Skip to main content
Log in

Defense against malware propagation in complex heterogeneous networks

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Devising appropriate defense strategies against malware propagation in complex networks with minimal budget is a challenging problem in research community. This paper studies and compares various immunization strategies such as random immunization, targeted immunization, acquaintance immunization and high-risk immunization to prevent the outbreak of malware. Also, three measures of node centrality (degree, closeness and betweenness) are taken into targeted immunization to slow down the malware propagation process. The malware propagation is modelled based on the susceptible–exposed–infected–recovered–susceptible with quarantine state (SEIRS-Q) epidemic model. Using numerical simulations, the model is verified with considering defense mechanisms in a synthetic (SFN) and a real (Facebook) network topology. The simulation results can help to better understand the effects of defense strategies against the malware propagation. The results show that the use of immunization and software diversity together are more effective than using each of them singly, in terms of reducing the density of infected node and halting malware propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Avizienis, J.-C., Laprie, B., Randell, C.: Landwehr, Basic concepts and taxonomy of dependable and secure computing. IEEE Trans Dependable Secure Comput. 1, 11–33 (2004)

    Article  Google Scholar 

  2. Braha, D.: Complex Design Networks: Structure and Dynamics. arXiv preprint arXiv:1801.02272 (2018).

  3. Broido, D., Clauset, A.: Scale-free networks are rare. Nat. Commun. 10, 1–10 (2019)

    Article  Google Scholar 

  4. Franz, M., Unibus Pluram, E.: Massive-Scale Software Diversity as a Defense Mechanism. In: Proceedings of the workshop on new security paradigms, pp 1–10 (2010).

  5. Gherbi, A., Charpentier, R., Couture, M.: Software diversity for future systems security. J. Defense Softw. Eng. 25, 10–13 (2011)

    Google Scholar 

  6. Hartvigsen, G., Dresch, J., Zielinski, A., et al.: Network structure, and vaccination strategy and effort interact to affect the dynamics of influenza epidemics. J. Theor. Biol. 246(2), 205–213 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang, J.-P., Jin, Z.: The analysis of an epidemic model on networks. Appl. Math. Comput. 217(17), 7053–7064 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Wang, Y., Xiao, G., Hu, J., et al.: Imperfect targeted immunization in scale-free networks. Phys. A 388(12), 2535–2546 (2009)

    Article  Google Scholar 

  9. Wang, J., Zhao, L., Huang, R.: SIRaRu rumor spreading model in complex networks. Phys. A 398, 43–55 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, J., Jin, X.: Preventing rumor spreading on small-world networks. J. Syst. Sci. Complexity 24(3), 449–456 (2011)

    Article  MathSciNet  Google Scholar 

  11. Chen, Y., Paul, G., Havlin, S., et al.: Finding a better immunization strategy. Phys. Rev. Lett. 101(5), 1–4 (2008)

    Google Scholar 

  12. Guillén, J.H., del Rey, A.M.: Modeling malware propagation using a carrier compartment. Commun. Nonlinear Sci. Numer. Simul. 56, 217–226 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Holme, P., Kim, B.J., Yoon, C.N., et al.: Attack vulnerability of complex networks. Phys. Rev. E 65(5), 1–6 (2002)

    Article  Google Scholar 

  14. Peng, S., Wang, G., Zhou, Y., Wan, C., Wang, C., Yu, S.: An immunization framework for social networks through big data based influence modeling. IEEE Trans. Dependable Sec. Comput. 6, 984–995 (2017)

    Google Scholar 

  15. Huang, S.: Global dynamics of a network-based wsis model for mobile malware propagation over complex networks. Phys. A 503, 293–303 (2018)

    Article  MathSciNet  Google Scholar 

  16. Guillén, J.D.H., del Rey, Á.M., Encinas, L.H.: New approaches of epidemic models to simulate malware propagation. In Proceeding international joint conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain (2017).

  17. Jacob, R., Harikrishnan, K., Misra, R., Ambika, G.: Measure for degree heterogeneity in complex networks and its application to recurrence network analysis. R Soc Open Sci 4(1), 1–15 (2017)

    Article  MathSciNet  Google Scholar 

  18. Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B 26(4), 521–529 (2002)

    Google Scholar 

  19. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tseng, L., Wong, L., Otoum, S., Aloqaily, M., Othman, J.B.: Blockchain for managing heterogeneous internet of things: a perspective architecture. IEEE Netw. 34, 16–23 (2020)

    Article  Google Scholar 

  21. Vynnycky, E., White, R.: An introduction to infectious disease modeling, p. 368. Oxford University Press, Oxford (2010)

    Google Scholar 

  22. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., et al.: Epidemic processes in complex networks. Phys Soc 87, 1–61 (2015)

    MathSciNet  Google Scholar 

  23. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guillén, J.H., del Rey, A.M., Encinas, L.H.: Study of the stability of a SEIRS model for computer worm propagation. Phys. A 479, 411–421 (2017)

    Article  MathSciNet  Google Scholar 

  25. Liu, Q., Li, T., Sun, M.: The analysis of an SEIR rumor propagation model on heterogeneous network. Phys. A 469, 372–380 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pastor-Satorras, R., Vespignani, A.: Epidemics and immunization in scale-free networks. In: Bornholdt, S., Georg Schuster, H. (eds.) Handbook of Graphs and Networks: From the Genome to the Internet, pp. 111–130. Wiley, New York (2005)

    Google Scholar 

  27. Temizkan, O., Park, S., Saydam, C.: Software diversity for improved network security: optimal distribution of software-based shared vulnerabilities. Inf. Syst. Res. 28, 828–849 (2017)

    Article  Google Scholar 

  28. Touhiduzzaman, M., Hahn, A., Srivastava, A.: A diversity-based substation cyber defense strategy utilizing coloring games. arXiv:1802.02618 (2018)

  29. Wen, S., Zhou, W., Wang, Y., et al.: Locating defense positions for thwarting the propagation of topological worms. IEEE Commun. Lett. 16(4), 560–563 (2012)

    Article  Google Scholar 

  30. Yan, G., Chen, G., Eidenbenz, S., Li, N.: Malware Propagation in Online Social Networks: Nature, Dynamics, and Defense Implications. In: Proceedings of the 6th ACM symposium on information, computer and communications security, pp. 1–11 (2011).

  31. Yu, S., Gu, G., Barnawi, A., Guo, S., Stojmenovic, I.: Malware propagation in large-scale networks. IEEE Trans. Knowl. Data Eng. 27(1), 170–179 (2015)

    Article  Google Scholar 

  32. O'Donnell, A.J., Sethu, H.: On achieving software diversity for improved network security using distributed coloring algorithms. In: Proceedings of the 11th ACM conference on computer and communications security (CCS), pp. 121–13 (2004).

  33. Zhou, Y., Wu, Z.-F., Li, F., et al.: Analyzing impacts of software diversity on worm propagation in peer-to-peer networks. Int. J. Comput. Sci. Netw. Sec. 6, 1–7 (2006)

    Google Scholar 

  34. Hole, K.: Diversity reduces the impact of malware. Sec. Privacy 13(3), 48–54 (2006)

    Article  MathSciNet  Google Scholar 

  35. Abdollahpouri, A., Salavati, C., Arkat, J., Tab, F.A., Manbari, Z.: A multi-objective model for identifying valuable nodes in complex networks with minimum cost. Clust. Comput. (2020). https://doi.org/10.1007/s10586-019-03039-4

    Article  Google Scholar 

  36. Jiang, Y., Hu, A., Huang, J.: Importance-based entropy measures of complex networks’ robustness to attacks. Clust. Comput. 22, 3981–3988 (2019)

    Article  Google Scholar 

  37. Zhang, Z., Liu, S., Yang, Y., Bai, Y.: A link-adding strategy for improving robustness and traffic capacity in large-scale wireless sensor networks. Clust. Comput. 22, 7687–7694 (2019)

    Article  Google Scholar 

  38. Miloslavskaya, N., Tolstoy, A.: Internet of things: information security challenges and solutions. Clust. Comput. 22, 103–119 (2019)

    Article  Google Scholar 

  39. Ning, Z., Yang, Y., Zhang, Y.: Research on the trusted protection technology of internet of things. Clust. Comput. 22, 14339–14348 (2019)

    Article  Google Scholar 

  40. Qadri, Y.A., Ali, A., Musaddiq, A., Al-Turjman, F., Kim, D.W., Kim, S.W.: The limitations in the state-of-the-art counter-measures against the security threats in H-IoT. Clust. Comput. (2020). https://doi.org/10.1007/s10586-019-03036-7

    Article  Google Scholar 

  41. Casey, P.P., Topor, M., Hennessy, E., Alrabaee, S., Aloqaily, M., Boukerche, A.: Applied comparative evaluation of the metasploit evasion module. In 2019 IEEE symposium on computers and communications (ISCC) (pp. 1–6) (2019).

  42. Aloqaily, M., Salameh, H.B., Al Ridhawi, I., Batieha, K., Othman, J.B.: A multi-stage resource-constrained spectrum access mechanism for cognitive radio IoT networks: time-spectrum block utilization. Future Gener. Comput. Syst. 110, 254–266 (2020)

    Article  Google Scholar 

  43. Tseng, T., Wu, Y., Pan, H., Aloqaily, M., Boukerche, A.: Reliable broadcast in networks with trusted nodes. In 2019 IEEE global communications conference (GLOBECOM) (pp. 1–6) (2019).

  44. O'Donnell, A.J., Sethu, H.: Software Diversity as a Defense Against Viral Propagation: Models and Simulations. In: Proceedings of the 19th workshop on principles of advanced and distributed simulation, pp. 1–7 (2006)

  45. Hosseini, S., Azgomi, M.A., Rahmani, A.T.: Malware propagation modeling considering software diversity and immunization. J. Comput. Sci. 13, 49–67 (2016)

    Article  MathSciNet  Google Scholar 

  46. Van den Driessche, P.: Reproduction numbers of infectious disease models. Infect. Dis. Modell. 2(3), 288–303 (2017)

    Article  Google Scholar 

  47. Shams, B., Khansari, M., Pérez-Alfaro, R., et al.: Using network properties to evaluate targeted immunization algorithms. Netw. Biol. 4(3), 1–21 (2014)

    Google Scholar 

  48. Newman, M.E.: A measure of betweenness centrality based on random walks. Soc. Netw. 27(1), 39–54 (2005)

    Article  Google Scholar 

  49. Nian, F., Wang, X.: Efficient immunization strategies on complex networks. J. Theor. Biol. 264(1), 77–83 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Leskovec, J., Mcauley, J.J. https://snap.stanford.edu/data/egonets-Facebook.html. Accessed Sep. 4, 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soodeh Hosseini.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S. Defense against malware propagation in complex heterogeneous networks. Cluster Comput 24, 1199–1215 (2021). https://doi.org/10.1007/s10586-020-03181-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-020-03181-4

Keywords

Navigation