
COWCache: effective flash caching for Copy-on-Write virtual disks

Jianyu Fu1,3 • Youyou Lu2 • Jiwu Shu2 • Guangming Liu1 • Ming Zhao3

Received: 16 December 2018 / Revised: 16 December 2018 / Accepted: 28 May 2019 / Published online: 11 June 2019
� The Author(s) 2019

Abstract
Host-side flash caching emerges as an effective solution for improving the performance of virtual machines (VMs) in cloud

computing environment. However, for VMs with the commonly used Copy-on-Write (COW) virtual disks, flash caching in

fact has negative impacts since it brings lots of unnecessary cache writes, hurting both the VM performance and the flash

endurance. This paper presents COWCache, a COW-aware caching solution that addresses this problem by co-designing

flash caching with COW-based virtual disks. First, COWCache designs a new architecture that bridges the semantic gap

between flash caching and virtual disk management for realizing the VMs’ real data locality. Second, it separately manages

COW metadata with fine-grained caching and journaling to improve the metadata caching efficiency. Third, it provides a

novel decoupled Copy-on-Write mechanism, which decouples the amplified data requests from the critical I/O path and

only admits the data with real VM locality into flash cache. COWCache also introduces a new data structure, the virtual

cache map, to mitigate the memory footprint overhead for indexing the cached data in flash. Evaluations show that

COWCache improves the application performance by up to 122.7% and reduces the flash cache writes by up to 78.5%

compared to traditional flash caching solutions.

Keywords Caching � Flash memory � Copy-on-Write � Virtual disk

1 Introduction

Virtualization has been widely used in modern data centers

to provide services such as cloud computing. However, the

performance of virtual machine (VM) storage, especially

for the commonly used Copy-on-Write (COW) virtual

disks, still remains a major limitation [4, 7, 20, 33, 39].

COW-based virtual disks provide rich features (e.g., fast

snapshot, thin provisioning) that enhance the flexibility of

virtualization [19, 27, 30], but their complex operations

also introduce performance overhead to the VM storage.

This overhead mainly comes from two sources: (1) meta-

data management for maintaining the metadata of COW-

based virtual disks (e.g., lookup and update); and (2) disk

I/O amplification caused by the Copy-on-Write of

data [6, 22], i.e., the COW penalties. Our study uncovers

that the amount of I/O requests issued from the guest VM

can be amplified by COW-based virtual disks to 29*139

to the VM’s backing storage (Sect. 2.1.2).

Recently, flash-based SSDs are being increasingly

deployed at the VM host side, as local flash cache for

virtual disks, to accelerate the VM storage performance. To

better utilize the high-speed and low-endurance flash

device, researchers have made great efforts on the cache

management, including the designs of caching architec-

ture [5, 13, 38] and the optimizations of policies for cache

allocation [18, 25, 28], replacement [14, 21], write-

back [17, 35], admission [1, 45], etc. These optimizations

& Jianyu Fu

jianyufu@asu.edu

Youyou Lu

luyouyou@tsinghua.edu.cn

Jiwu Shu

shujw@tsinghua.edu.cn

Guangming Liu

liugm@nscc-tj.cn

Ming Zhao

mingzhao@asu.edu

1 School of Computer, National University of Defense

Technology, Changsha, China

2 Department of Computer Science and Technology, Tsinghua

University, Beijing, China

3 School of Computing, Informatics, and Decision Systems

Engineering, Arizona State University, Tempe, USA

123

Cluster Computing (2020) 23:623–639
https://doi.org/10.1007/s10586-019-02948-8(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-8010-5368
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-019-02948-8&domain=pdf
https://doi.org/10.1007/s10586-019-02948-8

have been proposed mainly by monitoring the guest VM’s

I/O pattern. For VMs with COW-based virtual disks,

however, their complex semantics dramatically change the

guest I/O pattern and the use of flash caching actually

introduce additional performance overhead. The essential

cause is that the management of COW-based virtual disks

is not cache-friendly and it brings lots of unnecessary

writes to the cache, which hurts both the VM performance

and the flash endurance. E.g., for the random write work-

load, COW-based virtual disks can write up to 40� more

data to flash cache than the writes issued by the guest

(Sect. 5.2.2).

To provide efficient flash caching for COW-based vir-

tual disks, only monitoring the VM’s I/O pattern becomes

inadequate, because COW-based virtual disks semantically

introduce additional metadata requests and the COW

mechanism. Although one can take existing virtual disk

management and flash caching solutions and simply stack

them together, the semantic gap and lack of integration

between the two layers will lead to a two-fold challenge.

On one hand, for metadata caching, the in-memory

metadata cache typically employed by the COW systems

does not work well with flash cache, due to the misman-

aged metadata locality between them. This mismanage-

ment is reflected in two aspects. First, existing coarse-

grained metadata caching overestimates the metadata

locality, which results in low hit ratio in memory cache and

repetitive metadata access to flash cache. Second, metadata

is usually updated by a couple of bytes, but coarse-grained

metadata update leads to high write amplification in flash

cache. Simply decreasing the caching granularity is also

inefficient, because fine-grained update will induce internal

write amplification in flash cache [23].

On the other hand, for data caching, one guest write may

be transformed into multiple data requests by the COW

layer to ensure the virtual disk consistency, and they are

processed in a tightly-coupled way for traditional COW

mechanism. This tight coupling leads to that the guest write

cannot be acknowledged to the VM until all the amplified

requests complete, which means all the requests are pro-

cessed in the critical I/O path. As a result, the flash cache

manager is also forced to handle more data requests and

even cache more data than the guest expects, which causes

that the data locality it captures actually exceeds the real

VM locality. Reducing the virtual disk cluster granularity

may mitigate the data or cache amplification but is

impractical, due to the substantial increase of metadata size

and the loss of data locality in the virtual disk backend, as

discussed in Sect. 2.1.3.

In summary, simple stacked flash caching solutions for

COW-based virtual disks miss the opportunity to exploit

the benefits from the virtual disk semantics, and they will

even make the advantages of flash (e.g., high performance)

being underutilized and its shortcomings (e.g., limited

endurance) being aggravated. Unfortunately, there has

been little work concentrating on the flash caching ineffi-

ciency induced by the virtual disk semantics.

We propose COWCache, a COW-aware flash caching

solution to optimize the performance and endurance of

flash caches for COW-based virtual disks. COWCache

designs a new architecture to manage flash caching at the

COW layer of the hypervisor, which bridges the semantic

gap between flash cache management and virtual disk

management and enables the cross-layer optimizations. To

meet the metadata’s special locality requirements and

update pattern, COWCache manages metadata caching

separately from data caching with fine-grained caching and

journaling between memory cache and flash cache. This

approach improves the memory cache’s hit ratio by pre-

serving more metadata locality in memory and mitigates

the repetitive metadata access to flash cache by journaling

the fine-grained update to flash.

COWCache provides a novel decoupled Copy-on-Write

mechanism that decouples the amplified data requests from

the critical I/O path and admits only the data with real VM

locality into flash cache. The decoupled COW improves the

VM performance and the lifetime of flash by fully

exploiting the non-volatile property of flash cache. More-

over, the mechanism is also a general approach that can

mitigate the long standing COW penalties in COW-based

virtual disks without sacrificing their flexibility.

Inspired by the efficient large-cluster design of virtual

disks that mitigates the metadata size, COWCache pro-

poses a new virtual cache map data structure to index the

cached data in flash. It breaks traditional one-to-one cache

address mapping and employs a one-to-many approach for

the index that reduces the memory fingerprint overhead.

To the best of our knowledge, COWCache is the first to

use the virtual disk semantics to improve the flash caching

efficiency. Although the discussion in the paper focuses on

flash-based caches, the general COWCache approach is

also applicable to new non-volatile memory technologies

(e.g., 3DXpoint [11]), which will likely be used as a

caching layer between DRAMs and the slower storage. The

new technologies may have higher bandwidth and lower

latency, and they will still benefit greatly from COWCache

by reducing the cache writes and mitigating the unneces-

sary data processing in the critical I/O path to fully exert

their high performance.

The rest of this paper is organized as follows. Section 2

presents the background of COW-based virtual disks and

host-side flash caching as well as the motivations for

COWCache. Section 3 describes the design of COWCache,

including its COW-aware caching architecture, fine-

grained metadata caching and journaling, and decoupled

Copy-on-Write. Section 4 presents the design and

624 Cluster Computing (2020) 23:623–639

123

implementation details. Section 5 discusses the evaluation

results. Section 6 examines the related work. Section 7

concludes the paper.

2 Background and motivation

2.1 COW-based virtual disks

COW-based virtual disks (e.g., QCOW2 [27], VHD [31],

VMDK [42]) have been widely deployed in major cloud

infrastructures for their rich features. They have similar

features and we use the QCOW2 format as an example to

present their common semantics.

2.1.1 Basics

COW-based virtual disks allocate storage space on demand

starting from a nearly empty file or volume, and use

additional metadata to organize the guest data. As Fig. 1

shows, QCOW2 virtual disk is structured in units of fixed-

size cluster, including metadata tables and data clusters. A

two-level lookup table (i.e., L1 and L2) is used for address

translation from the guest virtual block address to the host

block address in the disk backend. A two-level reference

table is used for cluster allocation [27, 37, 40]. For each

guest I/O, corresponding metadata tables should be prop-

erly traversed or updated to ensure correct guest-to-host

data mapping. Typically, memory cache is explicitly

maintained for the metadata tables to accelerate their

lookup and update.

COW-based virtual disks support disk chains [34], i.e.,

using writable delta disk linking logically to read-only base

disk. The basis is the Copy-on-Write mechanism [40, 42].

As illustrated in Fig. 2, when the guest modifies the area

Gw of a guest cluster G (in the logical disk) which is

mapped to cluster B in the base disk, the COW layer will

do the following steps before acknowledging the guest: (1)

allocate a new data cluster D in the delta disk; (2) write to

area Dw; (3) read area Ba; (4) write to area Da; (5) read area

Bb; (6) write to area Db; (7) write a new L2 table entry in

the delta disk to point to cluster D. Then the guest cluster G

is mapped to cluster D (cluster B will not be accessed by

the guest thereafter) and the data process (including the

amplified requests) is necessary to ensure the delta disk’s

consistency. Besides, the data reads or writes can also be

merged respectively, which are implementation policies.

As the COW mechanism supports rich features (e.g., fast

snapshot, shared VM images) for COW-based virtual disks,

it also introduces disk I/O amplification.

2.1.2 I/O pattern change

Figure 3 shows the impact of COW-based virtual disks

(here it is one single delta disk backed by one base disk) on

the guest VM’s I/O pattern. For a guest new-write, the host

receives up to 13� requests (with data amplification and

multiple potential metadata update [7]); for a guest over-

write, the host receives 2� requests (with metadata

lookup). For a guest read, the host receives 2� or 3�
requests, which depends on whether the data exists in the

delta or base disk. Four real-world MSR workloads [32] are

also replayed in the VM, and the results show that the host

receives 2.59*3.59 requests than the guest issues. When

the VM’s logical disk is abstracted from a longer virtual

disk chains (e.g., after making multiple snapshots), the host

typically receives even more I/O requests.

L1 Table
L2 Tables

Host Block Address

0 max
Virtual Block Addressa1 a2 a3

Disk Backend (NFS File or iSCSI Volume)
H L1 Ref L2 L2

Fig. 1 Organization of QCOW2 virtual disk

VM Write

Copy-on-Write Layer

metadata

1 7 3 4 5 62

data process

write area Gw

meta cache
(memory)

GbE

guest cluster G

delta disk

cluster B

new cluster D

base disk

 NAS/SAN

Ga Gw Gb

Da Dw Db

Ba Bb

Fig. 2 The Copy-on-Write mechanism

Guest Host13

N
or

m
al

iz
ed

 #
 o

f
I/

O
s

0

2

4

new-wt over-wt rd-delta rd-base hm_0 mds_0 rsrch_0 wdev_0

Fig. 3 Number of I/O requests observed from the guest/host. ‘new-

wt’ means a new allocating write, ‘over-wt’ means a write to one

previously written area, ‘rd-delta’ means a read directly to the delta

disk, and ‘rd-base’ means a read to the base disk after checking that

the data does not exist in the delta disk

Cluster Computing (2020) 23:623–639 625

123

2.1.3 Cluster granularity

Decreasing the cluster granularity (e.g., from QCOW2’s

default 64 KB to 4 KB) canmitigate the aforementioned data

I/O amplification problem; however, two other severe chal-

lenges arise: (1) more data fragmentation. Figure 4 shows the

comparison for accessing a 64 KB block between the block is

continuously stored in one 64 KB cluster and the block is

separately stored in sixteen 4 KB clusters that each may be

completely scattered in the backing storage for worst case.

The results show that the access latency of 64 KB-scatter can

be slower than 64 KB-cont by up to 13.5� for HDD (at

‘HDD-write’) and up to 3.3� for SSD (at ‘SSD-read’). This

data fragmentation causes high performance overhead for

COW-based virtual disks; (2) more metadata. For one single

1TB QCOW2 virtual disk, using 4 KB cluster versus 64 KB

cluster will increase the metadata size from 160 MB to

2.5 GB, which incurs large management overhead. With the

use ofmetadata replication in virtual disks likeVMDK [7, 42]

and longer virtual disk chains, the metadata overhead is more

severe. As such, COW-based virtual disks typically employ

large clusters to reduce data fragmentation and metadata

management overhead [2, 36, 44].

2.2 Host-side flash caching layers

Figure 5 shows the generally employed I/O layers to

manage host-side flash caching in virtualized environment.

VM-based flash caching (option �) is beneficial for

guest applications to manage flash cache according to their

specific requirements [24]. However, the burden of manual

modifications on users and the difficulty of dynamically

sharing cache device among VMs make the benefits limited

[5, 25]. Moreover, COW-based virtual disks are abstracted

as logical disks in VMs and their semantic information are

hidden from the cache manager, which can hardly optimize

flash caching.

Host block-level flash caching (option `) is a general-

purpose approach for both virtualized and non-virtualized

environments. However, due to the complex host I/O

stacks, little VM semantic information can be delivered to

the cache manager like option � [25, 29]. Further, COW-

based virtual disks are cached as multiple regular files

without considering their logical relationship, which may

induce unnecessary data caching, e.g., both the delta and

base disks’ data blocks that belong to the same logical

block may be cached but the base disk’s block is no longer

useful for the VM.

In virtualized environment, managing flash cache in the

hypervisor (option ´) is a commonplace due to the easy

control for both the VMs and flash caches [4, 5, 18, 25, 28].

It is able to collect all the VM-identified I/O requests, to

manage flash cache transparently to the VMs, and to sup-

port both high-level networked storage protocols and sys-

tem block-level protocols. However, the cache manager in

this option still lacks crucial semantic information about

the virtual disk, which raises new challenges to provide

caching for COW-based virtual disks, as described in

Sect. 2.3.

2.3 COW caching challenges

The above design and results for COW-based virtual disks

show that traditionally monitored guest I/O pattern has

been changed dramatically by the COW layer [10, 12], and

the new challenges of flash caching for them come from

two aspects.

2.3.1 Metadata inefficiency

Since every guest I/O request to COW-based virtual disks

needs metadata lookup or update, efficient metadata

caching is important to the overall performance. Tradi-

tional locality model does not distinguish between meta-

data and data; however, metadata have different properties

from data: (1) one small metadata table maps to a large

range of data address space (e.g., for default 64 KB cluster

in QCOW2, one L2 table can translate 512 MB consecu-

tive logical disk space), which means the metadata locality

is much smaller than data; (2) the modifications are usually

very small in entry level (e.g., one L2 table entry is 8

64KB-cont 64KB-scatter

99ms
79.6ms

0.16ms 0.14ms

N
or

m
al

iz
ed

 L
at

en
cy

0

5

10

HDD-read HDD-write SSD-read SSD-write

Fig. 4 Impact of virtual disk fragmentation (the latencies are

normalized to 64 KB-cont at HDD-read or SSD-read respectively.)

VM

Generic Virtual Block

DAS SSD GbE NFS or iSCSI

raw Block Driver

Host Block Layer

VM based

COWCache
Hypervisor based

(traditional)

VM VM

Copy-on-Write Layer

4

3

2 Block Level

COW Metadata
Management

Copy-on-Write
Process

Hypervisor
1

Fig. 5 I/O stacks and flash caching layers

626 Cluster Computing (2020) 23:623–639

123

bytes). Simply stacking metadata flash cache under mem-

ory cache is very inefficient due to the mismanaged

metadata locality between them. On one hand, since the

requested metadata is usually much less than one whole

table, managing metadata in coarse granularity between

memory cache and flash cache, which is default in

tables for existing metadata caching, lowers the memory

cache hit ratio and thus induces frequent table replacement

in memory cache and table reads from flash cache. Spe-

cially, when dirty tables are frequently evicted from

memory cache, they will cause repetitive writes for

unmodified entries to flash cache. On the other hand,

managing metadata in fine granularity (e.g., in entries) will

induce much internal write amplification in flash due to the

fine-grained update pattern to flash cache [23].

2.3.2 Copy-on-Write amplification

In the COW process, the guest write is transformed into

multiple data requests to the disk backend (Sect. 2.1). The

underlying flash cache manager receives all these requests,

and processes and caches them as normal guest requests.

To be specific, for a single guest write, the cache manager

needs to: (1) read data from the base disk through network;

(2) cache unmodified areas that have the same content

twice (e.g., Ba and Da), since the cache manager considers

them as different data from different files or volumes.

Although it is possible to employ cache deduplication

[9, 21], it incurs unnecessary computation overhead. It is

also a choice to deploy the cache manager below the VMs

but above the COW layer, and then use individual VM’s

logical address indexing cached data to mitigate the above

caching issues. However, due to the address space isolation

among the VMs, the cache will still store multiple copies

for different logical blocks that have identical content (e.g.,

from the same base disk), and the COW penalties of COW-

based virtual disks still exist. In short, the cache manager is

forced to do more caching work than the VMs expect, due

to the lack of virtual disk semantics. The above is the

Copy-on-Write amplification problem with flash caching.

Although COW-based virtual disks are widely deployed

and the VM snapshot and clone operations are commonly

used by IaaS systems, unfortunately, the aforementioned

issues have not received enough attention. Drop-in flash

caching solutions cannot mitigate the performance over-

head of COW-based virtual disks. Even worse, the cache-

unfriendly management of COW-based virtual disks and

the semantic gap between virtual disk management and

flash caching result in extremely inconsistent VM perfor-

mance and serious flash endurance problem.

3 Design

COWCache is a COW-aware flash caching solution, which

carefully utilizes the virtual disk semantics to improve the

flash caching efficiency. In this section, we first discuss the

architecture of COWCache. We then describe the fine-

grained metadata caching and journaling. Finally, we pre-

sent the decoupled Copy-on-Write mechanism.

3.1 COW-aware caching architecture

As Fig. 5 shows, COWCache is a hypervisor-based flash

caching solution (option ˆ). But different from traditional

caching layers in the hypervisor (option ´), COWCache is

designed in the COW layer. Then COWCache can be

easily aware of all the necessary knowledge of COW-based

virtual disks’ metadata management and data processing,

which is a key advantage to optimize the flash caching.

Figure 6 shows the detailed architecture of COWCache.

It consists of two modules, i.e., the MC module for fine-

grained metadata management and the DC module for

decoupled COW. COWCache provides good modularity so

that it is easy to integrate existing caching algorithms just

under the DC module, without the requirements to know

what the COW mechanism is or how COWCache operates.

Virtual cache map is a new design to mitigate the memory

footprint for the description information of cached meta-

data and data in flash, which will be elaborated in Sect. 4.

The new architecture design of COWCache makes it

easier for optimizing the flash caching for COW-based

virtual disks without changing much to existing I/O stacks

(e.g., the interfaces). First, COWCache can easily identify

the metadata and data requests, so that it can cache them

separately and adopt different caching policies for each.

Second, COWCache can manage the metadata more nat-

urally and support fine-grained metadata management, i.e.,

fine-grained metadata caching and journaling, to reduce the

metadata lookup overhead and the metadata write

Copy-on-Write Layer

COW Metadata
Management

Copy-on-Write
Process

Guest I/O Requests

COWCache
Fine-grained

Metadata

Flash Cache

Virtual
Cache Map

header meta zone data zone

Decoupled
COW

DCMC

Fig. 6 Architecture of COWCache

Cluster Computing (2020) 23:623–639 627

123

amplification on flash cache. Third, COWCache can dis-

tinguish the original guest I/O requests from the extra data

requests amplified by the COW layer and understand the

real data requirements of the VM. As such, it can employ a

decoupled COW mechanism to decouple the amplified data

requests from the critical I/O path and to cache only the

data with real VM locality. Finally, COWCache is aware of

both the guest requests’ logical disk address and disk

backend address, so that it can semantically deduplicate the

cached data from different snapshots but has the same

logical disk address.

3.2 Fine-grained metadata caching
and journaling

To provide efficient metadata caching, COWCache man-

ages metadata in both memory cache and flash cache at the

same fine granularity (by default in sectors, and other

granularities are also supported), and updates them to flash

cache in journaling, as shown in the right subgraph of

Fig. 7. As a comparison, the left subgraph of Fig. 7 shows

traditional coarse-grained metadata management. Note that

COWCache does not change the organization of metadata

in the disk backend (i.e., they are still stored in original

granularity), but only changes their caching management to

be cache-friendly. The metadata I/O flows are illustrated as

follows.

3.2.1 Metadata I/O flow

For a metadata entry read, the metadata sector that contains

this entry will be checked. If it is in memory cache, then

the entry is returned; otherwise, if it is only in flash cache,

then the sector will be read into memory cache and

returned. If neither memory nor flash cache has the sector,

the whole metadata table will be read from the disk

backend, which is to mitigate the slow backend access.

Then the table will be cached in flash and the sector will be

cached in memory.

For a metadata entry write, when COWCache updates

the corresponding metadata sector in memory cache, the

dirty sector is not written to flash cache directly, but firstly

copied into a journal buffer in memory. The journal buffer

is a small memory area (e.g., 64 KB) that groups the fine-

grained metadata update to prevent them inducing more

internal write amplification to the flash device. Then the

journal will be written back to flash cache when it reaches

either a pre-defined size or age.

3.2.2 Advantages

With fine-grained metadata caching and journaling

between memory and flash cache, COWCache has three

advantages: (1) it caches more valuable metadata infor-

mation in memory that can translate more distributed

logical disk space, compared to several large consecutive

disk space that can be translated by fewer metadata tables,

which improves the metadata hit ratio in memory cache;

(2) higher metadata hit ratio in memory cache and fine-

grained metadata interaction bring less metadata reads

from flash cache; (3) less frequent metadata replacement in

memory cache and fine-grained metadata journaling induce

less metadata writes to flash cache. Moreover, less meta-

data access to flash cache also reduces its bandwidth con-

tention to normal data caching in flash which improves the

data caching efficiency.

In addition, metadata operations for COW-based virtual

disks need to get a exclusive lock, and almost all the

metadata access are in these periods holding the lock. So

compared to traditional coarse-grained metadata manage-

ment, COWCache not only improves the metadata caching

efficiency, but also mitigates the impact of metadata on the

parallelization of I/O requests and thus improves the

overall VM performance.

3.3 Decoupled Copy-on-Write

Traditional COW mechanism is a tightly-coupled process

that all the amplified data requests are handled in the

critical I/O path along with the guest write to ensure con-

sistency. With flash caching, the cache manager is also

forced to process the amplified requests and even to cache

these extra data that exceed the VM’s real locality into

flash. However, we observe that both the traditional COW

process and the flash caching efficiency can be improved

by exploiting the non-volatile property of flash cache, and

we propose the new decoupled Copy-on-Write mechanism.

The key idea for the decoupled COW mechanism with

flash caching is two-fold: (1) only process the real guest

requests in the critical I/O path; and (2) only admits the

requests that have real VM locality into flash cache. After

bridging the semantic gap between the management of

virtual disks and flash caches, the guest or amplified

requests can be easily distinguished. Then for the virtual

Dirty Parts of COW Metadata

Journal

flash cache

memory cache

Logical Disk

translate

Logical Disk

translate

Fig. 7 Coarse- versus fine-grained metadata management

628 Cluster Computing (2020) 23:623–639

123

disk management, the use of non-volatile flash caches

makes it a good opportunity to decouple the amplified I/O

requests from the critical path (especially for the writeback

policy, as discussed in Sect. 3.3.1), and maintain necessary

description information to ensure correct and consistent

data access; for the flash cache management, the cache

manager only admits the guest requests into flash cache to

cache the real guest I/O demand.

As Fig. 8 shows, when the guest writes to D1w and D2w,

previous caching solutions caches more data under tradi-

tional COW, while COWCache only caches the real guest

writes into flash, which utilizes the cache space more

efficiently. An optimization is introduced by recognizing a

block’s logical and physical addresses: if the guest reads

B2b before writing to D2w, then B2b is cached since it has

VM locality; when the guest writes to D2w, although it has

different host address from B2b, B2b loses VM locality

because the guest will not access it again (logically masked

by D2w). COWCache evicts B2b from the cache to further

improve the space efficiency.

There are two common polices for writing back cached

data in flash, i.e., writeback and writethrough [17, 35].

COWCache supports both policies but designs different

caching I/O flows for them considering different tradeoffs

between the storage performance and consistency.

3.3.1 Caching I/O flow

Writeback policy For an allocating write in the COW

process, the guest write is cached in flash and the other

amplified requests are not processed. Instead of issuing the

amplified reads to the base disk and writes to the delta disk,

COWCache only marks the newly allocated delta disk

cluster as partially valid and then acknowledges the guest

write to the VM. As such, COWCache decouples the

amplified data requests from the critical I/O path. When

such cached guest write needs to be written back to the

delta disk (e.g., evicted out from flash cache), the guest

write is written back and the unmodified areas in the delta

disk cluster still remain invalid (necessary description

information are persisted to avoid inconsistency under

crash, as discussed in Sect. 3.3.3). For subsequent guest

writes to the same cluster, they are also cached into flash

like the first write to this cluster, and the remaining

unmodified areas (if still exist) are not processed as well.

Meanwhile, the guest read I/O flow is also changed to

ensure correct disk access. For a guest read, since some

delta disk clusters may be partially valid, there are three

routines for COWCache: (1) if the data is cached in flash, it

will be read directly from flash cache; (2) if the data is not

cached and its delta disk cluster is completely valid, it will

be read normally from the delta disk; (3) if the data is not

cached and its delta disk cluster is partially valid, although

the base disk cluster has been logically masked, the data

may still be redirected to read from the base disk if not in

the delta disk.

Writethrough policy In this policy, the guest write is

cached in flash and the amplified data requests are not

admitted into cache either, but COWCache still issues the

amplified data requests to the backing storage, i.e., read

data from the base disk and write them to the delta disk, to

ensure the delta disk is always completely valid, so as to

satisfy the strong consistency requirements of

writethrough.

For both policies, COWCache reduces the flash writes

by not admitting the data without real VM locality into

flash cache. In addition, COWCache also mitigates the

access latency of allocating guest writes and the network

traffic by eliminating the amplified data requests from the

critical I/O path in the writeback policy.

3.3.2 Consistency analysis

Although there are other consistency problems and solu-

tions related to flash caching (e.g., in [17, 35]), here we

mainly concentrate on the inconsistency potentials while

caching for COW-based virtual disks.

For the writethrough policy, it is designed to provide

strong consistency, which is also ensured by COWCache.

In the COW process, COWCache does not cache the

amplified requests, but still issues them along with the

guest write, i.e., the guest write (e.g., D1w) is sent to the

delta disk, and the unmodified areas are read from the base

disk (e.g., B1a and B1b) and written to the delta disk (e.g.,

D1a and D1b). Before persisting the lookup entry to point

to the newly allocated cluster in the delta disk, the cluster is

already completely valid, so that the delta disk is always

consistent to use.

For the writeback policy, the caching I/O flow is rede-

signed to process minimum I/Os in the critical path but still

Cached Dirty Data
Cached Clean Data

base

D1a D1w D1b

B1a B1b

D2a D2w

B2a

delta

 N
A

S/
SA

N

B2b

write
VM

D1w B1a D1a B1b D1b D2w B2a D2a

Flash Cache

Traditional COW
Cache Manager

data caching due to the
amplified I/O requests

D1w D2w

guest write

Decoupled COW
Cache Manager

write
VM

Flash Cache

Fig. 8 Flash caching with traditional versus decoupled Copy-on-

Write

Cluster Computing (2020) 23:623–639 629

123

ensures the guest to access consistent disk data. However,

if the host crashes, there will be inconsistency potentials,

because some delta disk clusters may be partially valid but

considered as completely valid after recovery. Then the

guest may read invalid areas in some delta disk clusters.

Note that the inconsistency problems also exist in tradi-

tional flash caching solutions for COW-based virtual disks,

since out-of-order cache writeback may result in (partially)

invalid clusters. To illustrate them, we give some denota-

tions for the decoupled COW process: the updated COW

metadata (Meta), e.g., a new L2 table entry; the data

written by the guest (GData); when Meta and GData are

cached in flash, their description information, e.g., the

cache-to-backend address mapping and the cluster status,

are denoted as FInfo.

The conditions at the host crash point that may induce

delta disk inconsistency are: Meta is already written back

to the delta disk, GData exists in either the flash cache or

delta disk, and FInfo is still just in memory (i.e., not per-

sisted to flash yet). When Meta has been updated to the

delta disk, it should point to a completely valid cluster.

However, if FInfo has not been persisted, the description

information will be lost. Then if GData only exists in flash

cache, it cannot be recovered, and Meta will point to a

completely invalid cluster in the delta disk; even though

GData has been written back to the delta disk cluster, the

cache manager cannot identify which parts are valid or

invalid without the cluster status information, so that Meta

will point to a partially valid cluster. The above conditions

cause the delta disk to be inconsistent.

For other cases, if FInfo has not been persisted, and

Meta and GData are only cached in flash (or only GData is

written back to the delta disk but Meta is not), then both

Meta and GData are lost but it does not induce inconsis-

tency; if FInfo has been persisted and each of Meta and

GData can be either only in flash or already written back to

the delta disk, then both the Meta and GData can be

recovered and the decoupled COW mechanism still func-

tions correctly.

3.3.3 Consistent cache writeback

In COWCache, while writing back cached data in flash that

are related to the partially valid clusters, some write orders

must be kept to avoid the above inconsistent cases. To be

specific, before writing back cached Meta (dirty COW

metadata) or GData (partially updated data) from flash to

the delta disk, COWCache firstly ensures that in-memory

FInfo (address mapping and cluster state) has been per-

sisted to flash. Thus, even if the host crashes, all the

information about the partially valid delta disk clusters can

be recovered and the consistency of the decoupled COW

mechanism can be ensured. In addition, the address

mapping and cluster state information are also periodically

persisted to mitigate new data loss.

An alternative approach is that before writing back

cached Meta from flash to the delta disk, GData should be

written back first and the unmodified areas in correspond-

ing clusters should be filled with data from the base disk,

thus Meta will not point to invalid clusters. But this

approach will induce some overhead, since during the

whole VM running process, there is no need to specially

read data from the base disk to fill partially valid delta disk

clusters. First, there are write coalescing [17] in flash cache

that inconsistent clusters will be less (i.e., new allocated

clusters are written completely by the VM), and the

amplified data reads from the base disk and data writes to

the delta disk will become unnecessary. Second, the extra

copying can be done while shutting down the VM, or just

mark the delta disk as inconsistent and do the copying work

offline, which will mitigate COW-based virtual disks’

negative impact on the running VM’s performance.

3.3.4 Recovery

There are recoverable or destructive failures for the host

and flash regarding whether the flash device can be

recovered or not [35]. For both kinds of failures, COW-

Cache provides strong virtual disk consistency under the

writethrough policy, but the performance is limited. The

writeback policy is suitable for recoverable failures and

provides better performance. Note that by employing the

peer-replication caching technique as introduced in [4],

COWCache can also provide strong consistency under the

writeback policy, but it is out of the scope of this paper.

COWCache designs two recovery approaches for host

crashes in the writeback policy: fast recovery and full

recovery. Fast recovery means COWCache only recovers

the address mapping and cluster state information for all

cached data in flash, then the VM can go on running as

before the crash. Although there may be partially valid

clusters, COWCache can identify them from the cluster

state, so that the VM still runs correctly. Full recovery

means that COWCache not only recovers the information

as in fast recovery, but also reads all cached dirty data and

writes them into the delta disk, including read data from the

base disk to fill all the partially valid clusters in the delta

disk, so as to make the delta disk completely consistent

before using it again.

Fast recovery is fast and efficient but needs the VM

recovered in the same host. Full recovery needs more time

to copy data but recovers the delta disk backend to a

consistent state, and then the VM can be restarted in a

different host, which provides more flexibility.

630 Cluster Computing (2020) 23:623–639

123

4 Implementation

We implemented a COWCache prototype based on the

QCOW2 driver in the QEMU [3] emulator with KVM [16]

enabled.

4.1 Virtual cache map

Cached data on flash is usually managed as fixed-size

block, e.g., 4 KB [1, 5, 25, 28]. For every cached block,

there is an in-memory entry preserving the address map-

ping from the original block number in the disk backend to

the cache block number in flash, i.e., a one-to-one mapping

like (LBN, CBN). Inspired by the cluster-style organization

of COW-based virtual disks, we observe that, although

different data blocks in the same cluster have different

LBNs, they actually have the same cluster number (LCN),

which means duplicated address mapping information exist

in memory. We propose a new design for the in-memory

address mapping structures, called virtual cache map, to

mitigate the memory footprint overhead for flash caching.

Virtual cache map decouples traditional one-to-one

address mapping, and one entry maps to multiple cached

blocks. For each entry, it has a single LCN identifying one

cluster in the disk backend and multiple CBNs for the

cached blocks inside this cluster. It also has a guest cluster

number (GCN) to recognize the data from different snap-

shots whereas with the same logical disk address. Since

every entry maps to multiple cached blocks, there are two

small bitmaps: one is the data bitmap (one bit represents

whether a block in the cluster is cached or not); the other is

the dirty bitmap (one bit represents whether a cached block

is dirty or not). Moreover, there is a dcow bitmap for every

entry to store the cluster’s consistency state. It indicates

which parts in the cluster are valid or not, and it is the

pivotal information for the decoupled COW running cor-

rectly. So, for a guest I/O request, after identifying its

cluster address in the disk backend, the corresponding

virtual cache map entry will be checked to see the data

block’s status (e.g., whether cached or not, dirty or not, in

the delta disk or in the base disk), according to which to

process the request as aforementioned in Sect. 3.3.1.

For default 64 KB cluster size and 4 KB cache block

size, one virtual cache map entry contains a 32-bit LCN, a

32-bit GCN, a 4-bit disk ID, a 64-bit pointer to a dynamic

array that contains 1–16 32-bit CBNs, three 16-bit bitmaps

and one 32-bit reference counter for each cached block. So

the memory overhead for a cluster is about 0.23%. Since

not all the blocks in a cluster are always cached, the real

memory overhead depends on the workloads.

4.2 COW awareness

To be aware of COW-based virtual disks, COWCache

designs more flexible caching interfaces that support the

QCOW2 driver to give more hints about the request, which

includes not only its backend address, but also its logical

address, its type (metadata/data), and whether it is a guest

request or amplified request due to the COW process.

4.3 Flash cache organization

Flash cache is split into three regions: cache header,

metadata zone, and data zone. The cache header consists of

the superblock, the address mapping, and the cluster state

information for all cached data. The metadata zone caches

the journaled COW metadata default in sector granularity,

and the data zone caches the normal data with an in-place

update manner default in 4 KB blocks and with the LRU

replacement policy.

5 Evaluation

5.1 Experimental setup

We performed the experiments on a machine with two Intel

Xeon E5-2680 v3 12-core CPU (2.50GHz), 384 GB main

memory, 1 TB Seagate HDD, and a 400 GB Intel SSD DC

S3610 as host-side flash cache. The host runs Fedora 23

and the guest VM runs CentOS 7. Each VM is configured

with 1 vCPU, 2 GB RAM and two QCOW2 virtual disks:

one is the OS and the other is a newly created 1 TB sparse

delta disk backed by a preallocated base disk to conduct

experiments. Both the delta and base disks are stored in an

NFSv4 datastore, backed by a 2 TB Intel SSD DC P3700

and connected via IPoIB (the network bandwidth is up to

1.6 GB/s).

5.2 Micro-benchmark evaluation

FIO [15] is used to do the micro benchmarks. We run FIO

in the VM to produce different types of guest workloads to

the 1 TB virtual disk. We will elaborate the workloads and

configurations for each experiment. Compared to COW-

Cache (COWC), TRDCache (TRDC) means the COW-

unaware flash caching solutions with table-grained meta-

data management and traditional COW process. ‘wt’ means

the writethrough policy for flash cache and ‘wb’ means

writeback. E.g., COWC-wb means COWCache with the

writeback policy.

Cluster Computing (2020) 23:623–639 631

123

5.2.1 Fine-grained metadata caching and journaling

We evaluate COWCache’s metadata optimization with

host-side flash caching. The guest workload consists of

totally one million random 64 KB write requests to the

1 TB virtual disk. The request has the same size as the

virtual disk cluster so that there are no COW operations

(i.e., no data amplification that copies data from the base

disk to the delta disk).

Figure 9 shows the guest write throughput of two

metadata caching mechanisms at different memory cache

sizes for L2 tables. The results show that the throughput of

COWCache outperforms TRDCache by 6.7–116.5% in

‘wt’ mode and by 2–175.7% in ‘wb’ mode, which are

because COWCache caches more valuable metadata

information in memory and produces less metadata flash

cache reads and writes (more details in Table 1).

Table 1 shows that with different memory cache sizes,

the hit ratio of COWCache outperforms TRDCache by up

to 124% (e.g., 75.1% to 33.6% with 1 MB memory cache).

The reason is that COWCache manages metadata memory

cache at fine granularity, which translates more distributed

logical disk space than TRDCache. TRDCache has lower

hit ratio and thus needs more times of metadata reads from

flash cache in granularity of metadata table. E.g., with

1 MB memory cache, TRDCache induces surprisingly

340� more metadata flash reads than COWCache. COW-

Cache also writes back much less metadata to flash cache.

E.g., with 1 MB memory cache, COWCache induces only

0.7% metadata flash writes compared to TRDCache; even

with 128 MB memory cache, COWCache writes only 9.4%

metadata size of TRDCache. Meanwhile, when the mem-

ory cache size decreases, the metadata flash writes of

TRDCache are proportionally increased, while COWCache

always writes the same size. These results demonstrate that

COWCache improves the metadata hit ratio in memory

cache and reduces the bandwidth contention to data cach-

ing in flash that lead to higher guest throughput.

5.2.2 Decoupled Copy-on-Write

We evaluate COWCache’s decoupled COW mechanism

with host-side flash caching. The guest workload consists

of totally one million random write requests to the 1 TB

virtual disk. The memory cache size for L2 tables is set to

the maximal value (i.e., 128 MB) to minimize the impact

of metadata management.

Figure 10a shows the guest write throughput at different

block sizes and Fig. 10b shows the stacked traffic of flash

writes and network I/O. First, in ‘wt’ mode, the throughput

of COWCache outperforms TRDCache by 3.8–10.9%, and

the improvement is mainly because COWCache eliminates

the flash writes for those amplified data without real VM

locality. Compared to TRDCache, to be specific, COW-

Cache reduces the flash writes by 31.6–96.7%, e.g., 96.7%

at 4 KB block size, and it induces the same amounts of

network I/O to ensure all the clusters in the virtual disk

backend to be valid thus to provide stronger consistency.

Second, in ‘wb’ mode, the throughput of COWCache

outperforms TRDCache by 60%*4.49, and the

improvement comes from not only the flash writes reduc-

tion which is the same as in ‘wt’ mode, but also the

decoupling of the amplified read and write data requests

from the critical I/O path. For the guest writes, TRDCache

needs to read unmodified areas from the base disk through

network in the critical path and thus it still bears latency of

networked storage, while COWCache eliminates those read

requests from the critical path and thus it can fully benefit

from the high performance of flash cache.

Note that at aligned 64 KB block size (‘64-a’), none

guest writes induce the COW operations, so COWCache

and TRDCache process the same amounts of flash writes

and network I/O and have the same throughput. While for

unaligned 64 KB block size (‘64-u’), the guest write spans

in two consecutive clusters. TRDCache still needs to fill

the unmodified areas in the beginning and ending parts of

the clusters, but COWCache processes them in a decoupled

manner so that it has obvious performance improvement

than TRDCache again.

The above results are achieved while maximizing the

memory cache size for L2 tables to minimize the meta-

data’s impact. When decrease this memory cache size to

1 MB, TRDCache induces 40� more flash writes than

COWCache for the random write workload at 4 KB block

size.

5.2.3 Impact of COW ratio

The ratio of allocating writes, which induce the COW

process, in all the writes is defined as COW Ratio. For

COW-based virtual disks, the COW ratio is high at the

beginning, since most writes are allocating writes; then the

COW ratio gradually decreases if not taking snapshot,

because more latter writes are issued to previously allo-

cated clusters. We evaluate the impact of COW ratio on the

TRDC-wt COWC-wt TRDC-wb COWC-wb

T
hr

ou
gh

pu
t (

IO
PS

)

0

1000

2000

3000

4000

5000

Memory Cache Size for L2 Table (MB)
1 32 64 96 128

Fig. 9 Impact of COW metadata

632 Cluster Computing (2020) 23:623–639

123

VM performance with different write/read ratios, i.e., 2:1

(write-intensive) and 1:2 (read-intensive) respectively. The

guest workload consists of totally one million 4 KB I/O

requests to the 1 TB virtual disk. The workload is random

but controlled necessarily to achieve the specific COW

ratios. The memory cache size for L2 tables is also

maximal.

The left subgraph of Fig. 11 shows the VM throughput

at 2:1 write/read ratio and the results are normalized

against TRDCache at 80% COW ratio in ‘wb’ mode. At

different COW ratios, COWCache outperforms TRDCache

by 4.1–7% in ‘wt’ mode and 1.89*3.49 in ‘wb’ mode.

When the COW ratio gets lower, both COWCache and

TRDCache have better performance. E.g., at 40% COW

ratio (vs. 80%) in ‘wb’ mode, the throughput increases

16.3% for COWCache and 79.6% for TRDCache, but

COWCache still outperforms TRDCache by 1.8�. The

improvement for COWCache is mainly because that lower

COW ratio means less allocating writes and thus less

metadata update, while the improvement for TRDCache is

mostly because there are less COW operations and less

amplified data requests need to be processed. The results

also show that with the COW ratio changing, the VM

performance for TRDCache is not only low but also

inconsistent, thus is more unpredictable. The right sub-

graph of Fig. 11 shows that for read-intensive guest

workloads, COWCache still outperforms TRDCache by

2.3–8.2% in ‘wt’ mode and 1.09*1.79 in ‘wb’ mode.

5.3 Application evaluation

We evaluate COWCache using typical application work-

loads, i.e., OLTP, Varmail, and Fileserver from File-

bench [26], YCSB [8], and the SNIA MSR traces [32].

5.3.1 Workloads

OLTP emulates an online transaction processing service. It

has two typical I/O sizes, 2 KB (OLTP2) and 8 KB

(OLTP8). Varmail emulates a mail server and Fileserver

emulates a file server. YCSB is a framework used for

benchmarking cloud serving systems. We use MySQL as

the database and choose the workload A (YCSB-A), which

consists of a mix of 1:1 write/read requests. We select ten

SNIA MSR traces that represent a variety of real-world

workloads: hardware monitoring (hm_0), media server

(mds_0), print server (prn_0), project directories (proj_0),

web proxy (proxy_0), research projects (rsrch_0), web

staging (stg_0), terminal server (ts_0), user home directo-

ries (usr_0), and test web server (wdev_0).

We run the OLTP workloads in the VMs with different

memory cache sizes for L2 tables, e.g., OLTP2-1 means

the I/O size is 2 KB and the memory cache is 1 MB.

Table 1 Memory cache hit ratio

of L2 tables, and metadata flash

reads and writes

Memory cache (MB) Hit ratio of L2 (%) Meta flash reads (GB) Meta flash writes (GB)

TRDC COWC TRDC COWC TRDC COWC

1 33.6 75.1 119.64 0.35 61.15 0.47

32 74.7 83 45.66 0.24 46.61 0.47

64 83.1 90.4 30.39 0.14 31.95 0.47

96 91.6 96.6 15.13 0.05 18.08 0.47

128 *100 *100 0 0 4.95 0.47

The modes ‘wt’ and ‘wb’ have the same values for the above results of TRDCache or COWCache

TRDC-wt COWC-wt TRDC-wb COWC-wb

T
hr

ou
gh

pu
t (

IO
PS

)

0

3,000

6,000

9,000

12,000

Block Size (KB)
4 16 64-a 64-u 96

(a) Throughput

TRDC-wt COWC-wt TRDC-wb COWC-wb

Network IO Flash Writes

0

200

400

Block Size (KB)
4 16 64-a 64-u 96

(b) Stacked Traffic of Flash Writes and Network I/O

Fig. 10 Impact of Copy-on-Write

TRDC-wt COWC-wt TRDC-wb COWC-wb

3404 8007

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0

2

4

COW Ratio (W:R = 2:1)
80 60 40

COW Ratio (W:R = 1:2)
80 60 40

Fig. 11 Impact of COW ratio

Cluster Computing (2020) 23:623–639 633

123

Figure 12 shows that the throughput of COWCache out-

performs TRDCache by 52.5–86.8% in ‘wt’ mode and

86.2–122.7% in ‘wb’ mode. Moreover, COWCache is less

affected by the metadata cache size and its performance is

more consistent and predictable than TRDCache. E.g., for

OLTP2-1 (vs. OLTP2-8) in ‘wb’ mode, the performance

degradation of TRDCache is 18.1%, while it is only 2% for

COWCache.

Table 2 shows the detailed results. We use OLTP2 as an

example to elaborate them and OLTP8 has similar results.

For OLTP2-1, the memory cache hit ratio of L2 tables for

COWCache (69.9%) outperforms TRDCache (39.8%) by

75.6% due to the fine-grained metadata management. Thus,

COWCache induces only 0.32% flash reads and 0.73%

flash writes for metadata compared to TRDCache. Due to

the decoupled COW mechanism and only caching data

with real VM locality, COWCache writes 35.3% data to

flash cache of that written by TRDCache. So COWCache

reduces the overall flash writes by 77.2%, which can

obviously extend the lifetime of flash device.

When increase OLTP2’s memory cache for L2 tables to

8 MB, the metadata reads for both TRDCache and COW-

Cache can be accessed from the memory cache and their

hit ratios are nearly 100%. But TRDCache still induces

125� more metadata flash writes than COWCache. Since

OLTP is a sync-intensive workload, and for every sync

operation, TRDCache updates all the dirty metadata

tables to flash cache, while COWCache only updates the

dirty metadata sectors in a journaled way to flash cache,

which induces significantly less metadata flash writes.

Figure 13 shows the throughput and flash writes of

Varmail, Fileserver, and YCSB-A in ‘wb’ mode and the

results are normalized against TRDCache. Their metadata

memory cache sizes are maximal. The left figure shows

that COWCache has higher throughput than TRDCache by

78.6%, 24.5%, and 23.3% respectively, and the right fig-

ure shows that it reduces the flash writes by 22.5%, 27.1%,

and 35.2% respectively. While in ‘wt’ mode, the

throughput improvement for Varmail is 13% and less than

2% for both Fileserver and YCSB-A.

5.3.2 Impact of snapshot frequency

We evaluate COWCache using the MSR traces to see the

impact of snapshotting on the flash writes. In this test, we

select one week-long part from each trace (most traces are

one week long) to replay. ‘No Snapshot’ (Sno) means at the

whole replaying process, there is only one delta disk.

‘Snapshot Per Day’ (Sper) means making one snapshot per

day, so there is a longer disk chain. Figure 14 shows

COWCache’s flash writes reduction compared to

TRDCache in both cases. The Y-axis means the reduction

ratio of flash writes since last snapshot. Because we do not

make intermediate snapshot for Sno, the reduction ratio is

always from the beginning day.

For Sno, the flash writes reduction ratios are 1.4–32.8%

at different days for the workloads. And for the same

workload, the reduction ratio gradually decreases, because

for the single delta disk, the ratio of allocating writes

gradually decreases. But the reduction ratio may increase.

E.g., for prn_0, the curve has an increase in the fourth day,

TRDC-wt COWC-wt TRDC-wb COWC-wb
T

hr
ou

gh
pu

t (
IO

PS
)

0

2000

4000

6000

8000

OLTP2-1 OLTP2-8 OLTP8-1 OLTP8-8

Fig. 12 The OLTP workloads

Table 2 Detailed results of the OLTP workloads for TRDCache and COWCache

Workloads COW

ratio (%)

Memory cache hit ratio of

L2 (%)

Meta flash reads

(GB)

Meta flash writes

(GB)

Data flash writes

(GB)

Reduction ratio

of flash writes (%)

TRDC COWC TRDC COWC TRDC COWC TRDC COWC

OLTP2-1 73.1 39.8 69.9 87.46 0.28 21.9 0.16 38.75 13.66 77.2

OLTP2-8 68.8 *100 *100 0 0 23.84 0.19 46.48 17.08 75.4

OLTP8-1 74.5 31.4 56.3 90.05 0.33 20.97 0.17 41.31 13.19 78.5

OLTP8-8 69.9 *100 *100 0 0 21.5 0.16 48.13 20.75 70

TRDC COWC

17700

9817 656

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0

1

2

Varmail Fileserver YCSB-A

TRDC COWC

N
or

m
al

iz
ed

 F
la

sh
 W

ri
te

s

0.5

1.0

Varmail Fileserver YCSB-A

Fig. 13 Application workloads

634 Cluster Computing (2020) 23:623–639

123

and the reason is that the workload writes to more new

clusters in the delta disk, so the overall COW ratio

becomes higher. For Sper, the reduction ratios are 0.4–

37.8% at different days. Compared to Sno, the curve of Sper
is mostly higher, since after each day’s snapshot, the pre-

vious delta disk becomes read-only, and a new delta disk is

created based on the previous one. Then there are more

allocating writes in the new delta disk and COWCache

induces less flash writes by not caching the data without

VM locality.

5.3.3 Impact of flash cache size

Figure 15 shows the normalized stacked traffic of flash

writes and network I/O for each MSR trace at different

flash cache sizes in ‘wb’ mode. The cache size is the

percentage of each workload’s working set size (WSS). At

different cache sizes, COWCache reduces the flash writes

by 2.8–25.5% and the network traffic by 18–76.2%. The

reduction are mainly from two sources. First, COWCache

needs less reads from the disk backend in the decoupled

COW process due to the decoupling of the extra read

requests, and the invalid areas are much likely written by

the VM later so the base reads are unnecessary. Second,

COWCache only caches the data that are accessed by the

VM, which in turn allows for caching more data with real

VM locality. By comparison, TRDCache eagerly com-

pletes the whole COW process in the critical I/O path and

caches the amplified data in flash, which evicts out the data

with real VM locality and induce more subsequent network

reads and writeback. Moreover, COWCache not only

produces less network traffic, but also reduces the con-

tention to the storage server and network bandwidth.

5.3.4 Overhead

Memory overhead We replay the MSR traces and the

memory overhead for flash caching in COWCache is

0.23–0.26%. If we also use 4-bit reference counter to dif-

ferentiate hot and cold blocks like S-CAVE [25], the

memory overhead can be further reduced to 0.14–0.17%,

lower than 0.23% in S-CAVE and 0.5% in Mercury [5],

which mainly benefits from the deduplication of the

address information in memory.

Recovery time We replay the MSR traces, crash the VM,

and recover the flash cache and virtual disk with fast/full

recovery. For fast recovery, all need less than one second,

since only the address mapping and cluster state

No Snapshot Snapshot Per Day
R

ed
uc

tio
n

R
at

io
 (

%
)

hm_0 mds_0 prn_0 proj_0 prxy_0

rsrch_0 stg_0 ts_0 usr_0 wdev_0

0

20

40

0

20

40

1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7

Fig. 14 Flash writes reduction (the X-axis is the day)

Flash Cache Size (Percent of WSS)

hm_0 mds_0 prn_0 proj_0 prxy_0

rsrch_0 stg_0 ts_0 usr_0 wdev_0

TRDCache COWCache Network I/O Flash Writes

0

0.5

1.0

0

0.5

1.0

20% 50% 100% 20% 50% 100% 20% 50% 100% 20% 50% 100% 20% 50% 100%

Fig. 15 Stacked traffic of flash writes and network I/O

Cluster Computing (2020) 23:623–639 635

123

information need to be read into memory to recover the

cache. For full recovery, since the dirty data in flash cache

need to be written back and the partially valid clusters in

the delta disk still need to be filled with data from the base

disk, so the recovery time is longer. The evaluation results

show that the full recovery time for the MSR traces are

2.3–30.3 s, which depend on the workloads’ pattern. E.g.,

for prn_0, the recovered dirty data set is 13.6 GB, and the

recovery time is 30.3 s.

6 Related work

Deploying flash memory caching for virtual machines has

been extensively researched in the literatures. They can be

categorized into the following parts.

6.1 Caching layers

Mercury [5] makes a comprehensive discussion about the

layers to deploy flash device, and chooses the hypervisor to

manage flash cache under the Copy-on-Write layer.

S-CAVE [25] also discusses the effectiveness of hypervi-

sor-based flash caching and VMWare VAIO [43] has a

similar architecture. Dm-cache [41], CloudCache [1] and

CacheDedup [21] manage cache at the block level, which

benefits for the generality for both virtualized and non-

virtualized environments. Different from them, COW-

Cache is not just hypervisor-based flash caching, but also

manages cache in the COW layer, and bridges the semantic

gap between the management of flash cache and virtual

disk and fully exploits the virtual disk semantics to opti-

mize flash caching.

6.2 Cache allocation and admission

S-CAVE proposes a rECS metric to determine the relative

cache demand of different VMs, and then dynamically

allocates space among them. vCacheShare [28] adopts a

cache utility model and makes dynamic and automated

flash cache space allocation based on multiple I/O access

characteristics (e.g., locality changes). Centaur [18] relies

on a workload’s MRC to direct cache sizing and to achieve

the QoS goals. CloudCache proposes a new cache demand

model called Reuse Working Set to predict a VM’s cache

demand and to make cache allocation. CacheDedup and [9]

use cache deduplication to reduce flash writes and to

improve I/O performance. However, the I/O pattern they

monitor to do cache allocation or admission has been

changed greatly by COW-based virtual disks, which is very

cache-unfriendly. COWCache makes co-design between

flash caching and COW-based virtual disks to improve the

caching efficiency. In addition, their policies can also be

adopted together with COWCache.

6.3 Cache writeback policies

Mercury and S-CAVE adopt the writethrough policy, and

vCacheShare use the writearound policy. In [17, 35], the

authors discuss the problems of poor performance of wri-

tethrough and inconsistency potentials of writeback. They

propose several writeback based caching policies to

achieve both high performance and strong consistency.

However, as discussed in front, while caching for COW-

based virtual disks, even in writeback mode, the guest VM

cannot fully experience the flash latency due to the Copy-

on-Write amplification problem. COWCache solves the

problem using the decoupled Copy-on-Write mechanism.

Different from traditional host-side flash caching, to the

best of our knowledge, COWCache presents some new

flash caching challenges induced by the virtual disk

semantics, which have not been discussed in the literatures.

Drop-in flash caching for COW-based virtual disks is

inefficient, due to the cache-unfriendly management of

COW-based virtual disks and the semantic gap between

flash caching and virtual disk management. COWCache

bridges the semantic gap and improves the flash caching

efficiency by being aware of and utilizing the virtual disk

semantics.

Optimizations for COW-based virtual disks are also

researched. In [7], the authors uncover the sync amplifi-

cation in COW-based virtual disks, and proposes two

journaling approaches to mitigate the sync operations.

However, the write amplification of metadata and data still

exist. In [36], the authors use data cache to mitigate the

COW penalties, but it only works for strictly sequential

writes. FVD [40] is a new virtual disk format designed for

both Cloud and non-Cloud environments. Selfie [44] states

the significance of metadata for COW-based virtual disks,

and proposes to mitigate the metadata writes by co-locating

compressed metadata and data. Different from them, as

flash caching is increasingly deployed for virtual disks,

COWCache observes a good opportunity to use the non-

volatile flash devices to enhance the metadata and data

management of COW-based virtual disks, which achieves

more improvement for the VM storage.

7 Conclusions

As flash caching is increasingly deployed for the VM disks

expected to improve the VM storage performance, we

uncover that while caching for COW-based virtual disks, it

brings severe challenges of inefficient metadata caching

and Copy-on-Write amplification, which makes the high-

636 Cluster Computing (2020) 23:623–639

123

performance flash caches underutilized and their endurance

problem aggravated. We propose COWCache, a COW-

aware flash caching solution to address the above chal-

lenges. First, COWCache is designed in the Copy-on-Write

layer of the hypervisor to bridge the semantic gap between

virtual disk and flash cache management and to enable

cross-layer optimizations. Second, COWCache makes fine-

grained metadata caching and journaling between memory

cache and flash cache to improve the metadata manage-

ment efficiency. Third, COWCache adopts a decoupled

Copy-on-Write mechanism to decouple the amplified data

processing from the critical I/O path and to cache only the

data with real VM locality, which reduce unnecessary I/O

processing and cache writes and improve the VM perfor-

mance. Finally, as the design of COWCache is not specific

to flash-based caching, we believe that the COWCache

approach can also be applied to emerging non-volatile

memory devices and improve their performance and

endurance while used as caches for the VMs.

Acknowledgements The work is supported by the National Natural

Science Foundation of China (Grant Nos. 61772300, 61832011) and

National Science Foundation CAREER Award CNS-1619653, Award

CNS-1562837, and Award CNS-1629888. Jianyu Fu thanks the China

Scholarship Council (CSC) for the financial support.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Arteaga, D., Cabrera, J., Xu, J., Sundararaman, S., Zhao, M.:

CloudCache: on-demand flash cache management for cloud

computing. In: Proceedings of the 14th USENIX Conference on

File and Storage Technologies (FAST’16), pp. 355–369. USE-

NIX (2016)

2. Basu, G., Nadgowda, S., Verma, A.: LVD: lean virtual disks. In:

Proceedings of the 15th International Middleware Conference

(Middleware’14), pp. 25–36. ACM (2014)

3. Bellard, F.: QEMU, a fast and portable dynamic translator. In:

Proceedings of the 2005 USENIX Annual Technical Conference

(USENIX ATC’05), pp. 41–46. USENIX (2005)

4. Bhagwat, D., Patil, M., Ostrowski, M., Vilayannur, M., Jung, W.,

Kumar, C.: A practical implementation of clustered fault tolerant

write acceleration in a virtualized environment. In: Proceedings

of the 13th USENIX Conference on File and Storage Technolo-

gies (FAST’15), pp. 287–300. USENIX (2015)

5. Byan, S., Lentini, J., Madan, A., Pabon, L.: Mercury: host-side

flash caching for the data center. In: Proceedings of the 28th

International Conference on Massive Storage Systems and

Technology (MSST’12), pp. 1–12. IEEE (2012)

6. Chen, J., Wang, J., Tan, Z., Xie, C.: Recursive updates in Copy-

on-Write file systems-modeling and analysis. J. Comput. 9(10),
2342–2351 (2014)

7. Chen, Q., Liang, L., Xia, Y., Chen, H., Kim, H.: Mitigating sync

amplification for Copy-on-Write virtual disk. In: Proceedings of

the 14th USENIX Conference on File and Storage Technologies

(FAST’16), pp. 241–247. USENIX (2016)

8. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears,

R.: Benchmarking cloud serving systems with YCSB. In: Pro-

ceedings of the 1st ACM Symposium on Cloud Computing

(SoCC’10), pp. 143–154. ACM (2010)

9. Feng, J., Schindler, J.: A deduplication study for host-side caches

in virtualized data center environments. In: Proceedings of the

29th International Conference on Massive Storage Systems and

Technology (MSST’13), pp. 1–6. IEEE (2013)

10. Hajnoczi, S.: An updated overview of the QEMU storage stack.

In: LinuxCon Japan. The Linux Foundation (2011)

11. Handy, J.: Understanding the Intel/Micron 3D XPoint memory.

In: Proceedings of Storage Developer Conference. SNIA (2015)

12. Hellwig, C.: The KVM/QEMU storage stack. In: Japan Linux

Symposium. The Linux Foundation (2009)

13. Holland, D.A., Angelino, E., Wald, G., Seltzer, M.I.: Flash

caching on the storage client. In: Proceedings of the 2013 USE-

NIX Annual Technical Conference (USENIX ATC’13),

pp. 127–138. USENIX (2013)

14. Huang, S., Wei, Q., Chen, J., Chen, C., Feng, D.: Improving

flash-based disk cache with lazy adaptive replacement. In: Pro-

ceedings of the 29th International Conference on Massive Storage

Systems and Technology (MSST’13), pp. 1–10. IEEE (2013)

15. Jens, A.: FIO—flexible I/O tester. https://github.com/axboe/fio

(2005)

16. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: KVM:

the linux virtual machine monitor. In: Proceedings of the 2007

Linux Symposium, pp. 225–230 (2007)

17. Koller, R., Marmol, L., Rangaswami, R., Sundararaman, S.,

Talagala, N., Zhao, M.: Write policies for host-side flash caches.

In: Proceedings of the 11th USENIX Conference on File and

Storage Technologies (FAST’13), pp. 45–58. USENIX (2013)

18. Koller, R., Mashtizadeh, A.J., Rangaswami, R.: Centaur: host-

side SSD caching for storage performance control. In: Proceed-

ings of the 2015 IEEE International Conference on Autonomic

Computing (ICAC’15), pp. 51–60. IEEE (2015)

19. Lagar-Cavilla, H.A., Whitney, J.A., Scannell, A.M., Patchin, P.,

Rumble, S.M., De Lara, E., Brudno, M., Satyanarayanan, M.:

SnowFlock: rapid virtual machine cloning for cloud computing.

In: Proceedings of the 4th ACM European Conference on Com-

puter Systems (EuroSys’09), pp. 1–12. ACM (2009)

20. Le, D., Huang, H., Wang, H.: Understanding performance

implications of nested file systems in a virtualized environment.

In: Proceedings of the 10th USENIX Conference on File and

Storage Technologies (FAST’12), pp. 87–100. USENIX (2012)

21. Li, W., Jean-Baptise, G., Riveros, J., Narasimhan, G., Zhang, T.,

Zhao, M.: CacheDedup: in-line deduplication for flash caching.

In: Proceedings of the 14th USENIX Conference on File and

Storage Technologies (FAST’16), pp. 301–314. USENIX (2016)

22. Lu, Y., Shu, J., Zheng, W.: Extending the lifetime of flash-based

storage through reducing write amplification from file systems.

In: Proceedings of the 11th USENIX Conference on File and

Storage Technologies (FAST’13), pp. 257–270. USENIX (2013)

23. Lu, Y., Shu, J., Wang, W.: ReconFS: a reconstructable file system

on flash storage. In: Proceedings of the 12th USENIX Conference

on File and Storage Technologies (FAST’14), pp. 75–88. USE-

NIX (2014)

24. Lu, T., Huang, P., He, X., Zhang, M.: Understanding the impact

of cache locations on storage performance and energy con-

sumption of virtualization systems. In: Proceedings of the 2016

USENIX Workshop on Cool Topics on Sustainable Data Centers

(CoolDC’16). USENIX (2016)

Cluster Computing (2020) 23:623–639 637

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/axboe/fio

25. Luo, T., Ma, S., Lee, R., Zhang, X., Liu, D., Zhou, L.: S-CAVE:

effective SSD caching to improve virtual machine storage per-

formance. In: Proceedings of the 22nd International Conference

on Parallel Architectures and Compilation Techniques

(PACT’13), pp. 103–112. IEEE (2013)

26. McDougall, R., Jim, M.: Filebench. https://github.com/filebench/

filebench (2004)

27. McLoughlin, M.: The QCOW2 image format. https://people.

gnome.org/*markmc/qcow-image-format.html (2008)

28. Meng, F., Zhou, L., Ma, X., Uttamchandani, S., Liu, D.: vCa-

cheShare: automated server flash cache space management in a

virtualization environment. In: Proceedings of the 2014 USENIX

Annual Technical Conference (USENIX ATC’14), pp. 133–144.

USENIX (2014)

29. Mesnier, M., Chen, F., Luo, T., Akers, J.B.: Differentiated stor-

age services. In: Proceedings of the 23th ACM Symposium on

Operating Systems Principles (SOSP’11), pp. 57–70. ACM

(2011)

30. Meyer, D.T., Aggarwal, G., Cully, B., Lefebvre, G., Feeley, M.J.,

Hutchinson, N.C., Warfield, A.: Parallax: virtual disks for virtual

machines. In: Proceedings of the 3th ACM European Conference

on Computer Systems (EuroSys’08), pp. 41–54. ACM (2008)

31. Microsoft: VHDX format specification v1.00. https://www.

microsoft.com/en-us/download/details.aspx?id=34750 (2012)

32. Narayanan, D., Donnelly, A., Rowstron, A.: Write off-loading:

practical power management for enterprise storage. In: Proceed-

ings of the 6th USENIX Conference on File and Storage Tech-

nologies (FAST’08), p. 17. USENIX (2008)

33. Oh, M., Eom, H., Yeom, H.Y.: Enhancing the I/O system for

virtual machines using high performance SSDs. In: Proceedings

of the 2014 International Performance Computing and Commu-

nications Conference (IPCCC’14), pp. 1–8. IEEE (2014)

34. Pfaff, B., Garfinkel, T., Rosenblum, M.: Virtualization aware file

systems: getting beyond the limitations of virtual disks. In: Pro-

ceedings of the 3rd Symposium on Networked Systems Design

and Implementation (NSDI’06), pp. 353–366. USENIX (2006)

35. Qin, D., Brown, A.D., Goel, A.: Reliable writeback for client-side

flash caches. In: Proceedings of the 2014 USENIX Annual

Technical Conference (USENIX ATC’14), pp. 451–462. USE-

NIX (2014)

36. Reitz, M., Wolf, K.: Qcow2—why (not)? In: KVM Forum. The

Linux Foundation (2015)

37. Ribot, F.Z.: QLOOP: Linux driver to mount QCOW2 virtual

disks. PhD thesis (2010)

38. Saxena, M., Swift, M.M., Zhang, Y.: Flashtier: a lightweight,

consistent and durable storage cache. In: Proceedings of the 7th

ACM European Conference on Computer Systems (EuroSys’12),

pp. 267–280. ACM (2012)

39. Shafer, J.: I/O virtualization bottlenecks in cloud computing

today. In: Proceedings of the 2nd Workshop on I/O Virtualization

(WIOV’10), pp. 5–5. USENIX (2010)

40. Tang, C.: FVD: a high-performance virtual machine image for-

mat for cloud. In: Proceedings of the 2011 USENIX Annual

Technical Conference (USENIX ATC’11), pp. 18–18. USENIX

(2011)

41. Van Hensbergen, E., Zhao, M.: Dynamic policy disk caching for

storage networking. IBM technical report RC24123 (2006)

42. VMware: virtual disk format 5.0. https://www.vmware.com/sup

port/developer/vddk/vmdk_50_technote.pdf (2011)

43. VMware: VMware vSphere APIs for I/O filtering (VAIO).

https://storagehub.vmware.com/export_to_pdf/vmware-vsphere-

apis-for-i-o-filtering-vaio (2017)

44. Wu, X., Shao, Z., Jiang, S.: Selfie: co-locating metadata and data

to enable fast virtual block devices. In: Proceedings of the 8th

International Systems and Storage Conference (SYSTOR’15),

p. 2. ACM (2015)

45. Yang, J., Plasson, N., Gillis, G., Talagala, N.: HEC: improving

endurance of high performance flash-based cache devices. In:

Proceedings of the 6th International Systems and Storage Con-

ference (SYSTOR’13), p. 10. ACM (2013)

Jianyu Fu is a Ph.D. candidate in

the School of Computer at

National University of Defense

Technology, China. He received

the B.S. degree in Software

Engineering from Nankai

University, China in 2013, and

the M.S. degree in Computer

Science from National Univer-

sity of Defense Technology,

China in 2015. His research

interests include storage sys-

tems and cloud computing.

Youyou Lu is an assistant pro-

fessor in the Department of

Computer Science and Tech-

nology at Tsinghua University,

China. His current research

interests include storage sys-

tems, distributed systems and

computer architecture. He

received the B.S. degree in

Computer Science from Nanjing

University, China in 2009, and

the Ph.D. degree in Computer

Science from Tsinghua Univer-

sity, China in 2015. He is a

Member of the IEEE.

Jiwu Shu received the Ph.D.

degree in Computer Science

from Nanjing University, China

in 1998, and finished the post-

doctoral position research at

Tsinghua University, China in

2000. Since then, he has been

teaching at Tsinghua University.

His current research interests

include distributed (net-

work/cloud/big data) storage

systems, non-volatile memory

systems and technologies, reli-

ability for storage systems, par-

allel and distributed processing

technology. He is a IEEE Fellow.

638 Cluster Computing (2020) 23:623–639

123

https://github.com/filebench/filebench
https://github.com/filebench/filebench
https://people.gnome.org/%7emarkmc/qcow-image-format.html
https://people.gnome.org/%7emarkmc/qcow-image-format.html
https://www.microsoft.com/en-us/download/details.aspx?id=34750
https://www.microsoft.com/en-us/download/details.aspx?id=34750
https://www.vmware.com/support/developer/vddk/vmdk_50_technote.pdf
https://www.vmware.com/support/developer/vddk/vmdk_50_technote.pdf
https://storagehub.vmware.com/export_to_pdf/vmware-vsphere-apis-for-i-o-filtering-vaio
https://storagehub.vmware.com/export_to_pdf/vmware-vsphere-apis-for-i-o-filtering-vaio

Guangming Liu received the

B.S. and M.S. degrees in Com-

puter Science from National

University of Defense Technol-

ogy, China in 1980 and 1986

respectively. He is now a pro-

fessor in the School of Com-

puter at National University of

Defense Technology. His

research interests include high

performance computing, mas-

sive storage, and cloud

computing.

Ming Zhao received the B.S. and

M.S. degrees in Automation/

Pattern Recognition and Intelli-

gent Systems from Tsinghua

University, China in 1999 and

2001 respectively, and the Ph.D.

degree in Electrical and Com-

puter Engineering from the

University of Florida, USA in

2008. He is now an associate

professor in the School of

Computing, Informatics, and

Decision Systems Engineering

at Arizona State University,

USA. His research interests

include distributed/cloud computing, high-performance computing,

virtualization, storage systems, and operating systems.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Cluster Computing (2020) 23:623–639 639

123

	COWCache: effective flash caching for Copy-on-Write virtual disks
	Abstract
	Introduction
	Background and motivation
	COW-based virtual disks
	Basics
	I/O pattern change
	Cluster granularity

	Host-side flash caching layers
	COW caching challenges
	Metadata inefficiency
	Copy-on-Write amplification

	Design
	COW-aware caching architecture
	Fine-grained metadata caching and journaling
	Metadata I/O flow
	Advantages

	Decoupled Copy-on-Write
	Caching I/O flow
	Consistency analysis
	Consistent cache writeback
	Recovery

	Implementation
	Virtual cache map
	COW awareness
	Flash cache organization

	Evaluation
	Experimental setup
	Micro-benchmark evaluation
	Fine-grained metadata caching and journaling
	Decoupled Copy-on-Write
	Impact of COW ratio

	Application evaluation
	Workloads
	Impact of snapshot frequency
	Impact of flash cache size
	Overhead

	Related work
	Caching layers
	Cache allocation and admission
	Cache writeback policies

	Conclusions
	Acknowledgements
	References

