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Abstract

This paper proposes a new version of the Power of Two Choices, SQ(d), load balancing algorithm that

improves the performance of the classical model based on the power of two choices randomized load

balancing. This model considers jobs that arrive to a dispatcher as a Poisson stream of rate λn, λ < 1,

at a set of n servers. Using the power of two choices, the dispatcher chooses for each job some d

constant independently and uniformly from the n servers in a random way, and sends the job to the

server with the fewest number of jobs. This algorithm offers advantage over the load balancing based

on shortest queue discipline, because it offers a good performance, and reduces the overhead over the

servers and over the communication network. In this paper, we propose a new version, Shortest Queue

of d with Randomization and Round Robin Policies, SQ-RR(d), that combines randomization techniques

and static local balancing based on round robin policy. In this new version the dispatcher chooses the d

servers as follows: one is selected using round robin policy and the d−1 servers are chosen independently

and uniformly in a random way from the n servers. Then, the dispatcher sends the job to the server

with the fewest number of jobs. We demonstrate with a theoretical approximation of this approach, that

this new version improves the performance obtained with the classical solution in all situations, included

systems at 99 percent of capacity. Furthermore, we provide simulations that demonstrate the theoretical

approximation developed.

Keywords: The Power of Two Choices, Load Balancing, Distributed Systems.

1. Introduction

This paper takes as basis the work and results obtained in [21], where the following model, called

Supermarket Model is described: independent jobs arrive as a Poisson stream of rate λn, λ < 1, at a set

of n homogeneous servers. For each job, d servers are chosen. These servers are chosen independently

and uniformly at random with replacement from the n servers for some fixed constant d. The job is sent

to the server with the lowest number of jobs. In case of ties, the server is chosen arbitrarily. Jobs are

served according to the first-in first-out (FIFO) policy, and the service time for each job is exponentially
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Figure 1: System Model.

distributed with mean 1. This algorithm is called The Power of two choices, SQ(d). This algorithm

produces exponentially improved response time over the random algorithm, that chooses the server to

send the job randomly, and reduces the communication overhead of the shortest-queue algorithm (JSQ),

that dispatches jobs to the server with the least number of jobs.

The power of two choices has multiple applications[22]: It can be applied to hashing, in order to reduce

the maximum time required to search a hash table; Another area where this method can be applied is

load balancing with limited information, to dynamically assign tasks to servers, disks, or network servers;

The method can also be applied to low-congestion circuit routing. In [19], the application of the power

of two choices to Bloom filters is described, and it is demonstrated that this method reduces the false

positive probability using the same amount of space and more hashing. SQ(d) has also been used in

storage systems. For example, Dai et al. [7] use the method in a dynamic I/O scheduler for object

storage systems.

Recently the power of two choices has been used in several real-world systems. For example, it has

been used in Apache Storm [23], a distributed realtime stream processing engine, for the streaming

partitioning. It is also used in Spark [24], a fast and general engine for large-scale data processing. Spark

uses the power of two choices to reduce the number of partitions of Resilient Distributed Datasets (RDD).

A RDD is a distributed collection of items that is the core of Sparks’s fault tolerance. The coalescing

operations on RDD are performed by using the power of two choices algorithm.

The main contribution of this paper is to propose a variation of this algorithm that improves the

performance obtained with the classical Power of two Choices algorithm. The new algorithm selects also

d servers, but not in a completely random way. One server is selected in a round robin fashion, and the

other d− 1 servers are selected randomly. Then, the job is sent to the server with the fewest number of

jobs. In the new algorithm, we combine randomization and a static load balancing approach using round

robin selection. We call this algorithm SQ-RR(d) (shortest queue of d with randomization and round

robin). The advantage of this method, as is shown in the Simulation Results Section, is that it reduces

the queue average size, by reducing the probability of choosing a server, recently chosen. This is due to
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the actual arrival process to each server is characterized by a random distribution with a coefficient of

variation less than the coefficient of variation of the actual arrival process to each server in the SQ(d)

algorithm.

The rest of the paper is organized as follows. First, Section 2 analyzes the related work. Section 3

shows a previous analysis of SQ(d) algorithm. Section 4 describes the new algorithm proposed, Shortest

Queue of d with Randomization and Round Robin Policies. Section 5 obtains a theoretical approximation

for the SQ-RR(d) algorithm based on analyzing the potential arrivals process to each server. Section 6

shows some results obtained by simulation, and compares the SQ(d) and SQ-RR(d) algorithms. Finally,

Section 7 summarizes the major conclusions extracted from this work.

2. Related Work

Load balancing is a classical problem in distributed systems, that tries to distribute objects, as for

example jobs or tasks [25], to compute resources in order to maximize the performance. This maximization

is normally focused on optimizing resource usage, maximizing throughput, minimizing response time,

avoiding idle resources, and avoiding overloaded resources. A classical example is the distribution of a

set of tasks or jobs among a set of processors in order to reduce the final completion time. This problem

is specially important in current large scale distributed systems.

Load balancing strategies can be static or dynamic. Static load balancing algorithms do not use state

information to distribute the objects. For example, round robin or random policies are examples of this

kind of algorithms. Dynamic policies use the system state to distribute the objects, in order to react to

the system behavior.

The Join-the-Shortest-Queue (JSQ) policy is a strategy that assigns a new job to the computing

resource with the fewest number of jobs. This policy is known that posses certain optimality properties

[13] [29] [26], [9]. However, it requires time to know the queue length at each server at the arrival of

every job, increasing the communication overhead, and reducing in real systems the effectivity of this

algorithm.

The power of two choices, SQ(d), algorithm uses partial information of the computing resources load,

reducing the amount of information to be retrieved. This randomized load balancing algorithm has been

studied theoretically in several works [28] [21] [8] [18]. These studies show that SQ(d) algorithm produces

exponentially improved response time over the random algorithm. Furthermore, the communication

overhead is greatly reduced over the JSQ model. Vvedenskaya [28] found that, for d ≥ 2, as the number

of queues n goes to infinity, the limiting probability that the number of jobs in a particular queue is at

least k is given by λ(d
k−1)/(d−1). This value is substantially better than the case d = 1 (random policy),

where the corresponding probability is λk.

In [6] the SQ(d) model is studied for servers with different service times. In this work, upon the arrival
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of a new job, the system chooses d servers with a probability proportional to their service rates, and then

it sends the job to the server with the fewest number of jobs. This paper also studies the diffusion

limits of the queue length processes and the workload processes. Lu et al. [17] propose an algorithm

called Join-Idle-Queue (JIQ) for distributed load balancing in large distributed systems. The idea of this

algorithm is that idle processors inform dispatchers at the time of their idleness, without interfering with

job arrivals. Idle processors decide which dispatcher to inform by using the SQ(d) algorithm.

Bramson et al. [1] analyzed the SQ(d) algorithm for general service time distributions, and in [2] they

studied the asymptotic independence of queues under random load balancing. Izaguirre et al. [14] analyze

SQ(d), with d = 2, for heterogeneous servers and general job requirement distribution, focusing on the

light traffic regime under a fixed number of servers. In [27] a system is described, that uses the random

choices to perform data aware scheduling, in order to minimize the time taken by tasks to read their

inputs, for a DAG of tasks. Breitgand et al. [4] propose an Extended Supermarket Model, and they show

that there is an optimal number of servers that should be monitored to obtain minimal average service

time at a given cost. Xu et al. in [30] study the Supermarket Game model, similar to the Supermarket

Model, but taking into account the cost for both waiting and sampling a queue.

As far as authors know, any previous work has been done, combining randomization and round robin

policies. In next section we propose an analytical approximation, providing that this new algorithm

enhances the results of the SQ(d) algorithm.

3. Previous Analysis of SQ(d)

This section presents the analysis of the initial SQ(d) algorithm. This analysis of the SQ(d) algorithm

is based on the work developed in [1] and [3], that considers, for simplicity, the SQ(2) policy, and indicates

the corresponding solution for SQ(d), with d > 2. This section describes first the analysis of the SQ(d)

model, in order to understand the the SQ-RR(d) model that we present in Section 5

Consider any particular server (say server 1) in the system, and the arrivals that have this server 1 as

one of its two possible destinations. These arrivals constitute the potential arrival process at server 1. As

the jobs arrive to the system as a Poisson stream of rate λn, λ < 1, it can be assumed, for n→∞, that

the potential arrival process at server 1 is given by the superposition of two Poisson streams of rate λ.

For SQ(d), the potential arrival process to the server 1 is given by the superposition of d Poisson streams

of rate λ. The superposition of two Poisson streams of rate λ is a Poisson stream of rate 2λ. For a finite

n, the actual arrival process to server 1 is not Poisson since a potential arrival to server 1 becomes an

actual arrival depending of the number of jobs at the other servers. But, when n → ∞, the number of

jobs present at the servers becomes independent of each other [1], and then the actual arrival process

converges to a Poisson process.

At any time t, we define πj(t) as the fraction of queues having j jobs at time t, and πj , the fraction of
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queues with j jobs in equilibrium. Let Pk =
∑
j≥k πj be the tail of the equilibrium queue-size distribution

at queue 1 in the limit. Note that Pk is also equal to the asymptotic fraction of queues with at least k

jobs [1].

Consider a n-queue system in equilibrium where the queue 1 has k jobs at some time t. In the SQ(2)

system, a potential arrival to queue 1 also samples other queue that has j jobs. The potential arrival

becomes an actual arrival, joining to queue 1, if k < j or, if k = j, it becomes an actual arrival with

probability 0.5. The probability that the potential arrival becomes an actual arrival is (Pk + Pk+1)/2.

As n→∞ the actual arrivals occur following a state-dependent Poisson process of rate λk when the size

of the queue is k:

λk = 2λ
(Pk + Pk+1)

2
= λ (Pk + Pk+1) (1)

For d > 2, the actual arrival λk is given by:

λk = λ

(
(Pk)d − (Pk+1)d

Pk − Pk+1

)
(2)

According to [1], the queue 1, with a state-dependent Poisson arrival process is a simple birth-death

chain:

πk+1 = λkπk ⇔ Pk+1 − Pk+2 = λ(Pk − Pk+1) (3)

In [1] the equations (1) y (2) are solved, and the solution obtained is:

Pk = λ
dk−1
d−1

The actual arrivals to queue 1 occur following a state-dependent Poisson process of rate λk when the

size of the queue is k. The effective actual arrivals rate to queue 1 for d = 2 is given by:

λeff =

∞∑
i=0

λiπi =

∞∑
i=0

λ(Pi + Pi+1)(Pi − Pi+1) =

∞∑
i=0

λ(P 2
i − P

2
i+1) = λ

For d ≥ 2, it can be demonstrated, that the effective actual arrivals rate to queue 1 is also λ.

The average number of jobs in the system is given by
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L =

∞∑
i=0

iπi =

∞∑
i=0

i(Pi − Pi+1) =

∞∑
i=1

λ
di−1
d−1

Using the Little’s law, L = λW , we can obtain the average time job spends (W):

W =
1

λ

∞∑
i=1

λ
di−1
d−1 =

∞∑
i=1

λ
di−d
d−1

which is also the result obtained [21]. In [21] it is demonstrated that the system described before is

stable for λ < 1.

4. Shortest Queue of d with Randomization and Round Robin Policies (SQ-RR(d))

We consider as model a system with n homogeneous servers, and jobs that arrive as a Poisson stream

of rate λn, λ < 1. For each job, d servers are chosen, but not in completely random way. In the SQ-RR(d)

algorithm, one server is selected in a round robin way, and the other d− 1 servers are selected randomly.

Then, the job is sent to the server with the fewest number of jobs. In case of ties, the server is chosen

arbitrarily. Jobs are served according to the first-in first-out (FIFO) policy, and the service time for each

job is exponentially distributed with mean 1
µ = 1.

In this algorithm we combine randomization and a static load balancing approach using round robin

policy. With this method, the queue average size is reduced, by reducing the probability of choosing a

server, recently chosen.

In next sections we provide an approximation to the expected time that a job spends in the system.

This approximation takes as basis the average waiting time for the SQ(d) model. Then, we compare

SQ(d) and SQ-RR(d) models. The main difference of these models is that the potential arrival process

to each server is different. In the SQ(d) algorithm, the potential arrival process is exponential, and in

the SQ-RR(d) the potential arrival process is given by the superposition of two Erlang distributions.

Finally, we derive the average waiting time for the SQ-RR(d) using the technique called single queue

approximation (SQA) [11], that analyzes the entire multi server model SQ-RR(d), using a single queue,

and models its behavior independently of all the other queues. Finally, we apply the Kingmans’ formula

[16] to the single queue approximation, to obtain an approximation to the average waiting time for the

SQ-RR(d) algorithm.

5. Analysis of the SQ-RR(d)

The analysis of the SQ-RR(d) is based on knowing the distribution of the potential arrival process to

server 1. In SQ-RR(d) algorithm, the potential arrival process to server 1 is given by the superposition

6



of two distributions. The first distribution, due to the round robin selection [12] is an Erlang Erl(n, nλ),

where the inter-arrival time in the server 1 is a sum of n exponential phases, with mean durations of

1/nλ. Jobs arrive at the end of phase n. The second distribution (when d = 2) is given by an exponential

distribution with rate λ, i.e. with mean 1/λ. This second distribution can be consider as an Erlang

distribution with parameters n = 1, and mean 1/λ, i.e and Erl(1, λ).

To obtain the superposition of two Erlangs distributions, we use the work developed in [10]. Let the

parameters of the two merging Erlang distributions X ∼ Erl(1, λ) and Y ∼ Erl(n, nλ). Let f(x), F (x),

and F (x) denote the probability density function, the cumulative density function, and the complementary

cumulative density function, respectively of the first arrival process. Let g(y), G(y), and G(y) denote

the same functions for the second arrival process. According to [10], the density function, h(x) of the

superposed process is defined by:

h(x)=

1

E[X]+E[Y ]

(
f(x)

∫ ∞
0

G(x+u)du+F (x)

∫ ∞
0

g(x+u)du

)
+

1

E[X]+E[Y ]

(
g(x)

∫ ∞
0

F (x+u)du+G(x)

∫ ∞
0

f(x+u)du

)

In order to obtain the mean and the variation for the inter arrival time of the superposed process, given

by the above density function h(x), we need to know the first and the second non-central moments of the

superposed process. To this aim, we use the results presented in [10], that describes the method used to

obtain the higher order approximations to the merging of Erlang distributions. The k−th unconditional

non-central moment of the superposition of two Erlang distributions is given by:

M(k)=

2∑
v=1

2∑
w=1

φkvw

where φkvw, v=1, 2;w=1, 2, defines the four components of the k−th moment (M (k)) of the superposed

process, that is obtained in [10].

The values of φkvw, v=1, 2;w=1, 2 are obtained in [10] using the conditional moments, M
(k)
ij (u), of

the superposed process. Taking into account that the two superposed Erlang distributions are charac-

terized by the following parameters: X∼Erl(1, λ) and Y∼Erl(n, nλ), the four components of the k−th

unconditional moment (M (k)) are derived according to [10] as:

M
(k)
12 (u) =

1

G(u)

∫ ∞
0

x
k
F (x)g(x+u)dx

=
1

G(u)

∫ ∞
0

x
k (nλ)n(x+u)n−1e−(−x+u)nλ

(n−1)!
e
−λx

dx
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=
1

G(u)

∫ ∞
0

x
k
(nλ)

n
e
−(−x+u)nλ

n−1∑
h=0

un−1−hxh

h!(n−1−h)!
e
−λx

dx

=
(nλ)n

G(u)

n−1∑
h=0

(h+k)!

h!(n−1−h)!(λ+nλ)h+k+1
u
n−1−h

e
−nλu

where the following identity have been used∫ ∞
0

xke−txdx=
k!

tk+1

Due to E[X]+E[Y ]=(nλ+nλ)/λnλ)=2/λ, in [10] the component φk12 is obtained as:

φk12 =

∫ ∞
0

G(u)M
(k)
12 (u)

2/λ
du

=
λ

2

∫ ∞
0

G(u)M
(k)
12 (u)du

=
(nλ)nλ

2

n−1∑
h=0

(h+k)!

h!(n−1−h)!(λ+nλ)h+k

∫ ∞
0

u
n−1−h

e
−nλu

du

=

n−1∑
h=0

(h+k)!

h!

λ(nλ)h+1

2nλ(λ+nλ)h+k+1

Similarly, we have, according to [10]:

M
(k)
11 (u) =

1

G(u)

∫ ∞
0

x
k
G(x+u)f(x)dx

=
1

G(u)

∫ ∞
0

x
k
λe
−λx

n−1∑
j=0

(nλ)j(x+u)j

j!
e
−nλ(x+u)

dx

=
1

G(u)

∫ ∞
0

x
k
λe
−λx

n−1∑
j=0

(nλ)
j

j∑
h=0

xhuj−h

h!(j−h)!
e
−nλ(x+u)

dx

=
λ

G(u)

∑
j=0

n−1
j∑

h=0

(h+k)!(nλ)j

h!(j−h)!(λ+nλ)h+k+1
u
j−h

e
−nλu

and

φk11 =

∫ ∞
0

G(u)M
(k)
11 (u)

2/λ
du

=
λ

2

n−1∑
j=0

j∑
h=0

(h+k)!(nλ)j

h!(j−h)!(λ+nλ)h+k

∫ ∞
0

uj−he−nλudu

=

n−1∑
j=0

j∑
h=0

(h+k)!λ2(nλ)h

h!(2nλ)(λ+nλ)h+k+1

and due to symmetry, the last two components can be obtained [10] as:
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φk21 =

∫ ∞
0

F (u)M
(k)
21 (u)

2/λ
du

=

n−1∑
j=0

(j+k)!

j!

λ(nλ)j+1

2nλ(λ+nλ)j+k+1

φk22 =

∫ ∞
0

F (u)M
(k)
22 (u)

2/λ
du

=
(k+n−1)!

(n−1)!

(nλ)n+1

2nλ(λ+nλ)k+n

Once obtained, the two unconditional non-central moments M (1) and M (2) can be obtained as:

M(1)=

2∑
v=1

2∑
w=1

φ1vw

M(2)=

2∑
v=1

∑
w=1

2φ2vw

5.1. Approximation to the Actual Arrivals Process for SQ-RR(d)

When we use the SQ-RR(d) algorithm, the potential arrivals process to each server is given by a

distribution P obtained by the superposition of an Erlang and an exponential distribution, with a mean

interrarival time of 1/2λ, and moments M (j) obtained as before. We can see this potential arrival process

like a GI flow with arrival rate 2λ and variance M (2)−M (1)×M (1). The actual arrivals process to queue

1, is a state-dependent arrivals process with rate λk, where k is the number of jobs in the queue, but

using the argument described in Section 3, we can approximate the effective actual arrivals process to

queue 1 by the splitting of the potential arrival in d streams, and selecting one of this d streams.

Let A denote the random variable of one of the d streams. The moment generating function of A is:

MA(s)=
(1/d)MP (s)

1−(1−1/d)MP (s)

where MP (s) is the moment generating function of the random variable P defined in Section 3.2. The

two first non-central moments of A can be obtained using the algorithms developed in [15].

E[A] =
E[P ]

1/d

E[A2] =
E[P 2]

1/d
+

2(1−1/d)

(1/d)2
(E[P ])2
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The effective actual arrivals process to queue 1, can be approximated by a distribution A with mean of

µA=E[A]=1/λ and variance of σ2
A=E[A2]−(E[A])2. The main characteristic of this distribution is that

the coefficient of variation cv2A=σ2

µ2<1, as we can see in Figure 2 for n=100. In the SQ(d) algorithm, the

effective actual arrivals process depends on an exponential distribution, and their coefficient of variation

is cv2=1, for all values of d. The variability of the A distribution in SQ-RR(d) is less than the obtained

in SQ(d). This is due to the fact that one of the individual superposed processes is an Erlang distribution

with relatively low variability. This effect reduces the average number of jobs in the system, and then,

the average waiting time for a job.
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Figure 2: Coefficient of variation approximated of the effective actual arrivals process in the SQ-RR(d) for n=100

5.2. Single Queue Approximation (SQA) for SQ-RR(d)

To obtain an approximation to the average response time of SQ-RR(d) model we use the reasoning

used in [11] that uses the technique called single queue approximation (SQA). The idea of this technique

is to analyze the entire multi server model SQ-RR(d), using a single queue, and model its behavior

independently of all the other queues. First, we approximate the SQ(d) model using SQA.

The SQ(d) model acts as an M/M/n/SQ(d) queueing model, where SQ(d) is the policy used to route

job arrivals to the servers. Jobs arrive to the system as a Poisson stream with rate nλ and they are sent

to one of the d servers, from n, chosen randomly with the fewest jobs. The server time for each job is

exponentially distributed with mean u−1=1, and jobs are served according to the FIFO policy.

The SQA approximation models a queue Q in the SQ(d) system by a queue Q′, where the arrival rate

into Q′ is given by

λk=λ

(
(Pk)d−(Pk+1)d

Pk−Pk+1

)

where potential arrivals occur at the queue Q as a Poisson process of rate 2λ, and the actual arrivals

occur following a state-dependent Poisson process of rate λk when the size of the queue Q is k. However,
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as n→∞, the background distribution [1] becomes independent of queue Q, and the actual arrival process

is a Poisson process with rate that depends only of the number of jobs in queue Q′. This idea allows us

to write:

M/M/n/SQ(d)≈Mn/M/1

where Mn denotes a state-dependent Markovian arrival process.

We can use a similar argument for M/M/n/SQ−RR(d) and write:

M/M/n/SQ−RR(d)≈Gn/M/1

where Gn denotes a general state-dependent arrival process with an actual arrival process that depends

on the A distribution described in Section 5.1.

Using the Kingmans’ approximation [16]:

Wq(Gn/M/1)≈Wq(Mn/M/1)

(
cv2A+1

2

)

being Wq the queue average waiting time and cv2A is the coefficient of variation of the random distri-

bution A obtained in section 5.1.

As W=Wq+
1
µ=Wq+1 then, we can approximate the average response time for a job in the SQ-RR(d)

model as:

W (Gn/M/1)=Wq(Gn/M/1)+1≈Wq(Mn/M/1)

(
cv2A+1

2

)
+1

and finally

WSQ−RR(d)≈(WSQ(d)−1)

(
cv2A+1

2

)
+1 (4)

where WSQ(d) is the time obtained in (1). As cv2A<1, then

WSQ−RR(d)<WSQ(d) (5)

for all values of d.
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6. Simulation Results

To evaluate the behaviour of SQ-RR(d) algorithm and to show its feasibility, we have implemented a

simulator to run the tests and to compare the results with SQ(d). The simulation has been made using the

SimGrid [5] simulation environment, that allows to study the behavior of large-scale distributed systems.

We used the Mersenne Twister algorithm [20] as random number generator. This algorithm has a large

period length (219937−1) and good spectral properties where correlation structures within the random

number sequence are very small.

In this Section, first, we validate our simulator comparing our results with the results obtained by

Mitzenmacher in [21]. Once the simulator has been validated, we show the results obtained for the

SQ-RR(d) model and compare those results with the theoretical approximation obtained in Section 5.

6.1. Validation of the Simulation

In order to validate our simulator, this section compares our results with the obtained in [21] for the

SQ(d) model. We simulated a system of n=100 servers at various rates. The results are based on the

average of 100 runs, where each execution simulates 100,000 arrivals. The first 10,000 arrivals are ignored

in order to obtain the results in equilibrium. Table 1 shows the theoretical value of SQ(d), the results

and relative error obtained in [21], and the results and relative error obtained in our simulator. As we

can see in the table, our results offers a relative error very similar to the obtained in [21], and for rates

of up to 95 percent of the service (λ=0.95 and λ=0.99) is better than the obtained in [21].

Table 2 compares the results for a system with n=500 servers and λ=0.99 (99 percent of capacity).

In a similar way to [21], the simulation results improve when the number of servers is increased. In this

case, the results obtained are within 3 percent when two, three or five queues are selected.

The results obtained in this section allow us to validate the simulator developed.

6.2. Results for the SQ-RR(d) Algorithm

This section shows the results obtained for the SQ-RR(d) model. The objective of this evaluation is

focused on small values of d (2 or 3), because the objetive of the power of two choices load balancing

algorithm is to reduce the communications among dispatchers and servers. Furthermore, when the d

value is increased (see Figure 2), the differences between SQ(d) and SQ-RR(d) become smaller, and both

models converge to the shortest queue first (JSQ) algorithm.

We simulated a system of n=100 and n=1000 servers at various rates. The results are based on the

average of 100 runs, where each execution simulates 100,000 arrivals. The first 10,000 arrivals are ignored

in order to obtain the results in equilibrium. Table 3 shows the results for n=100 servers, and Table

4 shows the results for n=1000 servers. Both tables compare the average response time for SQ-RR(d)

algorithm and the average response time for SQ(d), showing the theoretical values for SQ(d) and SQ-

RR(d) respectively, the simulation results for SQ(d) and SQ-RR(d) obtained with our simulator, and
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Table 1: Average response time for SQ(d) algorithm, comparing with the results obtained in [21]. Number of nodes = 100

d λ Theor. Simul. Error Simul. Error

in [21] (%) [21] (%)

2 0.50 1.2657 1.2673 0.13 1.2742 0.67

0.70 1.6145 1.6202 0.36 1.6265 0.75

0.80 1.9474 1.9585 0.57 1.9684 1.08

0.90 2.6141 2.6454 1.20 2.6543 1.54

0.95 3.3830 3.4610 2.31 3.4489 1.95

0.99 5.4320 5.9275 9.12 5.5992 3,08

3 0.50 1.1252 1.1277 0.22 1.1316 0.57

0.70 1.3568 1.3634 0.48 1.3680 0.82

0.80 1.5809 1.5940 0.83 1.6050 1.53

0.90 2.0279 2.0614 1.65 2.0766 2.40

0.95 2.5351 2.6137 3.10 2.5962 2.41

0.99 3.8578 4.4080 14.26 4.1060 6.44

5 0.50 1.0312 1.0340 0.27 1.0364 0.50

0.70 1.1681 1.1766 0.73 1.1823 1.22

0.80 1.3289 1.3419 0.98 1.3457 1.26

0.90 1.6329 1.6714 2.36 1.6745 2.55

0.95 1.9888 2.0730 4.24 2.0825 4.71

0.99 2.9017 3.4728 19.68 3.2685 12.64

finally the relative error of the SQ-RR(d) simulated value compared with the theoretical approximation

(last column of the table).

The results shown in Tables 3 and 4 demonstrate that the SQ-RR(d) enhances the results obtained

for the SQ(d), for the values of d simulated. For n=100 the relative error is within the 7 percent for

all values of λ and d. This relative error is better when n=1000. In this case, the relative error (see

Table 4) is too within 7 percent for all values, even for arrival rates of λ=0.9, λ=0.95, and λ=0.99. This

demonstrate that the approximation presented in Section 5.2 is quite good.

Figure 6.2 shows, graphically, the average response time for 1000 servers and figure 4 shows the

percentage of improvement of the SQ-RR(d) over the SQ(d) algorithm, for d=2 and different number of

servers (n=100, n=1000, and n=10000). For a 95% confidence interval, the error is less than ±2% for all

values.

Figure 4 shows that the SQ-RR(d) is approximately 13% better for λ=0.9, and 15% better for λ=0.95
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Table 2: Average time for SQ(d) algorithm, comparing with the results obtained in [21]. Number of nodes = 500

d λ Theor. Simul. Error Simul. Error

in [21] (%) [21] (%)

2 0.99 5.4320 5.5413 2.10 5.3006 2.42

3 0.99 3.8578 3.8578 2.44 3.8151 1.11

5 0.99 2.9017 2.9017 3.43 2.9541 1.81

Table 3: Average response time for SQ-RR(d) algorithm, comparing with SQ(d). Number of nodes = 100

d λ SQ(d) SQ-RR(d) SQ(d) SQ-RR(d) Error

Theor. Theor. Simul. Simul. (%)

2 0.50 1.2657 1.2311 1.2742 1.2189 0.99

0.70 1.6145 1.5344 1.6265 1.5099 1.60

0.80 1.9474 1.8239 1.9684 1.7824 2.28

0.90 2.6141 2.4038 2.6543 2.3352 2.85

0.95 3.3830 3.0725 3.4489 2.9449 4.15

0.99 5.4320 4.8546 5.5992 4.8101 0.92

3 0.50 1.1252 1.1144 1.1316 1.1229 0.77

0.70 1.3568 1.3258 1.3680 1.3428 1.28

0.80 1.5809 1.5304 1.6050 1.5526 1.45

0.90 2.0279 1.9386 2.0766 1.9847 2.38

0.95 2.5351 2.4018 2.5962 2.4844 3.44

0.99 3.8578 3.6096 4.1061 3.8591 6.91

5 0.50 1.0312 1.0296 1.0364 1.0364 0.60

0.70 1.1681 1.1593 1.1823 1.1777 1.58

0.80 1.3289 1.3118 1.3457 1.3444 2.49

0.90 1.6329 1.5999 1.6745 1.6650 4.07

0.95 1.9888 1.9372 2.0825 2.0480 5.72

0.99 2.9017 2.8026 3.2685 2.9189 3.79

and λ=0.99. It is interesting to note that the percentage of improvement increases for high arrival rates.
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Figure 3: Average Response Time for SQ-RR(d) and SQ(d) for n=1000
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Table 4: Average response time for SQ-RR(d) algorithm, comparing with SQ(d). Number of nodes = 1000

d λ SQ(d) SQ-RR(d) SQ(d) SQ-RR(d) Error

Theor. Theor. Simul. Simul. (%)

2 0.50 1.2657 1.2306 1.2670 1.2147 1.29

0.70 1.6145 1.5335 1.6149 1.4963 2.42

0.80 1.9474 1.8225 1.9477 1.7612 3.36

0.90 2.6141 2.4011 2.6064 2.2877 4.72

0.95 3.3831 3.0686 3.3754 2.8903 5.81

0.99 5.4320 4.8473 5.2225 4.5207 6.74

3 0.50 1.1252 1.1142 1.1260 1.1169 0.24

0.70 1.3568 1.3255 1.3579 1.3299 0.34

0.80 1.5809 1.5298 1.5813 1.5333 0.23

0.90 2.0279 1.9375 2.0241 1.9323 0.27

0.95 2.5351 2.4001 2.5342 2.3707 1.23

0.99 3.8579 3.6064 3.7814 3.4624 3.99

5 0.50 1.0315 1.0296 1.0318 1.0301 0.14

0.70 1.1681 1.1592 1.1700 1.1653 0.52

0.80 1.3289 1.3116 1.3295 1.3214 0.75

0.90 1.6329 1.5995 1.6371 1.6172 1.11

0.95 1.9888 1.9366 1.9912 1.9587 1.14

0.99 2.9017 2.8013 2.8943 2.8378 1.30
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Figure 4: Percentage of improvement, SQ-RR(d) vs SQ(d) for d=2 (n=100, n=1000, and n=10000 )

Figure 5 shows the percentage of improvement of the SQ-RR(d) over the SQ(d) algorithm, for d=2

and small number of servers (n=10, n=20, and n=50). This figure demonstrates that SQ-RR(d) offers a

better performance, specially for high arrival rates, even for small number of servers.

Table 5 shows the probability of choosing an empty server when d=2 servers are selected using the

SQ(d) and the SQ-RR(d) algorithms for n=1000 servers. These results have been obtained by simulation.

The table values demonstrate that the probability of choosing an empty server is higher in the SQ-RR(d)

algorithm. These results demonstrate that the SQ-RR(d) algorithm reduces the probability of choosing

a server, recently chosen.
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Figure 5: Percentage of improvement, SQ-RR(d) vs SQ(d) for d=2 (n=10, n=20, and n=50 )

In a similar way, Table 6 shows the probability of choosing a server with 0 or 1 job in the queue. The

SQ-RR(d) algorithm presents a higher probability. All these results are vey similar for other values of n.

Table 5: Probability of choosing an empty server for n=1000 and d=2

λ SQ(d) Simul. SQ-RR(d) Simul.

0.50 0.748 0.834

0.70 0.503 0.601

0.80 0.357 0.449

0.90 0.196 0.253

0.95 0.085 0.136

0.99 0.024 0.039

The results shown int Table 5 and 6, allow us to apply the threshold model provided in [22] to the

SQ-RR(d) algorithm. In the SQ(d) threshold model, for each new job, the dispatcher chooses a single

server uniformly at random. If the queue length at this first choice is at most T, el job is sent to this

queue; otherwise, the dispatcher chooses a second server randomly. In [22] two variations are described.

In the strong threshold model, if both choices are over the threshold, the job is sent to the shorter queue.

In the SQ(d) weak threshold model, the job is sent to the second server regardless of whether the queue in

this server is longer of shorter than the first. This method reduces the communication with the servers,

because only one server is checked.

Applying this method to SQ-RR(d) means that when a new job arrives, the dispatcher chooses a

server using round-robin, and asks to this server the number of jobs in his queue. If the queue length is

at most T, the job is sent to this queue; otherwise, a second server is chosen randomly, with the weak or

the strong variation.
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Table 6: Probability of choosing a server with 0 or 1 job, for n=1000 and d=2

λ SQ(d) Simul. SQ-RR(d) Simul.

0.50 0.981 0.994

0.70 0.879 0.939

0.80 0.731 0.839

0.90 0.468 0.604

0.95 0.255 0.381

0.99 0.071 0.115

Figure 6 shows the results for the weak threshold model for n=1000 servers, comparing the perfor-

mance with de SQ(d) and SQ-RR(d) model. The threshold value used in the evaluation was T=1 (for

T=2, the average response time increases). Figure 7 shows the results for the strong threshold model.

It is interesting to note that for the strong model, the performance of the SQ-RR(d)-Threshold is very

similar to the SQ-RR(d), and always is better than the SQ(d) algorithm. The main advantage of the

threshold model is that allow to reduce the communications with the servers.
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Figure 6: Average Response Time for the weak threshold model (n=1000 )

7. Conclusions

This paper has described a variation of the classical Power of Two Choices load balancing algorithm.

The new version, called SQ-RR(d), combines randomization techniques and static local balancing based

on round robin selection. In this new version the dispatcher chooses the d servers as follows: one is

selected using round robin policy, and d−1 servers are chosen independently and uniformly at a random

from the n. Then, the dispatcher sends the job to the server with the fewest number of jobs.

We have demonstrated, with a theoretical approximation of this approach, that this new version offers
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a best performance than the obtained with the classical solution in all situations, including systems at

99% of capacity. The main advantage of our proposal is that it reduces the probability of choosing a

server recently chosen. We have provided simulations that demonstrate the theoretical approximation

developed in the paper. These simulations also demonstrate that the probability of choosing an empty

server is 60 percent higher for high services rates.
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