Skip to main content

Advertisement

Log in

Smart contract based policies for the Internet of Things

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Internet of Things (IoT) is one of the most powerful platforms that incorporates several other technological components within itself. The IoT ecosystem comprises devices, communications, protocols, analytics, cloud, automation, etc. Its magnitude keeps on increasing with the addition of tools and services. While IoT has many advantages like connectivity, efficiency, and convenience, it is a known fact that privacy and security issues are prevalent in the IoT network. To minimize the security and privacy issues, we propose a blockchain-based solution. In this paper, we design policies based on smart contacts, which is a self-enforcing agreement embedded in computer code managed by a blockchain. We propose three different policies: Hardware and Device Security Policies, Access and Authentication policies, and Application security for the IoT network. Since blockchain-based solutions ensure trust and stability, this may be one of the most robust techniques to alleviate the IoT network’s security and privacy issues. Also, we calculate the throughput and latency of the IoT enabled blockchain network and compare the power consumption of the IoT device at the time of data request with other proposed systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Puri, V., Jha, S., Kumar, R., Priyadarshini, I., Abdel-Basset, M., Elhoseny, M., Long, H.V.: A hybrid artificial intelligence and internet of things model for the generation of renewable resource of energy. IEEE Access 7, 111181–111191 (2019)

    Article  Google Scholar 

  2. Puri, V., Priyadarshini, I., Kumar, R., Kim, L. C.: Blockchain meets IIoT: an architecture for privacy preservation and security in IIoT. In: 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA), pp. 1–7. IEEE (2020, March)

  3. Puri, V., Jagdev, S. S., Tromp, J. G., Van Le, C.: Smart bicycle: IoT-based transportation service. In: Intelligent Computing in Engineering, pp. 1037–1043. Springer, Singapore (2020)

  4. Priyadarshini, I., Cotton, C.: Intelligence in cyberspace: the road to cyber singularity. J. Exp. Theor. Artif. Intell. (2020). https://doi.org/10.1080/0952813X.2020.1784296

    Article  Google Scholar 

  5. Berdik, D., Otoum, S., Schmidt, N., Porter, D., Jararweh, Y.: A survey on blockchain for information systems management and security. Inf. Process. Manag. 58(1), 102397 (2012)

    Article  Google Scholar 

  6. Priyadarshini, I.: Cyber security risks in robotics. In: Cyber Security and Threats: Concepts. Methodologies, Tools, and Applications, pp. 1235–1250. IGI Global, Pennsylvania (2018)

  7. Priyadarshini, I.: Introduction on Cybersecurity. Cyber Security in Parallel and Distributed Computing: Concepts, Techniques, Applications and Case Studies, pp. 1–37. Wiley, Hoboken (2018)

  8. Tuan, T.A., Long, H.V., Kumar, R., Priyadarshini, I., Son, N.T.K.: Performance evaluation of Botnet DDoS attack detection using machine learning. Evol. Intell. 13, 283–294 (2019)

    Article  Google Scholar 

  9. Paul, N., Tesfay, W. B., Kipker, D. K., Stelter, M., Pape, S.: Assessing privacy policies of Internet of Things services. In: IFIP International Conference on ICT Systems Security and Privacy Protection, pp. 156–169. Springer, Cham (2018)

  10. Bouachir, O., Aloqaily, M., Tesng, L., Boukerche, A.: Blockchain and Fog Computing for Cyber-Physical Systems: Case of Smart Industry. (2020) arXiv preprint arXiv:2005.12834

  11. Chatfield, A.T., Reddick, C.G.: A framework for Internet of Things-enabled smart government: a case of IoT cybersecurity policies and use cases in US federal government. Gov. Inf. Q. 36(2), 346–357 (2019)

    Article  Google Scholar 

  12. Liu, H., Chen, G., Huang, Y.: Smart hardware hybrid secure searchable encryption in cloud with IoT privacy management for smart home system. Clust. Comput. 22(1), 1125–1135 (2019)

    Article  Google Scholar 

  13. Attkan, A., Ahlawat, P.: Lightweight two-factor authentication protocol and session key generation scheme for WSN in IoT deployment. In: Advances in Cybernetics. Cognition, and Machine Learning for Communication Technologies, pp. 189–198. Springer, Singapore (2020)

  14. Aloqaily, M., Boukerche, A., Bouachir, O., Khalid, F., Jangsher, S.: An energy trade framework using smart contracts: overview and challenges. IEEE Netw. 34(4), 119–125 (2020)

    Article  Google Scholar 

  15. Vo, T., Sharma, R., Kumar, R., Son, L.H., Pham, B.T., Tien Bui, D., Le, T.: Crime rate detection using social media of different crime locations and Twitter part-of-speech tagger with Brown clustering. J. Intell. Fuzzy Syst. 38(4), 4287–4299 (2020)

    Article  Google Scholar 

  16. Priyadarshini, I.: Features and architecture of the modern cyber range: a qualitative analysis and survey. Doctoral dissertation, University of Delaware (2018)

  17. Priyadarshini, I., Cotton, C.: Internet memes: a novel approach to distinguish humans and bots for authentication. In: Proceedings of the Future Technologies Conference, pp. 204–222. Springer, Cham (2019)

  18. Priyadarshini, I., Wang, H., Cotton, C.: Some cyberpsychology techniques to distinguish humans and bots for authentication. In: Proceedings of the Future Technologies Conference, pp. 306–323. Springer, Cham (2019)

  19. Hamza, R., Yan, Z., Muhammad, K., Bellavista, P., Titouna, F.: A privacy-preserving cryptosystem for IoT E-healthcare. Inf. Sci. (2019). https://doi.org/10.1016/j.ins.2019.01.070

    Article  MATH  Google Scholar 

  20. Pasupuleti, S. K., Varma, D.: Lightweight ciphertext-policy attribute-based encryption scheme for data privacy and security in cloud-assisted IoT. In: Real-Time Data Analytics for Large Scale Sensor Data, pp. 97–114. Academic Press, New York (2020)

  21. Priyadarshini, I.: Introduction to blockchain technology. In: Cyber Security in Parallel and Distributed Computing: Concepts, Techniques, Applications and Case Studies, pp. 91–107. Wiley, New York (2019)

  22. Mohanta, B.K., Jena, D., Ramasubbareddy, S., Daneshmand, M., Gandomi, A.H.: Addressing security and privacy issues of IoT using blockchain technology. IEEE Internet of Things J. (2020). https://doi.org/10.1109/JIOT.2020.3008906

    Article  Google Scholar 

  23. Qian, Y., Jiang, Y., Chen, J., Zhang, Y., Song, J., Zhou, M., Pustšek, M.: Towards decentralized IoT security enhancement: a blockchain approach. Comput. Electr. Eng. 72, 266–273 (2018)

    Article  Google Scholar 

  24. Singh, N., Kumar, T., Vardhan, M.: Blockchain-based e-cheque clearing framework with trust based consensus mechanism. Clust. Comput. (2020). https://doi.org/10.1007/s10586-020-03163-6

    Article  Google Scholar 

  25. Banerjee, M., Lee, J., Choo, K.K.R.: A blockchain future for internet of things security: a position paper. Digit. Commun. Netw. 4(3), 149–160 (2018)

    Article  Google Scholar 

  26. Rosa, M., Barraca, J.P., Rocha, N.P.: Blockchain structures to guarantee logging integrity of a digital platform to support community-dwelling older adults. Clust. Comput. 23, 1887–1898 (2020)

    Article  Google Scholar 

  27. González, J.C., García-Díaz, V., Núñez-Valdez, E.R., et al.: Replacing email protocols with blockchain-based smart contracts. Clust. Comput. 23, 1795–1801 (2020)

    Article  Google Scholar 

  28. Hewa, T., Ylianttila, M., Liyanage, M.: Survey on blockchain based smart contracts: applications, opportunities and challenges. J. Netw. Comput. Appl. (2020). https://doi.org/10.1016/j.jnca.2020.102857

    Article  Google Scholar 

  29. Barrera, D., Molloy, I., Huang, H.: Standardizing IoT network security policy enforcement. In: Workshop on Decentralized IoT Security and Standards (DISS), vol. 2018, p. 6 (2018)

  30. Halepoto, I.A., Khan, U.A., Arain, A.A.: Retransmission policies for efficient communication in IoT applications. In: 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud), pp. 197–202. IEEE (2018)

  31. Atlam, H.F., Alassafi, M.O., Alenezi, A., Walters, R.J., Wills, G.B.: XACML for building access control policies in the Internet of Things. In: IoTBDS, pp. 253–260 (2018)

  32. Ellis, W., Hersh, D.: XACML 3.0 Analysis, Purdue University (2015)

  33. Mishra, N., Verma, L.P., Srivastava, P.K., Gupta, A.: An analysis of IoT congestion control policies. Procedia Comput. Sci. 132, 444–450 (2018)

    Article  Google Scholar 

  34. Le, F., Ortiz, J., Verma, D., Kandlur, D.: Policy-based identification of IoT devices’ vendor and type by DNS traffic analysis. In: Policy-Based Autonomic Data Governance, pp. 180–201. Springer, Cham (2019)

  35. Pal, S., Hitchens, M., Varadharajan, V., Rabehaja, T.: Policy-based access control for constrained healthcare resources in the context of the Internet of Things. J. Netw. Comput. Appl. 139, 57–74 (2019)

    Article  Google Scholar 

  36. Nobakht, M., Russell, C., Hu, W., Seneviratne, A.: IOT-NETSEC: policy-based IoT network security using OpenFlow. In 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 955–960. IEEE (2019)

  37. Al-Shaboti, M., Chen, A., Welch, I.: Automatic Device Selection and Access Policy Generation based on user preference for IoT activity workflow. In 2019 18th IEEE International Conference On Trust, Security And Privacy in Computing and Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), pp. 769–774. IEEE (2019)

  38. Ding, S., Cao, J., Li, C., Fan, K., Li, H.: A novel attribute-based access control scheme using blockchain for IoT. IEEE Access 7, 38431–38441 (2019)

    Article  Google Scholar 

  39. Lim, H.K., Kim, J.B., Heo, J.S., Han, Y.H.: Federated reinforcement learning for training control policies on multiple IoT devices. Sensors 20(5), 1359 (2020)

    Article  Google Scholar 

  40. Chen, Q., Srivastava, G., Parizi, R.M., Aloqaily, M., Al Ridhawi, I.: An incentive-aware blockchain-based solution for internet of fake media things. Inf. Process. Manag. 57(6), 102370 (2020)

    Article  Google Scholar 

  41. Al Ridhawi, I., Aloqaily, M., Boukerche, A., Jaraweh, Y.: A blockchain-based decentralized composition solution for IoT services. In: ICC 2020-2020 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2020)

  42. Khalid, U., Asim, M., Baker, T., Hung, P.C., Tariq, M.A., Rafferty, L.: A decentralized lightweight blockchain-based authentication mechanism for IoT systems. Clust. Comput. 23, 2067–2087 (2020)

    Article  Google Scholar 

  43. Kumar, R., Venkanna, U., Tiwari, V.: Opti-PUM: an optimal policy update mechanism for link failure prevention in mobile SDWM-IoT networks. IEEE Syst. J. (2020). https://doi.org/10.1109/JSYST.2020.3009325

    Article  Google Scholar 

  44. Pavithran, D., Shaalan, K., Al-Karaki, J.N., Gawanmeh, A.: Towards building a blockchain framework for IoT. Clust. Comput. 23, 2089–2103 (2020)

    Article  Google Scholar 

  45. Miloslavskaya, N., Tolstoy, A.: IoTBlockSIEM for information security incident management in the internet of things ecosystem. Clust. Comput. 23, 1911–1925 (2020)

    Article  Google Scholar 

  46. Puri, V., Kumar, R., Van Le, C., Sharma, R., Priyadarshini, I.: A vital role of blockchain technology toward Internet of vehicles. In: Handbook of Research on Blockchain Technology, pp. 407–416. Academic Press, New York (2020)

  47. Raspberry Pi Documentation: https://www.raspberrypi.org/documentation/. Accessed 12 June 2020

  48. Crosby, M., Pattanayak, P., Verma, S., Kalyanaraman, V.: Blockchain technology: beyond bitcoin. Appl. Innov. 2(6–10), 71 (2016)

    Google Scholar 

  49. Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly Media, Inc., Beijing (2015)

  50. Dapps: Retrieved from https://ethdocs.org/en/latest/contracts-and-transactions/developer-tools.html (n.d.). Accessed 12 June 2020

  51. Silvio: (2018, October 2).https://urn.nsk.hr/urn:nbn:hr:190:464395

  52. Ethereum foundation: Solidity documentation (2017)

  53. Sultan, A., Mushtaq, M. A., Abubakar, M.: IOT security issues via blockchain: a review paper. In: Proceedings of the 2019 International Conference on Blockchain Technology, pp. 60–65 (2019)

  54. Al-Turjman, F. (ed.): Security in IoT-Enabled Spaces. CRC Press, Boca Raton (2019)

    Google Scholar 

  55. Ganache Server: https://github.com/trufflesuite/ganache-cli. Accessed 6 June 2020

  56. Hammi, M.T., Hammi, B., Bellot, P., Serhrouchni, A.: Bubbles of trust: a decentralized blockchain-based authentication system for IoT. Comput. Security 78, 126–142 (2018)

    Article  Google Scholar 

  57. Dorri, A., Kanhere, S.S., Jurdak, R., Gauravaram, P.: LSB: a lightweight scalable blockchain for IoT security and anonymity. J. Parallel Distrib. Comput. 134, 180–197 (2019)

    Article  Google Scholar 

  58. Shabandri, B., Maheshwari, P.: Enhancing IoT security and privacy using distributed ledgers with IOTA and the tangle. In: 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), pp. 1069–1075. IEEE (2019)

  59. Watanabe, H., Fan, H.: A novel chip-level blockchain security solution for the Internet of Things networks. Technologies 7(1), 28 (2019)

    Article  Google Scholar 

  60. Du, M., Wang, K., Liu, Y., Qian, K., Sun, Y., Xu, W., Guo, S.: Spacechain: a three-dimensional blockchain architecture for IoT security. IEEE Wirel. Commun. 27(3), 38–45 (2020)

    Article  Google Scholar 

  61. Yazdinejad, A., Parizi, R.M., Dehghantanha, A., Zhang, Q., Choo, K.K.R.: An energy-efficient SDN controller architecture for IoT networks with blockchain-based security. IEEE Trans. Serv. Comput. (2020). https://doi.org/10.1109/TSC.2020.2966970

  62. Singh, S.K., Rathore, S., Park, J.H.: Blockiot intelligence: a blockchain-enabled intelligent IoT architecture with artificial intelligence. Fut. Gen. Comput. Syst. 110, 721–743 (2020)

    Article  Google Scholar 

  63. Speedtest-cli: https://pypi.org/project/speedtest-cli/. Accessed 18 Sept 2020

  64. IPerf: https://www.linode.com/docs/networking/diagnostics/install-iperf-to-diagnose-network-speed-in-linux/. Accessed 18 Sept 2020

  65. Li, H., Pei, L., Liao, D., et al.: BDDT: use blockchain to facilitate IoT data transactions. Cluster. Comput. (2020). https://doi.org/10.1007/s10586-020-03119-w

    Article  Google Scholar 

  66. Niranjanamurthy, M., Nithya, B.N., Jagannatha, S.: Analysis of Blockchain technology: pros, cons and SWOT. Clust. Comput. 22(6), 14743–14757 (2019)

    Article  Google Scholar 

  67. Alfandi, O., Khanji, S., Ahmad, L., Khattak, A.: A survey on boosting IoT security and privacy through blockchain. Clust. Comput. (2020). https://doi.org/10.1007/s10586-020-03137-8

    Article  Google Scholar 

  68. Neiheiser, R., Inácio, G., Rech, L., Fraga, J.: HRM smart contracts on the blockchain: emulated vs native. Clust. Comput. 23, 2105–2122 (2020)

    Article  Google Scholar 

  69. Alazab, M., Alhyari, S., Awajan, A., Abdallah, A.B.: Blockchain technology in supply chain management: an empirical study of the factors affecting user adoption/acceptance. Clust. Comput. (2020). https://doi.org/10.1007/s10586-020-03200-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghvendra Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puri, V., Priyadarshini, I., Kumar, R. et al. Smart contract based policies for the Internet of Things. Cluster Comput 24, 1675–1694 (2021). https://doi.org/10.1007/s10586-020-03216-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-020-03216-w

Keywords

Navigation