Skip to main content

Advertisement

Log in

A predictive model for the identification of learning styles in MOOC environments

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Massive online open course (MOOC) platform generates a large amount of data, which provides many opportunities for studying the behaviors of learners. In parallel, recent advancements in machine learning techniques and big data analysis have created new opportunities for a better understanding of how learners behave and learn in environments known for their massiveness and openness. The work is about predicting learners’ learning styles based on their learning traces. The Felder Silverman learning style model (FSLSM) is adopted since it is one of the most commonly used models in technology-enhanced learning. In order to attend our objective, we analyzed data collected from the edX course “statistical learning” (session Winter 2015 and Winter 2016), administered via Stanford’s Logunita platform. The results show that decision tree performs best for all 3 dimensions, with an accuracy of higher than 98% and a reduced risk of overfitting the training data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kloft, M., Stiehler, F., Zheng, Z., Pinkwart, N.: Predicting mooc dropout over weeks using machine learning methods. In: Proceedings of the EMNLP 2014 Workshop on Analysis of Large Scale Social Interaction in MOOCs, pp. 60–65 (2014)

  2. Papathoma, T., Blake, C., Clow, D., Scanlon, E.: Investigating learners’ views of assessment types in Massive Open Online Courses (MOOCs). In: Design for Teaching and Learning in a Networked World, pp. 617–621. Springer (2015)

  3. Bakki, A., Oubahssi, L., George, S., Cherkaoui, C.: A Model to assist pedagogical scenario building process in cMOOCs. In: 2017 IEEE 17th International Conference on Advanced Learning Technologies (ICALT), pp. 5–7. IEEE (2017)

  4. Guàrdia, L., Maina, M., Sangrà, A.: Mooc design principles: a pedagogical approach from the learner’s perspective. eLearning Papers (2013)

  5. Mackness, J., Mak, S., Williams, R.: The ideals and reality of participating in a mooc. In: Proceedings of the 7th international Conference on Networked Learning 2010. University of Lancaster (2010)

  6. Cisel, M.: MOOC: ce que les taux d’abandon signifient | La révolution MOOC (2013)

  7. Onah, D.F.O., Sinclair, J., Boyatt, R.: Dropout rates of massive open online courses: behavioural patterns. EDULEARN14 proceedings 1, 5825–5834 (2014)

    Google Scholar 

  8. Nordin, N., Norman, H., Embi, M.A.: Technology acceptance of massive open online courses in malaysia. Malaysian J. Dist. Educ., 17(2), (2015)

  9. Coffield, F., Moseley, D., Hall, E., Ecclestone, K., et al.: Learning styles and pedagogy in post-16 learning: asystematic and critical review. Learning and Skills Research Centre London (2004). http://www.voced.edu.au/content/ngv:13692

  10. Felder, R.M., Silverman, L.K.: Learning and teaching styles in engineering education. Eng. Educ. 78(7), 674–681 (1988)

    Google Scholar 

  11. Graf, S., Liu, T.-C.: Supporting teachers in identifying students’ learning styles in learning management systems: an automatic student modelling approach. J. Educ. Technol. Soc. 12(4), 3 (2009)

    Google Scholar 

  12. Bernard, J., Chang, T.-W., Popescu, E., Graf, S.: Learning style Identifier: improving the precision of learning style identification through computational intelligence algorithms. Expert Syst. Appl. 75, 94–108 (2017)

    Article  Google Scholar 

  13. Kuljis, J., Liu, F.: A comparison of learning style theories on the suitability for elearning. Web Technol., Appl., and Serv. 191–197, 2005 (2005)

    Google Scholar 

  14. Li, C., Zhou, H.: Enhancing the efficiency of massive online learning by integrating intelligent analysis into moocs with an application to education of sustainability. Sustainability 10(2), 468 (2018)

    Article  Google Scholar 

  15. Graf, S., Kinshuk, L.T.C.: Identifying learning styles in learning management systems by using indications from students’ behaviour. In: 2008 Eighth IEEE International Conference on Advanced Learning Technologies, pp. 482–486 (2008). https://doi.org/10.1109/ICALT.2008.84

  16. Blagojević, M., Milosević, M.: Collaboration and learning styles in pure online courses: an action research. J. Univ. Comput. Sci. 19(7), 984–1002 (2013)

    Google Scholar 

  17. Chatti, M.A., Lukarov, V., Thüs, H., Muslim, A., Yousef, A.M.F., Wahid, U., Greven, C., Chakrabarti, A., Schroeder, U.: Learning analytics: challenges and future research directions. eleed, 10(1) (2014)

  18. Keefe, J.W.: Learning style: an overview. Stud. Llearn. Styles: Diagn. Prescrib. Prog. 1, 1–17 (1979)

    Google Scholar 

  19. Felder, R.M.: Matters of style. ASEE Prism 6(4), 18–23 (1996)

    Google Scholar 

  20. Oxford, R.L.: Language learning styles and strategies: concepts and relationships. IRAL 41(4), 271–278 (2003). https://doi.org/10.1515/iral.2003.012

    Article  Google Scholar 

  21. Pashler, H., McDaniel, M., Rohrer, D., Bjork, R.: Learning styles: Concepts and evidence. Psychol. Sci. Public Interest 9(3), 105–119 (2008)

    Article  Google Scholar 

  22. Zaric, N., Roepke, R., Schroeder, U.: concept for linking learning analytics and learning styles in e-learning environments

  23. Graf, S., Kinshuk, K.: Providing adaptive courses in learning management systems with respect to learning styles. In: E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education, pp. 2576–2583. Association for the Advancement of Computing in Education (AACE) (2007)

  24. Carver, C.A., Howard, R.A., Lane, W.D.: Enhancing student learning through hypermedia courseware and incorporation of student learning styles. IEEE Trans. Educ. 42(1), 33–38 (1999). https://doi.org/10.1109/13.746332

    Article  Google Scholar 

  25. Felder, R.M., Spurlin, J.: Applications, reliability and validity of the index of learning styles. Int. J. Eng. Educ. 21(1), 103–112 (2005)

    Google Scholar 

  26. Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Modeling User-Adapted Interaction, 6(2-3), 87–129, (July 1996). ISSN 0924-1868, 1573–1391. https://doi.org/10.1007/BF00143964

  27. García, Patricio, Amandi, Analía, Schiaffino, Silvia, Campo, Marcelo: Evaluating Bayesian networks’ precision for detecting students’ learning styles. Comput. Educ. 49(3), 794–808 (2007a)

    Article  Google Scholar 

  28. Villaverde, J.E., Godoy, D., Amandi, A.: Learning styles’ recognition in e-learning environments with feed-forward neural networks. J. Comput. Assist. Learn. 22(3), 197–206 (2006)

    Article  Google Scholar 

  29. Özpolat, E., Akar, G.B.: Automatic detection of learning styles for an e-learning system. Comput. Educ. 53(2), 355–367 (2009)

    Article  Google Scholar 

  30. Feldman, J., Monteserin, A., Amandi, A.: Detecting students’ perception style by using games. Comput. Educ. 71, 14–22 (2014)

    Article  Google Scholar 

  31. Dorça, F.A., Lima, L.V., Fernandes, M.A., Lopes, C.R.: Comparing strategies for modeling students learning styles through reinforcement learning in adaptive and intelligent educational systems: an experimental analysis. Expert Syst. Appl. 40(6), 2092–2101 (2013)

    Article  Google Scholar 

  32. Durand, G., Laplante, F., Kop, R.: A learning design recommendation system based on markov decision processes. In: KDD-2011: 17th ACM SIGKDD conference on knowledge discovery and data mining (2011)

  33. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surveys (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  34. Liu, F.T., Ting, K.M., Zhou, Zhi-Hua: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pages 413 – 422. IEEE, (2008)

  35. Uddin, M.T., Uddiny, M.A.: A guided random forest based feature selection approach for activity recognition. In: 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), pp. 1–6. IEEE (2015)

  36. Cooley, R., Mobasher, B., Srivastava, J.: Data preparation for mining world wide web browsing patterns. Knowled. Inf. Syst. 1(1), 5–32 (1999)

    Article  Google Scholar 

  37. Singh, B.K., Verma, K., Thoke, AS: Investigations on impact of feature normalization techniques on classifier’s performance in breast tumor classification. Int. J. Comput. Appl., 116 (19) (2015)

  38. García, P., Amandi, A., Schiaffino, S., Campo, M.: Evaluating Bayesian networks’ precision for detecting students’ learning styles. Comput. Educ. 49(3), 794–808 (2007b)

    Article  Google Scholar 

  39. Graf, S., Kinshuk, Zhang, Q., Maguire, P., Shtern, V.: Facilitating learning through dynamic student modelling of learning styles. In: Towards Learning and Instruction in Web 3.0, pp. 3–16. Springer, New York (2012)

  40. Latham, A., Crockett, K., McLean, D., Edmonds, B.: A conversational intelligent tutoring system to automatically predict learning styles. Comput. Educ. 59(1), 95–109 (2012). https://doi.org/10.1016/j.compedu.2011.11.001

    Article  Google Scholar 

  41. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  42. Brown, R.D., Martin, Y.C.: Use of structure- activity data to compare structure-based clustering methods and descriptors for use in compound selection. J. Chem. Inf. Comput. Sci. 36(3), 572–584 (1996)

    Article  Google Scholar 

  43. El Aissaoui, O., El Madani, Y.A., Oughdir, L., El Allioui, Y.: A fuzzy classification approach for learning style prediction based on web mining technique in e-learning environments. Education and Information Technologies, pp. 1–17 (2018)

  44. Kolekar, S.V., Pai, R.M., Manohara Pai, M.M.: Prediction of learner’s profile based on learning styles in adaptive e-learning system. Int. J. Emerg. Technol. Learn. (iJET) 12(06), 31–51 (2017)

    Article  Google Scholar 

  45. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

    MATH  Google Scholar 

  46. Khan, F.: An initial seed selection algorithm for k-means clustering of georeferenced data to improve replicability of cluster assignments for mapping application. Appl. Soft Comput. 12(11), 3698–3700 (2012)

    Article  Google Scholar 

  47. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. In: Proceedings of the Eighteenth annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035. Society for Industrial and Applied Mathematics (2007)

  48. Ketchen, D.J., Shook, C.L.: The application of cluster analysis in strategic management research: an analysis and critique. Strat. Manage. J. 17(6), 441–458 (1996)

    Article  Google Scholar 

  49. Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J.: Understanding of internal clustering validation measures. In: 2010 IEEE International Conference on Data Mining, pp. 911–916. IEEE (2010)

  50. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-Theory Methods 3(1), 1–27 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  51. Chen, G., Jaradat, S.A., Banerjee, N., Tanaka, T.S., Ko, M.S.H., Zhang, M.Q.: Evaluation and comparison of clustering algorithms in analyzing es cell gene expression data. Stat. Sin., pp. 241–262 (2002)

  52. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  53. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology. IEEE Trans. Syst., Man, Cybernet. 21(3), 660–674 (1991)

    Article  MathSciNet  Google Scholar 

  54. Song, Y.-Y., Ying, L.U.: Decision tree methods: applications for classification and prediction. Shanghai Arch. Psychiatry 27(2), 130 (2015)

    Google Scholar 

  55. Breiman, L.: Random forests. Mach. Learn.g 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  56. Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M., Rigol-Sanchez, J.P.: An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogram. Remote Sens. 67, 93–104 (2012)

    Article  Google Scholar 

  57. De’Ath, G.: Boosted trees for ecological modeling and prediction. Ecology 88(1), 243–251 (2007)

    Article  Google Scholar 

  58. Liyanage, M., Prabhani Pitigala, K.S.,Gunawardena, L., Hirakawa, M.: Detecting learning styles in learning management systems using data mining. J. Inf. Process. 24(4), 740–749 (2016)

    Article  Google Scholar 

  59. Murphy, P.M.: Uci repository of machine learning databases [machine-readable data repository]. Technical report, Department of Information and Computer Science, University of California (1992)

  60. Haixiang, G., Yijing, L., Jennifer Shang, G., Mingyun, H.Y., Bing, G.: Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73, 220–239 (2017)

    Article  Google Scholar 

  61. Chang, Y.-C., Kao, W.-Y., Chu, C.-P., Chiu, C.-H.: A learning style classification mechanism for e-learning. Comput. Educ. 53(2), 273–285 (2009)

    Article  Google Scholar 

  62. Fausett, L.V., et al.: Fundamentals of Neural Networks: Architectures, Algorithms, and Applications, vol 3. Prentice-Hall Englewood Cliffs (1994)

  63. van Rijn, J.N., Abdulrahman, S.M., Brazdil, P., Vanschoren, J.: Fast algorithm selection using learning curves. In: International Symposium on Intelligent Data Analysis, pp. 298–309. Springer (2015)

  64. Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, f-score and roc: a family of discriminant measures for performance evaluation. In: Australasian Joint Conference on Artificial Intelligence, pp. 1015–1021. Springer (2006)

Download references

Acknowledgements

The authors are grateful to CAROL (the center for advanced research through online learning), university of Stanford, for providing the Dataset necessary for accomplishing this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahim Hmedna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Comparison of features related to some data-driven study

 

LS

Features

Study

[28]

[40]

[38]

[39]

Processing dimension

Active

Selfass_visit

   

*

Self_twice_wrong

   

*

Exercise_visit

*

 

*

*

Exercise_stay

*

 

*

*

Forum_post

*

*

*

*

Nbr of discourse interactions

 

*

  

Right answer after seeing a movie

 

*

  

Score for practical questions

 

*

  

Write_msg_chat

*

 

*

 

Use_mail

  

*

 

Reflective

Content_visit

   

*

Content_stay

   

*

Outline_stay

   

*

Example_stay

*

 

*

*

Selfass_stay

*

 

*

*

Quiz_stay_results

  

*

*

Forum_visit

  

*

*

Nbr of discourse interactions

 

*

  

Nbr of questions asked

 

*

  

Score for theoretical questions

 

*

  

Listens_chat

  

*

 

Input dimension

Visual

Ques_graphics

   

*

Right answer after seeing an image

 

*

  

Right answer after seeing a movie

 

*

  

Verbal

Content_visit

   

*

Ques_text

   

*

Forum_visit

   

*

Forum_stay

 

*

 

*

Forum_post

   

*

Nbr of discourse interactions

 

*

 

*

Nbr of questions asked

 

*

  

Right answer after seeing a movie

 

*

  

Understanding dimension

Sequential

Ques_detail

   

*

Guided to solve a problem

 

*

  

Navigation_step_by_step

*

 

*

 

Exam_res_high

  

*

 

Global

Outline_visit

   

*

Outline_stay

   

*

Ques_overview

   

*

Ques_interpret

   

*

Ques_develop

   

*

Navigation_skip

*

 

*

*

Navigation_overview_visit

   

*

Navigation_overview_stay

   

*

Solve a problem straight away

 

*

  

Appendix 2: Elbow curves

See Fig. 14.

Fig. 14
figure 14

Elbow curves plotted from the clustering results of the “Winter 2016” session: a active; b reflective; c visual; d verbal; e sequential; and f global learning styles

Appendix 3: Clustering results

See Tables 12, 13, 14, 15, 16 and 17.

Table 12 Active learning style
Table 13 Reflective learning style
Table 14 Visual learning style
Table 15 Verbal learning style
Table 16 Sequential learning style
Table 17 Global learning style

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hmedna, B., El Mezouary, A. & Baz, O. A predictive model for the identification of learning styles in MOOC environments. Cluster Comput 23, 1303–1328 (2020). https://doi.org/10.1007/s10586-019-02992-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-019-02992-4

Keywords

Navigation