Skip to main content

Advertisement

Log in

Parameter estimation of P-III distribution based on GA using rejection and interpolation mechanism

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

This paper studied the genetic algorithm (GA) deeply for the problem of hydrological frequency parameter estimation of P-III distribution. For simple GA, the convergence speed and global searching ability are contradictory. An improved algorithm named GA using rejection and interpolation mechanism (GA-RIM) are proposed. Firstly, the rejection mechanism is adopted to ensure the diversity of population and avoid useless operations. Secondly, the strategy of preserving excellent individual is used to guarantee the population to converge to the optimal solution. Thirdly, interpolation mechanism is used to ensure the population to explore in the total domain of definition and mutate adaptively according the diversity of population. The GA-RIM, GA and other four usual methods are used to estimate hydrological parameter of two examples. Through simulation experiments, it was found that the GA-RIM is superior than GA and other methods in terms of convergence speed, precision and global searching ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lei, G., Wang, W., Yin, J., et al.: Review on study of parameter estimation method on P-III Curve. Yellow Riv. 39(10), 1–7 (2017)

    Google Scholar 

  2. Huang, Z., Lin, X., Hou, Y.: Moment estimation for parameters of Pearson Type-III distribution and calculated frequency of design flood. J. Hohai Univ. (Nat. Sci.) 33(1), 49–51 (2005)

    Google Scholar 

  3. Brighenti, R., Carpinteri, A., Macha, E., et al.: Weight function method for determination of critical plane position under multiaxial loading. Thermochim. Acta 338(s1–s2), 85–94 (2013)

    Google Scholar 

  4. Kawabata, S., Shimizu, Y., Sumino, Y., et al.: Weight function method for precise determination of top quark mass at Large Hadron Collider. Phys. Lett. B 741, 232–238 (2015)

    Article  Google Scholar 

  5. Yuan, X.: Estimation methods of P-III distribution parameter based on partial probability weighted moments. Yangtze Riv. 46(13), 25–28 (2015)

    Google Scholar 

  6. Li, M., Lin, B., Shao, Y., et al.: Study on spatial continuity of precipitation quantile estimates based on regional L-moments analysis. J. China Hydrol. 35(4), 14–19 (2015)

    Google Scholar 

  7. Busababodhin, P., Yun, A.S., Park, J.S., et al.: LH-moment estimation of Wakeby distribution with hydrological applications. Stoch. Env. Res. Risk Assess. 30(6), 1757–1767 (2016)

    Article  Google Scholar 

  8. Ma, H., Zhao, D., Zhu, B.: Comparison of several parameter estimation methods for hydrological frequency curve. Yellow Riv. 38(3), 9–11 (2016)

    Google Scholar 

  9. Noh, S.J., Choi, Y.S., Choi, C.K., et al.: Parameter estimation of a distributed hydrologic model using parallel PEST: comparison of impacts by radar and ground rainfall estimates. J. Korea Water Resour. Assoc. 46(11), 1040–1052 (2013)

    Article  Google Scholar 

  10. Tada, T.: Parameter optimization of hydrological model using the PSO algorithm. J. Jpn. Soc. Hydrol. Water Resour. 20(5), 450–461 (2007)

    Article  Google Scholar 

  11. Kamali, B., Mousavi, S.J., Abbaspour, K.C.: Automatic calibration of HEC-HMS using single-objective and multi-objective PSO algorithms. Hydrol. Process. 27(26), 4028–4042 (2013)

    Article  Google Scholar 

  12. Bowens, C., Dobie, K.H., Devin, C.J., et al.: A model-independent Particle Swarm Optimisation software for model calibration. Environ. Modell. Softw. 43(3), 5–25 (2013)

    Google Scholar 

  13. Wang, W., Lei, G., Liu, C.: Hydrologic frequency analysis using SSO algorithm. J. China Hydrol. 36(3), 34–39 (2016)

    Google Scholar 

  14. Tang, Y., Zhang, Y., Wang, H.: Optimization algorithm of hydrologic frequency parameters based on PSO-AGA. J. Beijing Univ. Technol. 42(6), 953–960 (2016)

    Google Scholar 

  15. Babu, K.: Comparison of PSO, AGA, SA and memetic algorithms for surface grinding optimization. Appl. Mech. Mater. 852, 241–247 (2016)

    Article  Google Scholar 

  16. Shang, X., Dong, W., Hydrosciences, D.O.: Parameter estimation in hydrologic frequency analysis using non-quantitative historical flood and Bayesian approach. J. Hydroelectr. Eng. 34(10), 35–41 (2015)

    Google Scholar 

  17. Wang, W., Lei, G., Liu, H., et al.: The adaptive numerical integral Pearson-III curve parameters estimation based on SSO. J. Basic Sci. Eng. 23(23), 122–133 (2015)

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge the National Natural Science Foundation of China (Grant: 61603419), the National Natural Science Foundation of China (Grant: 61771021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei She.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, W., Li, D., Xia, Y. et al. Parameter estimation of P-III distribution based on GA using rejection and interpolation mechanism. Cluster Comput 22 (Suppl 1), 2159–2167 (2019). https://doi.org/10.1007/s10586-018-2110-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2110-6

Keywords

Navigation