Skip to main content
Log in

Mutual authentication scheme of IoT devices in fog computing environment

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The radical shift in the technology with the advent of connected things has led to the significant proliferation in demand for IoT devices, commonly called ‘smart devices’. These devices are capable of data collection, which can help in umpteen applications, particularly in healthcare. With the tremendous growth in these resource-constrained end devices, there has been a substantial increase in the number of attack varieties. Since these end devices deal with the sensitive data that might cause severe damage if not handled properly. Hence, defending its integrity, preserving its privacy, and maintaining its confidentiality as well as availability is of utmost importance. However, there are many protocols, models, architecture tools, etc. proposed to provide security. Nevertheless, almost every solution propound so far is not fully resilient and lacks in giving full protection to the system in some way or the other. So here, we have proposed a lightweight anonymous mutual authentication scheme for end devices and fog nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shivraj, V.L., Rajan, M.A., Singh, M., Balamuralidhar, P.: One time password authentication scheme based on elliptic curves for Internet of Things (IoT). In: 2015 5th National Symposium on Information Technology: Towards New Smart World (NSITNSW), pp. 1–6. IEEE (2015)

  2. Stojmenovic, I., Wen, S.: The fog computing paradigm: Scenarios and security issues. In: 2014 Federated Conference on Computer Science and Information Systems, pp. 1–8. IEEE (2014)

  3. Arij, B. E. N., Mohamed, A. B. I. D., and MEDDEB, A.: SAMAFog: service-aware mutual authentication fog-based protocol. In: 2019 15th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1049–1054. IEEE (2019)

  4. Alharbi, S., Rodriguez, P., Maharaja, R., Iyer, P., Subaschandrabose, N., Ye, Z.: Secure the internet of things with challenge response authentication in fog computing. In: 2017 IEEE 36th International Performance Computing and Communications Conference (IPCCC), pp. 1–2 (2017)

  5. Dastjerdi, A.V., Gupta, H., Calheiros, R.N., Ghosh, S.K., Buyya, R.: Fog computing: principles, architectures, and applications. In: Internet of Things, pp. 61–75 (2016)

  6. Hu, P., Dhelim, S., Ning, H., Qiu, T.: Survey on fog computing: architecture, key technologies, applications and open issues. J. Netw. Comput. Appl. 98, 27–42 (2017)

    Article  Google Scholar 

  7. Yi, S., Qin, Z., Li, Q.: Security and privacy issues of fog computing: a survey. In: International Conference on Wireless Algorithms, Systems, and Applications, pp. 685–695. Springer (2015)

  8. Zhang, P., Zhou, M., Fortino, G.: Security and trust issues in Fog computing: a survey. Future Gener. Comput. Syst. 88, 16–27 (2018)

    Article  Google Scholar 

  9. Lee, K., Kim, D., Ha, D., Rajput, U., Oh, H.: On security and privacy issues of fog computing supported Internet of Things environment. In: 2015 6th International Conference on the Network of the Future (NOF), pp. 1–3. IEEE (2015)

  10. Alrawais, A., Alhothaily, A., Hu, C., Cheng, X.: Fog computing for the internet of things: security and privacy issues. IEEE Internet Comput. 21(2), 34–42 (2017)

    Article  Google Scholar 

  11. Borgohain, T., Borgohain, A., Kumar, U., Sanyal, S.: Authentication systems in internet of things. arXiv preprint arXiv:1502.00870. (2015)

  12. Hernandez-Ramos, J.L., Pawlowski, M.P., Jara, A.J., Skarmeta, A.F., Ladid, L.: Toward a lightweight authentication and authorization framework for smart objects. IEEE J. Sel. Areas Commun. 33(4), 690–702 (2015)

    Article  Google Scholar 

  13. Liu, J., Xiao, Y., Chen, C.P.: Authentication and access control in the internet of things. In: 2012 32nd International Conference on Distributed Computing Systems Workshops, pp. 588–592. IEEE (2012)

  14. Ferrag, M.A., Maglaras, L.A., Janicke, H., Jiang, J., Shu, L.: Authentication protocols for Internet of Things: a comprehensive survey. Secur. Commun. Netw. (2017)

  15. Podsevalov, I., Iakushkin, O., Kurbangaliev, R., Korkhov, V.: Blockchain as a platform for Fog computing, pp. 596–605 (2019)

  16. Khan, S., Parkinson, S., Qin, Y.: Fog computing security: a review of current applications and security solutions. J. Cloud Comput. 6(1), 19 (2017)

    Article  Google Scholar 

  17. Ni, J., Zhang, K., Lin, X., Shen, X.S.: Securing fog computing for internet of things applications: challenges and solutions. IEEE Commun. Surv. Tutor. 20(1), 601–628 (2017)

    Article  Google Scholar 

  18. Stojmenovic, I., Wen, S., Huang, X., Luan, H.: An overview of fog computing and its security issues. Concurr. Comput. 28(10), 2991–3005 (2016)

    Article  Google Scholar 

  19. Ibrahim, M.H.: Octopus: an edge-fog mutual authentication scheme. IJ Netw. Secur. 18(6), 1089–1101 (2016)

    Google Scholar 

  20. Bamasag, O.O., Youcef-Toumi, K.: Towards continuous authentication in internet of things based on secret sharing scheme. In: Proceedings of the WESS’15: Workshop on Embedded Systems Security ACM, p. 1 (2015)

  21. Salman, O., Abdallah, S., Elhajj, I.H., Chehab, A., Kayssi, A.: Identity-based authentication scheme for the internet of things. In: 2016 IEEE Symposium on Computers and Communication (ISCC), pp. 1109–1111. IEEE (2016)

  22. Amor, A.B., Abid, M., Meddeb, A.: A privacy-preserving authentication scheme in an edge-fog environment. In: 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), pp. 1225–1231. IEEE (2017)

  23. Arij, B. E. N., Mohamed, A. B. I. D., and MEDDEB, A.: CASK: conditional authentication and session key establishment in fog-assisted social IoT network. In: 2019 15th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 114–119. IEEE (2019)

  24. Lu, R., Heung, K., Lashkari, A.H., Ghorbani, A.A.: A lightweight privacy-preserving data aggregation scheme for fog computing-enhanced IoT. IEEE Access 5, 3302–3312 (2017)

    Article  Google Scholar 

  25. Imine, Y., Kouicem, D.E., Bouabdallah, A., Ahmed, L.: MASFOG: An Efficient Mutual Authentication Scheme for Fog Computing Architecture. In: 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), pp. 608–613. IEEE (2018)

  26. Almadhoun, R., Kadadha, M., Alhemeiri, M., Alshehhi, M., Salah, K.: A user authentication scheme of IoT devices using blockchain-enabled fog nodes. In: 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), pp. 1–8. IEEE (2018)

  27. Kaur, K., Garg, S., Kaddoum, G., Gagnon, F., Ahmed, S.H.: Blockchain based lightweight authentication mechanism for vehicular fog infrastructure. arXiv preprint arXiv:1904.01168 (2019)

  28. Pardeshi, M.S., Yuan, S.M.: SMAP fog/edge: a secure mutual authentication protocol for fog/edge. IEEE Access 7, 101327–101335 (2019)

    Article  Google Scholar 

  29. Lo, L., Westphall, C.M., Gr, udtner, L.D., Westphall, C.B.: Mutual authentication for IoT in the context of fog computing. In: 2019 11th International Conference on Communication Systems and Networks (COMSNETS), pp. 367–374. IEEE (2019)

  30. Usha, S., Tamilarasi, A.: A trust based security framework with anonymous authentication system using multiple attributes in decentralized cloud. Clust. Comput. 22(2), 3883–3892 (2019)

    Article  Google Scholar 

  31. Maharaja, R., Iyer, P., Ye, Z.: A hybrid fog-cloud approach for securing the Internet of Things. Clust. Comput. 1–9 (2019)

  32. Pugazhenthi, A., Chitra, D.: Secured and memory overhead controlled data authentication mechanism in cloud computing. Clust. Comput. 22(6), 13559–13567 (2019)

    Article  Google Scholar 

  33. Liu, Y., Sun, Q., Wang, Y., Zhu, L., Ji, W.: Efficient group authentication in RFID using secret sharing scheme. Clust. Comput. 22(4), 8605–8611 (2019)

    Article  Google Scholar 

  34. Yao, Y., Chang, X., Misic, J., Misic, V.B., Li, L.: BLA: blockchain-assisted lightweight anonymous authentication for distributed vehicular fog services. IEEE Internet Things J. 6(2), 3775–3784 (2019)

    Article  Google Scholar 

  35. Talwani, S.: Fog computing: introduction, challenges and future aspects. Heritage 67(7), 620–626 (2019)

    Google Scholar 

  36. Miller, V.S.: Use of elliptic curves in cryptography. In: Conference on the Theory and Application of Cryptographic Techniques, pp. 417–426. Springer, Berlin (1985)

  37. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)

    Article  MathSciNet  Google Scholar 

  38. Sattam, S., Riyami, A.I., Kenneth, G.P.: Certificateless public key cryptography. In: International Conference on the Theory and Application of Cryptology and Information Security, pp. 452–473. Springer (2003)

  39. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: International Conference on the Theory and Applications of Cryptographic Techniques, pp. 223–238 (2004)

  40. Sogani, A., Jain, A.: Energy aware and fast authentication scheme using identity based encryption in wireless sensor networks. Clust. Comput. 22(5), 10637–10648 (2019)

    Article  Google Scholar 

  41. Zhou, L., Li, X., Yeh, K.H., Su, C., Chiu, W.: Lightweight IoT-based authentication scheme in cloud computing circumstance. Future Gener. Comput. Syst. 91, 244–251 (2019)

    Article  Google Scholar 

  42. Yeh, H.L., Chen, T.H., Liu, P.C., Kim, T.H., Wei, H.W.: A secured authentication protocol for wireless sensor networks using elliptic curves cryptography. Sensors 11(5), 4767–4779 (2011)

    Article  Google Scholar 

  43. Shi, W., Gong, P.: A new user authentication protocol for wireless sensor networks using elliptic curves cryptography. Int. J. Distrib. Sens. Netw. 9(4), 730831 (2013)

    Article  Google Scholar 

  44. Xu, X., Zhu, P., Wen, Q., Jin, Z., Zhang, H., He, L.: A secure and efficient authentication and key agreement scheme based on ECC for telecare medicine information systems. J. Med. Syst. 38(1), 9994 (2014)

    Article  Google Scholar 

  45. Wazid, M., Das, A.K., Kumar, N., Vasilakos, A.V.: Design of secure key management and user authentication scheme for fog computing services. Future Gener. Comput. Syst. 91, 475–492 (2019)

    Article  Google Scholar 

  46. Dhillon, P.K., Kalra, S.: A secure multi-factor ECC based authentication scheme for Cloud-IoT based healthcare services. J. Ambient Intell. Smart Environ. 11(2), 149–164 (2019)

    Article  Google Scholar 

  47. Li, H., Li, F., Song, C., Yan, Y.: Towards smart card based mutual authentication schemes in cloud computing. KSII Trans. Internet Inform. Syst. 9(7), 2719–2735 (2015)

    Google Scholar 

  48. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans. Comput. Syst. 8, 18–36 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported and funded by the Ministry of Education, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunakshi Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Chaurasiya, V.K. Mutual authentication scheme of IoT devices in fog computing environment. Cluster Comput 24, 1643–1657 (2021). https://doi.org/10.1007/s10586-020-03211-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-020-03211-1

Keywords

Navigation