Skip to main content

Advertisement

Log in

Suppress traffic-driven epidemic spreading in weighted network

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Suppressing computer virus and biological disease in weighted network such as internet of things and social network has attracted attention among researchers in different fields. In this paper, how to slow down the epidemic spreading process and raise the epidemic threshold of the traffic-driven epidemic spreading in weighted network is investigated. The two representative metrics, the density of the infected nodes and the epidemic threshold, are found to have a significant relationship with the node betweenness in traffic-driven epidemic spreading. By specifying the shortest path to reshape the distribution of the node betweenness, a new control strategy is proposed to suppress the traffic-driven epidemic spreading which will not increase the length of routing path. Simulations on both computer-generated networks and real-world network show that our strategy gives more efficiency in reducing the spreading velocity and raising the epidemic threshold in weighted network. This work might shed some light on scrutinizing traffic-driven epidemic spreading processes in multiplex networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bo, H.Z., Peng, C.Z., Guo, Y.J., Ming, W.X., Chuan, S.Y., Shu, L.Y.: Cost-efficient strategies for restraining rumor spreading in mobile social networks. IEEE Trans. Veh. Technol. 66(3), 2789–2800 (2017)

    Article  Google Scholar 

  2. Kandeil, A., El-Shesheny, R., Maatouq, A., Moatasim, Y., Peng, C.Z., McKenzie, P., Webby, R., Kayali, G., Ali, M.A.: Novel reassortant H9N2 viruses in pigeons and evidence for antigenic diversity of H9N2 viruses isolated from quails in Egypt. J. Gen. Virol. 98(98), 548–562 (2017)

    Article  Google Scholar 

  3. Wang, W., Tang, M., Stanley, H.E., Braunstein, L.A.: Unification of theoretical approaches for epidemic spreading on complex networks. Rep. Prog. Phys. 80(3), 036603 (2017)

    Article  Google Scholar 

  4. Lü, L.Y., Zhou, T., Zhang, Q.M., Stanley, H.E.: The H-index of a network node and its relation to degree and coreness. Nat. Commun. 7, 10168 (2016). https://doi.org/10.1038/ncomms10168

    Article  Google Scholar 

  5. Lü, L.Y., Chen, D.B., Ren, X.L., Zhang, Q.M., Zhang, Y.C., Zhou, T.: Vital nodes identification in complex networks. Phys. Rep. 650, 1–63 (2016)

    Article  MathSciNet  Google Scholar 

  6. Barthwal, R., Misra, S., Obaidat, M.S.: Finding overlapping communities in a complex network of social linkages and Internet of things. J. Supercomput. 66(3), 1749–1772 (2013). https://doi.org/10.1007/s11227-013-0973-0

    Article  Google Scholar 

  7. Anderson, R.M., May, R.M., Anderson, B.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1992)

    Google Scholar 

  8. Murray, J.D.: Mathematical Biology: I. An Introduction. Springer, New York (2002)

    Book  Google Scholar 

  9. Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys. Rev. Lett. 92(17), 178701 (2004)

    Article  Google Scholar 

  10. Bailey, N.T.J.: The Mathematical Theory of Infectious Diseases and its Applications. Hafner Press, New York (1975)

    MATH  Google Scholar 

  11. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000). https://doi.org/10.1137/S0036144500371907

    Article  MathSciNet  MATH  Google Scholar 

  12. Newman, M.E.J.: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64(1), 016132 (2001)

    Article  MathSciNet  Google Scholar 

  13. Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 101(11), 3747–3752 (2004)

    Article  Google Scholar 

  14. Pastor-Satorras, R., Vespignani, A.: Evolution and Structure of the Internet: A Statistical Physics Approach. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  15. Yook, S.H., Jeong, H., Barabási, A.L., Tu, Y.: Weighted evolving networks. Phys. Rev. Lett. 86(25), 5835–5838 (2001)

    Article  Google Scholar 

  16. Barrat, A., Barthélemy, M., Vespignani, A.: Modeling the evolution of weighted networks. Phys. Rev. E 70(6), 066149 (2004)

    Article  Google Scholar 

  17. Barrat, A., Barthélemy, M., Vespignani, A.: Weighted evolving networks: coupling topology and weight dynamics. Phys. Rev. Lett. 92(22), 228701 (2004)

    Article  Google Scholar 

  18. Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Characterization and modeling of weighted networks. Phys. A 346(1–2), 34–43 (2005)

    Article  Google Scholar 

  19. Wang, W.X., Wang, B.H., Hu, B., Yan, G., Ou, Q.: General dynamics of topology and traffic on weighted technological networks. Phys. Rev. Lett. 94(18), 188702 (2005)

    Article  Google Scholar 

  20. Chang, Z., Shao, F.: Control of traffic driven epidemics in weighted networks by immunizing edges. Cybern. Inf. Technol. 14(4), 56–65 (2014)

    Google Scholar 

  21. Meloni, S., Arenas, A., Moreno, Y.: Traffic-driven epidemic spreading in finite-size scale-free networks. Proc. Natl. Acad. Sci. USA 106(40), 16897–16902 (2009)

    Article  Google Scholar 

  22. Yang, H.X., Wang, W.X., Lai, Y.C.: Traffic-driven epidemic outbreak on complex networks: how long does it take? CHAOS 22, 043146 (2012)

    Article  MathSciNet  Google Scholar 

  23. Yang, H.X., Wang, W.X., Lai, Y.C., Wang, B.H.: Traffic-driven epidemic spreading on networks of mobile agents. Europhys. Lett. 98(6), 68003 (2012)

    Article  Google Scholar 

  24. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  25. Shao, F., Cheng, B.H.: Optimal routing strategy based on specifying shortest path. Int. J. Comput. Commun. Control 9(5), 602–609 (2014)

    Article  MathSciNet  Google Scholar 

  26. Guimerà, R., Díaz-Guilera, A., Vega-Redondo, F., Cabrales, A., Arenas, A.: Optimal network topologies for local search with congestion. Phys. Rev. Lett. 89(24), 248701 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: the Major Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 17KJA520001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, F., Zhao, W. & Chang, Z. Suppress traffic-driven epidemic spreading in weighted network. Cluster Comput 22 (Suppl 6), 14201–14206 (2019). https://doi.org/10.1007/s10586-018-2268-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2268-y

Keywords

Navigation