Skip to main content
Log in

A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Efficient task scheduling is considered as one of the main critical challenges in cloud computing. Task scheduling is an NP-complete problem, so finding the best solution is challenging, particularly for large task sizes. In the cloud computing environment, several tasks may need to be efficiently scheduled on various virtual machines by minimizing makespan and simultaneously maximizing resource utilization. We present a novel hybrid antlion optimization algorithm with elite-based differential evolution for solving multi-objective task scheduling problems in cloud computing environments. In the proposed method, which we refer to as MALO, the multi-objective nature of the problem derives from the need to simultaneously minimize makespan while maximizing resource utilization. The antlion optimization algorithm was enhanced by utilizing elite-based differential evolution as a local search technique to improve its exploitation ability and to avoid getting trapped in local optima. Two experimental series were conducted on synthetic and real trace datasets using the CloudSim tool kit. The results revealed that MALO outperformed other well-known optimization algorithms. MALO converged faster than the other approaches for larger search spaces, making it suitable for large scheduling problems. Finally, the results were analyzed using statistical t-tests, which showed that MALO obtained a significant improvement in the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kumar, M., Sharma, S., Goel, A., Singh, S.: A comprehensive survey for scheduling techniques in cloud computing. J. Netw. Comput. Appl. (2019). https://doi.org/10.1016/j.jnca.2019.06.006

    Article  Google Scholar 

  2. Natesan, G., Chokkalingam, A.: An improved grey wolf optimization algorithm based task scheduling in cloud computing environment. Int. Arab J. Inf. Technol. 17(1), 73–81 (2017)

    Google Scholar 

  3. Abdullahi, M., Ngadi, M.A., Dishing, S.I., Ahmad, B.I., et al.: An efficient symbiotic organisms search algorithm with chaotic optimization strategy for multi-objective task scheduling problems in cloud computing environment. J. Netw. Comput. Appl. 133, 60–74 (2019)

    Article  Google Scholar 

  4. Mohammadi, A., Rezvani, M.H.: A novel optimized approach for resource reservation in cloud computing using producer-consumer theory of microeconomics. J. Supercomput. 75, 7391–7425 (2019)

    Article  Google Scholar 

  5. Geng, X., Yu, L., Bao, J., Fu, G.: A task scheduling algorithm based on priority list and task duplication in cloud computing environment. Web Intell. 17, 121–129 (2019)

    Article  Google Scholar 

  6. Beegom, A.A., Rajasree, M.: Integer-pso: a discrete pso algorithm for task scheduling in cloud computing systems. Evol. Intell. 12, 227–239 (2019)

    Article  Google Scholar 

  7. Abualigah, L.M., Khader, A.T., Hanandeh, E.S.: A new feature selection method to improve the document clustering using particle swarm optimization algorithm. J. Comput. Sci. 25, 456–466 (2018a)

    Article  Google Scholar 

  8. Abualigah, L.M., Khader, A.T., Hanandeh, E.S.: Hybrid clustering analysis using improved krill herd algorithm. Appl. Intell. 48, 4047–4071 (2018b)

    Article  Google Scholar 

  9. Shehab, M., Daoud, M.S., AlMimi, H.M., Abualigah, L.M., Khader, A.T.: Hybridising cuckoo search algorithm for extracting the odf maxima in spherical harmonic representation. Int. J. Bio-Inspir. Comput. 14, 190–199 (2019)

    Article  Google Scholar 

  10. Rodrigues, L.R., Gomes, J.P.P.: Tlbo with variable weights applied to shop scheduling problems. CAAI Trans. Intell. Technol. 4, 148–158 (2019)

    Article  Google Scholar 

  11. Gaurav, D., Tiwari, S.M., Goyal, A., Gandhi, N., Abraham, A.: Machine intelligence-based algorithms for spam filtering on document labeling. Soft Comput. (2019). https://doi.org/10.1007/s00500-019-04473-7

    Article  Google Scholar 

  12. Mishra, S., Sagban, R., Yakoob, A., Gandhi, N.: Swarm intelligence in anomaly detection systems: an overview. J. Comput. Appl, Int (2018). https://doi.org/10.1080/1206212X.2018.1521895

    Book  Google Scholar 

  13. Abualigah, L.M., Khader, A.T.: Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering. J. Supercomput. 73, 4773–4795 (2017)

    Article  Google Scholar 

  14. Abualigah, L.M., Khader, A.T., Hanandeh, E.S.: A combination of objective functions and hybrid krill herd algorithm for text document clustering analysis. Eng. Appl. Artif. Intell. 73, 111–125 (2018)

    Article  Google Scholar 

  15. Abualigah, L.M., Khader, A.T., Hanandeh, E.S., Gandomi, A.H.: A novel hybridization strategy for krill herd algorithm applied to clustering techniques. Appl. Soft Comput. 60, 423–435 (2017)

    Article  Google Scholar 

  16. Shehab, M., Abualigah, L., AlHamad, H., Alabool, H., Alshinwan, M., Khasawneh, A.M.: Moth-flame optimization algorithm: variants and applications. Neural Comput. Appl. (2019). https://doi.org/10.1007/s00521-019-04570-6

    Article  Google Scholar 

  17. Abualigah, L.M.Q., Hanandeh, E.S.: Applying genetic algorithms to information retrieval using vector space model. Int. J. Comput. Sci. Eng. Appl. 5, 19 (2015)

    Google Scholar 

  18. Zheng, Y.-J., Xu, X.-L., Ling, H.-F., Chen, S.-Y.: A hybrid fireworks optimization method with differential evolution operators. Neurocomputing 148, 75–82 (2015)

    Article  Google Scholar 

  19. Yazdi, J., Choi, Y.H., Kim, J.H.: Non-dominated sorting harmony search differential evolution (ns-hs-de): a hybrid algorithm for multi-objective design of water distribution networks. Water 9, 587 (2017)

    Article  Google Scholar 

  20. Li, Y., Li, X., Li, Z.: Reactive power optimization using hybrid cabc-de algorithm. Electr. Power Compon. Syst. 45, 980–989 (2017)

    Article  Google Scholar 

  21. Zhang, L., Liu, L., Yang, X.-S., Dai, Y.: A novel hybrid firefly algorithm for global optimization. PLoS ONE 11, e0163230 (2016)

    Article  Google Scholar 

  22. Kumar, K.P., Kousalya, K.: Amelioration of task scheduling in cloud computing using crow search algorithm. Neural Comput. Appl. (2019). https://doi.org/10.1007/s00521-019-04067-2

    Article  Google Scholar 

  23. Matos, J.G.D., Marques, C.K.D.M., Liberalino, C.H.: Genetic and static algorithm for task scheduling in cloud computing. Int. J. Cloud Comput. 8, 1–19 (2019)

    Article  Google Scholar 

  24. Thanka, M.R., Maheswari, P.U., Edwin, E.B.: A hybrid algorithm for efficient task scheduling in cloud computing environment. Int. J. Reason. Based Intell. Syst. 11, 134–140 (2019)

    Google Scholar 

  25. Abualigah, L.M.Q.: Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering. Springer, Berlin (2019)

    Book  Google Scholar 

  26. Domingo, M., Thibaud, R., Claramunt, C.: A graph-based approach for the structural analysis of road and building layouts. Geo-spatial Inf. Sci. 22, 59–72 (2019)

    Article  Google Scholar 

  27. Kashikolaei, S.M.G., Hosseinabadi, A.A.R., Saemi, B., Shareh, M.B., Sangaiah, A.K., Bian, G.-B.: An enhancement of task scheduling in cloud computing based on imperialist competitive algorithm and firefly algorithm. J. Supercomput 1, 28 (2019). https://doi.org/10.1007/s11227-019-02816-7

    Article  Google Scholar 

  28. Mapetu, J.P.B., Chen, Z., Kong, L.: Low-time complexity and low-cost binary particle swarm optimization algorithm for task scheduling and load balancing in cloud computing. Appl. Intell. 49, 3308–3330 (2019)

    Article  Google Scholar 

  29. Zhou, Z., Chang, J., Hu, Z., Yu, J., Li, F.: A modified pso algorithm for task scheduling optimization in cloud computing. Concurr. Comput. 30, e4970 (2018)

    Article  Google Scholar 

  30. Yassa, S., Chelouah, R., Kadima, H., Granado, B.: Multi-objective approach for energy-aware workflow scheduling in cloud computing environments. Sci. World J. (2013). https://doi.org/10.1155/2013/350934

    Article  MATH  Google Scholar 

  31. Alla, H.B., Alla, S.B., Ezzati, A., Mouhsen, A.: A novel architecture with dynamic queues based on fuzzy logic and particle swarm optimization algorithm for task scheduling in cloud computing. In: International Symposium on Ubiquitous Networking, Springer, pp. 205–217 (2016)

  32. Agarwal, M., Srivastava, G.M.S.: A PSO algorithm-based task scheduling in cloud computing. In: Soft Computing: Theories and Applications. Springer, pp. 295–301 (2019)

  33. Abdullahi, M., Ngadi, M.A., et al.: Symbiotic organism search optimization based task scheduling in cloud computing environment. Future Gener. Comput. Syst. 56, 640–650 (2016)

    Article  Google Scholar 

  34. Elaziz, M.A., Xiong, S., Jayasena, K., Li, L.: Task scheduling in cloud computing based on hybrid moth search algorithm and differential evolution. Knowl.-Based Syst. 169, 39–52 (2019)

    Article  Google Scholar 

  35. Zuo, L., Shu, L., Dong, S., Zhu, C., Hara, T.: A multi-objective optimization scheduling method based on the ant colony algorithm in cloud computing. IEEE Access 3, 2687–2699 (2015)

    Article  Google Scholar 

  36. Moon, Y., Yu, H., Gil, J.-M., Lim, J.: A slave ants based ant colony optimization algorithm for task scheduling in cloud computing environments. Hum.-Centric Comput. Inf. Sci. 7, 28 (2017)

    Article  Google Scholar 

  37. Agarwal, M., Srivastava, G.M.S.: Genetic algorithm-enabled particle swarm optimization (PSOGA)-based task scheduling in cloud computing environment. Int. J. Inf. Technol. Decis. Mak. 17, 1237–1267 (2018)

    Article  Google Scholar 

  38. Nzanywayingoma, F., Yang, Y.: Analysis of particle swarm optimization and genetic algorithm based on task scheduling in cloud computing environment. Int. J. Adv. Comput. Sci. Appl. 8, 19–25 (2017)

    Google Scholar 

  39. Zheng, X.-L., Wang, L.: A pareto based fruit fly optimization algorithm for task scheduling and resource allocation in cloud computing environment. In: IEEE Congress on Evolutionary Computation (CEC). IEEE 2016, pp. 3393–3400 (2016)

  40. Mansouri, N., Javidi, M.: Cost-based job scheduling strategy in cloud computing environments. Distrib. Parallel Databases (2016). https://doi.org/10.1007/s10619-019-07273-y

    Article  Google Scholar 

  41. Abdullahi, M., Dishing, S.I., Usman, M.J., et al.: Variable neighborhood search-based symbiotic organisms search algorithm for energy-efficient scheduling of virtual machine in cloud data center. In: Advances on Computational Intelligence in Energy, Springer, pp. 77–97 (2019)

  42. Taherian Dehkordi, S., Khatibi Bardsiri, V.: Optimization task scheduling algorithm in cloud computing. J. Adv. Comput. Eng. Technol. 1, 17–22 (2015)

    Google Scholar 

  43. Saxena, D., Chauhan, R., Kait, R.: Dynamic fair priority optimization task scheduling algorithm in cloud computing: concepts and implementations. Int. J. Comput. Netw. Inf. Secur. 8, 41 (2016)

    Google Scholar 

  44. Rani, E., Kaur, H.: Efficient load balancing task scheduling in cloud computing using raven roosting optimization algorithm. Int. J. Adv. Res. Comput. Sci 8, 2419–2424 (2017)

    Google Scholar 

  45. Alazzam, H., Alhenawi, E., Al-Sayyed, R.: A hybrid job scheduling algorithm based on tabu and harmony search algorithms. J. Supercomput. 75, 7994–8011 (2019)

    Article  Google Scholar 

  46. Valarmathi, R., Sheela, T.: Ranging and tuning based particle swarm optimization with bat algorithm for task scheduling in cloud computing. Clust. Comput. 22, 11975–11988 (2017)

    Article  Google Scholar 

  47. Gawali, M.B., Shinde, S.K.: Standard deviation based modified cuckoo optimization algorithm for task scheduling to efficient resource allocation in cloud computing. J. Adv. Inf. Technol (2017). https://doi.org/10.12720/jait.8.4.210-218

    Article  Google Scholar 

  48. Sundarrajan, R., Vasudevan, V.: An optimization algorithm for task scheduling in cloud computing based on multi-purpose cuckoo seek algorithm. In: International Conference on Theoretical Computer Science and Discrete Mathematics, Springer, pp. 415–424 (2016)

  49. Dai, Y., Lou, Y., Lu, X.: A task scheduling algorithm based on genetic algorithm and ant colony optimization algorithm with multi-qos constraints in cloud computing. In: 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, vol. 2, pp. 428–431. IEEE (2015)

  50. Abubakar, A., Yahaya, A.: Task scheduling in cloud computing environment using particle swarm optimization algorithm. Niger. J. Sci. Res. 14, 106 (2015)

    Google Scholar 

  51. Liu, Y., Shu, W., Zhang, C.: A parallel task scheduling optimization algorithm based on clonal operator in green cloud computing. J. Commun. 11, 185–191 (2016)

    Google Scholar 

  52. Varshney, S., Singh, S.: An optimal bi-objective particle swarm optimization algorithm for task scheduling in cloud computing. In: 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), IEEE, pp. 780–784 (2018)

  53. An, J.H., Lim, C.H., Cho, Y.C., Lee, C.S.: Early recovery process and restoration planning of burned pine forests in central eastern korea. J. For. Res. 30, 243–255 (2019)

    Article  Google Scholar 

  54. Saranu, K., Jaganathan, S.: Intensified scheduling algorithm for virtual machine tasks in cloud computing. In: Suresh, L., Dash, S., Panigrahi, B. (eds.) Artificial Intelligence and Evolutionary Algorithms in Engineering Systems, pp. 283–290. Springer, Berlin (2015)

    Chapter  Google Scholar 

  55. Al-Rahayfeh, A., Atiewi, S., Abuhussein, A., Almiani, M.: Novel approach to task scheduling and load balancing using the dominant sequence clustering and mean shift clustering algorithms. Future Internet 11, 109 (2019)

    Article  Google Scholar 

  56. Abdi, S., Motamedi, S.A., Sharifian, S.: Task scheduling using modified pso algorithm in cloud computing environment. In: International conference on machine learning, electrical and mechanical engineering, pp. 8–9 (2014)

  57. Li, Y., Wang, S., Hong, X., Li, Y.: Multi-objective task scheduling optimization in cloud computing based on genetic algorithm and differential evolution algorithm. In: 2018 37th Chinese Control Conference (CCC), IEEE, pp. 4489–4494 (2018)

  58. Masadeh, R., Sharieh, A., Mahafzah, B.: Humpback whale optimization algorithm based on vocal behavior for task scheduling in cloud computing. Int. J. Adv. Sci. Technol. 13, 121–140 (2019)

    Google Scholar 

  59. Luo, F., Yuan, Y., Ding, W., Lu, H.: An improved particle swarm optimization algorithm based on adaptive weight for task scheduling in cloud computing, in: Proceedings of the 2nd International Conference on Computer Science and Application Engineering, ACM, p. 142 (2018)

  60. Reddy, G.N., Kumar, S.P.: Modified ant colony optimization algorithm for task scheduling in cloud computing systems. In: Satapathy, S., Bhateja, V., Das, S. (eds.) Smart Intelligent Computing and Applications, pp. 357–365. Springer, Berlin (2019)

    Chapter  Google Scholar 

  61. Demiroz, B., Topcuoglu, H.R.: Static task scheduling with a unified objective on time and resource domains. Comput. J. 49, 731–743 (2006)

    Article  Google Scholar 

  62. Loo, S.M., Wells, B.E.: Task scheduling in a finite-resource, reconfigurable hardware/software codesign environment. INFORMS J. Comput. 18, 151–172 (2006)

    Article  MATH  Google Scholar 

  63. Rahul, M.: An efficient multi-objective genetic algorithm for optimization of task scheduling in cloud computing. Asian J. Technol. Manag. Res. [ISSN: 2249–0892] (2016)

  64. Zhang, F., Cao, J., Li, K., Khan, S.U., Hwang, K.: Multi-objective scheduling of many tasks in cloud platforms. Future Gener. Comput. Syst. 37, 309–320 (2014)

    Article  Google Scholar 

  65. Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)

    Article  Google Scholar 

  66. Cuevas, E., Echavarría, A., Ramírez-Ortegón, M.A.: An optimization algorithm inspired by the states of matter that improves the balance between exploration and exploitation. Appl. Intell. 40, 256–272 (2014)

    Article  Google Scholar 

  67. Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: Gonzalez, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) Nature Inspired Cooperative Strategies for Optimization, pp. 65–74. Springer, Berlin (2010)

    Chapter  Google Scholar 

  68. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  69. Yang, X.-S.: Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation, Springer, pp. 240–249 (2012)

  70. Yang, X.-S., Deb, S.: Cuckoo search via lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), IEEE, pp. 210–214 (2009)

  71. Kennedy, J.: Particle swarm optimization. Encyclopedia of machine learning, pp. 760–766 (2010)

  72. Yang, X.-S.: Firefly algorithm, levy flights and global optimization. In: Bramer, M., Ellis, R., Petridis, M. (eds.) Research and Development in Intelligent Systems, vol. 26, pp. 209–218. Springer, Berlin (2010)

    Chapter  Google Scholar 

  73. Hatata, A.Y., Hafez, A.A.: Ant lion optimizer versus particle swarm and artificial immune system for economical and eco-friendly power system operation. Int. Trans. Electr. Energy Syst. 29, e2803 (2019)

    Article  Google Scholar 

  74. Roy, K., Mandal, K.K., Mandal, A.C.: Ant-lion optimizer algorithm and recurrent neural network for energy management of micro grid connected system. Energy 167, 402–416 (2019)

    Article  Google Scholar 

  75. Wang, M., Wu, C., Wang, L., Xiang, D., Huang, X.: A feature selection approach for hyperspectral image based on modified ant lion optimizer. Knowl.-Based Syst. 168, 39–48 (2019)

    Article  Google Scholar 

  76. Storn, R., Price, K.: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  77. Humane, P., Varshapriya, J.: Simulation of cloud infrastructure using cloudsim simulator: A practical approach for researchers. In: 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), IEEE, pp. 207–211 (2015)

  78. Zhang, L., Li, K., Li, C., Li, K.: Bi-objective workflow scheduling of the energy consumption and reliability in heterogeneous computing systems. Inf. Sci. 379, 241–256 (2017)

    Article  Google Scholar 

  79. Zuo, X., Zhang, G., Tan, W.: Self-adaptive learning pso-based deadline constrained task scheduling for hybrid iaas cloud. IEEE Trans. Autom. Sci. Eng. 11, 564–573 (2013)

    Article  Google Scholar 

  80. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  81. Wang, G.-G.: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput. 10, 151–164 (2018)

    Article  Google Scholar 

  82. Feitelson, D.G., Tsafrir, D., Krakov, D.: Experience with using the parallel workloads archive. J. Parallel Distrib. Comput. 74, 2967–2982 (2014)

    Article  Google Scholar 

  83. Meng, J., McCauley, S., Kaplan, F., Leung, V.J., Coskun, A.K.: Simulation and optimization of HPC job allocation for jointly reducing communication and cooling costs. Sustain. Comput. 6, 48–57 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laith Abualigah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abualigah, L., Diabat, A. A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments. Cluster Comput 24, 205–223 (2021). https://doi.org/10.1007/s10586-020-03075-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-020-03075-5

Keywords

Navigation