Skip to main content

Advertisement

Log in

An effective HPSO-MGA optimization algorithm for dynamic resource allocation in cloud environment

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Cloud computing is emerging as an increasingly popular computing paradigm, allowing dynamic scaling of resources available to users as needed. This requires a highly accurate demand prediction and a resource allocation methodology. The existing methodologies for dynamic resource allocation do not provide effective performance isolation between the VM and Artificial Demand Analysis machines since it gets affected by interferences. To overcome these issues, this paper proposes a conceptual model and an effective algorithm to achieve dynamic resource allocation by migrating tasks or requests in VMs. At first, task demands from the multiple users go to the feature extraction process. In feature extraction, features of the user's tasks and cloud server are extracted. Next both features are reduced by using Modified PCA algorithm to reduce the dynamic resource allocation processing time. Finally, both the features are combined and resource allocation is performed using Hybrid Particle Swarm Optimization and Modified Genetic Algorithm (HPSO-MGA). Then the optimized task has been scheduled to particular VM for allocating the resources. The experimental result of the proposed resource allocation methodology indicates better performance when compared with the existing methods Firefly and Krill herd Load Balancing (LB). For 100 VMs the reliability of HPSO-MGA is 0.87 but the exiting krill herd LB and IDSA gives 0.78 and 0.85, which is lower than the proposed one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

VM:

Virtual machine

PCA:

Principal component analysis

HPSO-MGA:

Hybrid particle swarm optimization and modified genetic algorithm

Krill herd (LB):

Krill herd load balancing

VMM:

Virtual machine monitors

DPRA:

Dynamic power-saving resource allocation

PM:

Physical machine

SLA:

Service level-agreement

DBN:

Deep belief networks

OVMAP:

Online incentive-compatible mechanism

PSO:

Particle swarm optimization

MPCA:

Modified PCA

IDSA:

Improved differential search algorithm

References

  1. Kumar, N., Agarwal, S.: An analytical model for dynamic resource allocation framework in cloud environment. Res. J. Recent Sci. 3, 1–6 (2014)

    Article  Google Scholar 

  2. Gawali Anita, D., Sonkar, S.K.: Dynamic resource allocation using virtualization technology in cloud computing. Int. J. Adv. Res. Comput. Eng. Technol. 4, 5 (2015)

    Article  Google Scholar 

  3. Patil, S.S., Bhavani, K.: Dynamic resource allocation using virtual machines for cloud computing environment. IEEE Trans. Parallel Distrib. Syst. 3(6), 2249 (2014)

    Google Scholar 

  4. Kumar, K.P., Kumar, S.A., Jagadeeshan, D.: Effective load balancing for dynamic resource allocation in cloud computing. Int. J. Innov. Res. Comput. Commun. Eng. 2(3), 758–762 (2013)

    Google Scholar 

  5. Gawali, M.B., Shinde, S.K.: Task scheduling and resource allocation in cloud computing using a heuristic approach. J. Cloud Comput. 7(1), 4 (2018)

    Article  Google Scholar 

  6. Xiao, Z., Song, W., Chen, Q.: Dynamic resource allocation using virtual machines for cloud computing environment. IEEE Trans. Parallel Distrib. Syst. 24(6), 1107–1117 (2013)

    Article  Google Scholar 

  7. Rekha, R., Saroha, V.: A review paper on dynamic resource allocation in cloud environment. Int. J. Res. Appl. Sci. Eng. Technol. 5, 5856 (2017)

    Google Scholar 

  8. Verma, M., Gangadharan, G.R., Narendra, N.C., Vadlamani, R., Inamdar, V., Ramachandran, L., Calheiros, R.N., Buyya, R.: Dynamic resource demand prediction and allocation in multi-tenant service clouds. Concurr. Comput. 28(17), 4429–4442 (2016)

    Article  Google Scholar 

  9. Shelke, R., Rajani, R.: Dynamic resource allocation in Cloud Computing. Int. J. Eng. Res. Technol. (IJERT) 2(10), 1–4 (2013)

    Article  Google Scholar 

  10. Alsadie, D., Tari, Z., Alzahrani, E.J., Zomaya, A.Y.: Dynamic resource allocation for an energy efficient vm architecture for cloud computing. In Proceedings of the Australasian Computer Science Week Multiconference, pp. 16. ACM (2018).

  11. Arul Mary, M.A., Jahir Husain, A., Dhasarathan, N.: Dynamic resource allocation to support server consolidation. Int. J. Pure Appl. Math. 119(16), 3759–3762 (2018)

    Google Scholar 

  12. Lavanya, M., Vaithiyanathan, V.: Load prediction algorithm for dynamic resource allocation. Indian J. Sci. Technol. 8, 35 (2015)

    Google Scholar 

  13. Selokar, A., Zade, S.D., Chavan, C.U.: Survey on dynamic resource allocation using virtual machines for cloud computing environment. Int. J. Adv. Res. Comput. Commun. Eng. 3(5), 6449 (2014)

    Google Scholar 

  14. Rohini, A., Sudalai Muthu, T.: Weight-based approach for improving the accuracy of relationship in social network. J. Adv. Res. Dyn. Control Syst. 11(8), 188–192 (2020)

    Google Scholar 

  15. Pandiaraj, S., Sudalai Muthu, T.: Prioritization of replica for replica replacement in data grid. Int. J. Recent Technol. Eng. 7(5), 245–248 (2019)

    Google Scholar 

  16. Natarajan, S., Pugazendi, R.: Survey on dynamic resource allocation techniques in cloud environment. Int. J. Comput. Sci. Mob. Comput. 3(8), 395–403 (2014)

    Google Scholar 

  17. Sudalai Muthu, T., Vadivel, R.: A quantified weight based approach for replica replacement in data grid. In: 5th IEEE International Conference on Parallel, Distributed and Grid Computing (PDGC-2018). IEEE, Solan (2018). ISBN No. 978-1-5386-6026-3/18/$31©2018

  18. Sudalai Muthu, T., Ramesh, A., Vadivel, R., Vasanth, G.: A novel protocol for secure data storage in data grid environment. In: Proceedings of International Conference on Trendz in Information Science and Computing-2010. IEEE (2010). ISBN No : 978-1-4244-9008-0/10/$26.00 ©2010

  19. Chou, L.D., Chen, H.F., Tseng, F.H., Chao, H.C., Chang, Y.J.: DPRA: dynamic power-saving resource allocation for cloud data center using particle swarm optimization. IEEE Syst. J. 12(2), 1554–1565 (2016)

    Article  Google Scholar 

  20. Ma, A., Gao, Y., Huang, L., Zhang, B.: Improved differential search algorithm based dynamic resource allocation approach for cloud application. Neural Comput. Appl. 31(8), 3431–3442 (2017)

    Article  Google Scholar 

  21. Mashayekhy, L., Nejad, M.M., Grosu, D., Vasilakos, A.V.: An online mechanism for resource allocation and pricing in clouds. IEEE Trans. Comput. 65(4), 1172–1184 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Saraswathi, A.T., Rab Kalaashri, Y., Padmavathi, S.: Dynamic resource allocation scheme in cloud computing. Procedia Comput. Sci. 47, 30–36 (2015)

    Article  Google Scholar 

  23. Tseng, F.H., Wang, X., Chou, L.D., Chao, H.C., Leung, V.C.: Dynamic resource prediction and allocation for cloud data center using the multiobjective genetic algorithm. IEEE Syst. J. 12(2), 1688–1699 (2017)

    Article  Google Scholar 

  24. Wang, W., Jiang, Y., Wu, W.: Multiagent-based resource allocation for energy minimization in cloud computing systems. IEEE Trans. Syst. Man Cybern. 47(2), 205–220 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadivel Ramasamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramasamy, V., Thalavai Pillai, S. An effective HPSO-MGA optimization algorithm for dynamic resource allocation in cloud environment. Cluster Comput 23, 1711–1724 (2020). https://doi.org/10.1007/s10586-020-03118-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-020-03118-x

Keywords

Navigation