNet  Google Scholar 

  9. Bäuerle, N., Engelhardt-Funke, O., Kolonko, M.: On the waiting time of arriving aircrafts and the capacity of airports with one or two runways. Eur. J. Oper. Res. 177(2), 1180–1196 (2007)

    Article  Google Scholar 

  10. Hu, X.B., Di Paolo, E.: An efficient genetic algorithm with uniform crossover for air traffic control. Comput. Oper. Res. 36(1), 245–259 (2009)

    Article  Google Scholar 

  11. Bencheikh, G., Boukachour, J., Alaoui, A.E.H.: Improved ant colony algorithm to solve the aircraft landing problem. Int. J. Comput. Theory Eng. 3(2), 224–233 (2011)

    Article  Google Scholar 

  12. Salehipour, A., Modarres, M., Naeni, L.M.: An efficient hybrid meta-heuristic for aircraft landing problem. Comput. Oper. Res. 40(1), 207–213 (2013)

    Article  MathSciNet  Google Scholar 

  13. Yu, S.P., Cao, X.B., Zhang, J.: A real-time schedule method for Aircraft Landing Scheduling problem based on Cellular Automation. Appl. Soft Comput. 11(4), 3485–3493 (2011)

    Article  Google Scholar 

  14. Yang, X.S.: Flower Pollination Algorithm for Global Optimization. Unconventional Computation and Natural Computation, pp. 240–249. Springer, Berlin (2012)

    Book  Google Scholar 

  15. Yang, X.S., Karamanoglu, M., He, X.: Multi-objective flower algorithm for optimization. Procedia Comput. Sci. 18, 861–868 (2013)

    Article  Google Scholar 

  16. Yang, X.S., Karamanoglu, M., He, X.: Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)

    Article  MathSciNet  Google Scholar 

  17. Sharawi, M., Emary, E., Saroit, I.A., et al.: Flower pollination optimization algorithm for wireless sensor network lifetime global optimization. Int. J. Soft Comput. Eng. 4(3), 54–59 (2014)

    Google Scholar 

  18. Prathiba, R., Moses, M.B., Sakthivel, S.: Flower pollination algorithm applied for different economic load dispatch problems. Int. J. Eng. Technol. 6(2), 1009–1016 (2014)

    Google Scholar 

  19. Abdel-Raouf, O., El-Henawy, I., Abdel-Baset, M.: A novel hybrid flower pollination algorithm with chaotic harmony search for solving sudoku puzzles. J. Mod. Educ. Comput. Sci. 6, 38–44 (2014)

    Article  Google Scholar 

  20. El-henawy, I., Ismail, M.: An improved chaotic flower pollination algorithm for solving large integer programming problems. Int. J. Digit. Content Technol. Appl. 8(3), 72 (2014)

    Google Scholar 

  21. Abdel-Raouf, O., Abdel-Baset, M., El-henawy, I.: A new hybrid flower pollination algorithm for solving constrained global optimization problems. Int. J. Appl. 4(2), 1–13 (2014)

    Google Scholar 

  22. Abdel-Baset, M., Wu, H., Zhou, Y.: A complex encoding flower pollination algorithm for constrained engineering optimisation problems. IJMNO 8(2), 108–126 (2017)

    Article  Google Scholar 

  23. Zhou, Y., Wang, R., Luo, Q.: Elite opposition-based flower pollination algorithm. Neurocomputing 188, 294–310 (2016)

    Article  Google Scholar 

  24. Zhou, Y., Wang, R.: An improved flower pollination algorithm for optimal unmanned undersea vehicle path planning problem. IJPRAI 30(4), 1659010 (2016)

    Google Scholar 

  25. Wang, R., Zhou, Y., Qiao, S., Huang, K.: Flower pollination algorithm with bee pollinator for cluster analysis. Inf. Process. Lett. 116(1), 1–14 (2016)

    Article  Google Scholar 

  26. Zhou, Y., Zhang, S., Luo, Q., Wen, C.: Using flower pollination algorithm and atomic potential function for shape matching. Neural Comput. Appl. (2016). https://doi.org/10.1007/s00521-016-2524-0

    Article  Google Scholar 

  27. Zhou, Y., Wang, R., Zhao, C., Luo, Q., Metwally, M.A.: Discrete greedy flower pollination algorithm for spherical traveling salesman problem. Neural Comput. Appl. (2017). https://doi.org/10.1007/s00521-017-3176-4

    Article  Google Scholar 

  28. Levine, M.E.: Landing fees and the airport congestion problem. J. Law Econ. 12, 79–108 (1969)

    Article  Google Scholar 

  29. Vadlamani, S., Hosseini, S.: A novel heuristic approach for solving aircraft landing problem with single runway. J. Air Transp. Manag. 40, 144–148 (2014)

    Article  Google Scholar 

  30. Mesgarpour, M., Potts, C.N., Bennell, J.A.: Models for aircraft landing optimization. In: Proceedings of the 4th International Conference on Research in Air Transportation (ICRAT2010) (2010)

  31. Abdul-Razaq, T.S., Ali, F.H.: Hybrid bees algorithm to solve aircraft landing problem. J. Zankoy Sulaimani. 17(1), 16–26 (2015)

    Google Scholar 

  32. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)

    Article  Google Scholar 

  33. Karaboga, D., Gorkemli, B., Ozturk, C., et al.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1), 21–57 (2014)

    Article  Google Scholar 

  34. Deep, K., Thakur, M.: A new mutation operator for real coded genetic algorithms. Appl. Math. Comput. 193(1), 211–230 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Das, S., Abraham, A., Chakraborty, U.K., et al.: Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13(3), 526–553 (2009)

    Article  Google Scholar 

  36. Daley, A.J., Pichler, H., Schachenmayer, J., et al.: Measuring entanglement growth in quench dynamics of bosons in an optical lattice. Phys. Rev. Lett. 109(2), 020505 (2012)

    Article  Google Scholar 

  37. Da Rocha, J.M., Cerviño, S., Gutiérrez, M.J.: An endogenous bioeconomic optimization algorithm to evaluate recovery plans: an application to southern hake. ICES J. Mar. Sci. (Journal du Conseil) 67(9), 1957–1962 (2010)

    Article  Google Scholar 

  38. Ernst, R., Kueppers, P., Stindt, J., et al.: Multidrug efflux pumps: substrate selection in ATP-binding cassette multidrug efflux pumps–first come, first served. FEBS J. 277(3), 540–549 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Science Foundation of China under Grants Nos. 61463007, 61563008, and Project of Guangxi Natural Science Foundation under Grant No. 2016GXNSFAA380264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongquan Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Wang, R. & Zhou, Y. Flower pollination algorithm with runway balance strategy for the aircraft landing scheduling problem. Cluster Comput 21, 1543–1560 (2018). https://doi.org/10.1007/s10586-018-2051-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2051-0

Keywords

Navigation