Skip to main content

Advertisement

Log in

Energy and cost trade-off for computational tasks offloading in mobile multi-tenant clouds

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Mobile cloud computing augments smart-phones with computation capabilities by offloading computations to the cloud. Recent works only consider the energy savings of mobile devices while neglecting the cost incurred to the tasks which are offloaded. We might offload several tasks to minimize the total energy consumption of mobile devices; however, this could incur a huge monetary cost. Furthermore, these issues become more complex in considering the multi-tenant cloud, which is not addressed in literature adequately. Thus, to balance the trade-off between monetary cost and energy consumption of the mobile devices, we need to decide whether to offload the task to the cloud or run it locally. In this article, first, we have formulated a ‘MinEMC’ optimization problem to minimize both the energy as well as the monetary cost of the mobile devices. The ‘MinEMC’ problem is proven to be NP-hard. We formulate a special case with an equal amount of resource requirement by each task for which a polynomial-time solution is presented. Further various policies are proposed, the cloud can employ to solve the general case. Then we proposed an efficient heuristic named ‘Off-Mat’ based on distributed stable matching, the solution for which determines whether the tasks are to be offloaded or not under multi-constraints. We also analyze the complexity of this proposed heuristic algorithm. Finally, performance evaluation through simulation results demonstrates that the Off-Mat algorithm attains high-performance in computational tasks offloading and scale well as the number of tenants increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing: architecture, applications, and approaches. Wirel. Commun. Mob. Comput. 13, 1587–1611 (2013)

    Article  Google Scholar 

  2. Satyanarayanan, M.: Mobile computing: the next decade. SIGMOBILE Mobile Computing and Communications Review, pp. 2–10 (2011)

  3. Satyanarayanan, M.: Fundamental challenges in mobile computing. In: Proceedings of the fifteenth annual ACM symposium on Principles of distributed computing (PODC ’96), pp. 1–7. Association for Computing Machinery, New York (1996)

  4. Qi, H., Gani, A.: Research on mobile cloud computing: review, trend and perspectives. In: Second International Conference on Digital Information and Communication Technology and It’s Applications (DICTAP), pp. 195–202. Bangkok (2012)

  5. Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: CloneCloud: elastic execution between mobile device and cloud. In: Proceedings of the Sixth Conference on Computer systems (EuroSys ’11), pp. 301–314. Association for Computing Machinery, New York (2011)

  6. Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: ThinkAir: Dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In: 2012 Proceedings INFOCOM, pp. 945–953. IEEE, Orlando (2012)

  7. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based cloudlets in mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2009)

    Article  Google Scholar 

  8. Rim, H., Kim, S., Kim, Y., Han, H.: Transparent method offloading for slim execution. In: 1st International Symposium on Wireless Pervasive Computing, pp. 1-6. Phuket (2006)

  9. Cuervo, E. et al.: MAUI: making smartphones last longer with code offload. In: Proceedings of the 8th international conference on Mobile systems, applications, and services (MobiSys ’10), pp. 49–62. Association for Computing Machinery, New York (2010)

  10. Wang, X., Wang, J., Wang, X., Chen, X.: Energy and delay tradeoff for application offloading in mobile cloud computing. IEEE Syst. J. 11(2), 858–867 (2017)

    Article  MathSciNet  Google Scholar 

  11. Wen, Y., Zhang, W., Luo, H.: Energy-optimal mobile application execution: taming resource-poor mobile devices with cloud clones. In: Proceedings IEEE INFOCOM, pp. 2716–2720. IEEE, Orlando (2012)

  12. Zhang, W., et al.: Energy-optimal mobile cloud computing under stochastic wireless channel. IEEE Trans. Wireless Commun. 12(9), 4569–4581 (2013)

    Article  Google Scholar 

  13. Song, J., Cui, Y., Li, M., Qiu, J., Buyya, R.: Energy-traffic tradeoff cooperative offloading for mobile cloud computing. In: 22nd international symposium of quality of service (IWQoS), pp. 284–289. IEEE, Hong Kong (2014)

  14. Xia, F., Ding, F., Li, J., et al.: Phone2Cloud: Exploiting computation offloading for energy saving on smartphones in mobile cloud computing. Inf. Syst. Front. 16, 95–111 (2014)

    Article  Google Scholar 

  15. Xu, H., Li, B.: Egalitarian stable matching for VM migration in cloud computing. In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 631–636. IEEE, Shanghai (2011)

  16. Kim, G., Lee, W.: Stable matching with ties for cloud-assisted smart TV services, IEEE International Conference on Consumer Electronics (ICCE), pp. 558–559. IEEE, Las Vegas (2014)

  17. Oualhaj, O. A., Sabir, E., Kobbane, A., Ben-Othman, J., Koutbi, M. E.: A college admissions game for content caching in heterogeneous delay tolerant networks. In: 23rd International Conference on Telecommunications (ICT), pp. 1–5. Thessaloniki (2016)

  18. Saad, W., Han, Z., Zheng, R., Debbah, M., Poor, H. V.: A college admissions game for uplink user association in wireless small cell networks. In: IEEE INFOCOM- IEEE Conference on Computer Communications, pp. 1096–1104. IEEE, Toronto (2014)

  19. Clinch, S., Harkes, J., Friday, A., Davies, N., Satyanarayanan, M.: How close is close enough? Understanding the role of cloudlets in supporting display appropriation by mobile users. In: International Conference on Pervasive Computing and Communications, pp. 122–127. IEEE, Lugano (2012)

  20. Xia, Q., Liang, W., Xu, W.: Throughput maximization for online request admissions in mobile cloudlets. In: 38th Annual IEEE Conference on Local Computer Networks, pp. 589–596. IEEE, Sydney (2013)

  21. Huang, D., Wang, P., Niyato, D.: A dynamic offloading algorithm for mobile computing. IEEE Trans. Wireless Commun. 11(6), 1991–1995 (2012)

    Article  Google Scholar 

  22. Zhang, W., Wen, Y., Wu, D.O.: Energy-efficient scheduling policy for collaborative execution in mobile cloud computing. In: Proceedings IEEE INFOCOM, pp. 190–194. IEEE, Turin (2013)

  23. Gu, Y., Saad, W., Bennis, M., Debbah, M., Han, Z.: Matching theory for future wireless networks: fundamentals and applications. IEEE Commun. Mag. 53(5), 52–59 (2015)

    Article  Google Scholar 

  24. Barou, M., Balinski, M.: Erratum: the stable allocation (or ordinal transportation) problem. Math. Oper. Res. 27, 662–680 (2002)

    Article  MathSciNet  Google Scholar 

  25. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mont. JSTOR. 69(1), 9–15 (1962)

    Article  MathSciNet  Google Scholar 

  26. Xu, H., Li, B.: Anchor: a versatile and efficient framework for resource management in the Cloud. IEEE Trans. Parallel Distrib. Syst. 24(6), 1066–1076 (2013)

    Article  Google Scholar 

  27. Mairson, H.: The stable marriage problem. The Brandeis Review. 12, (1992)

  28. Brito, I., Meseguer, P.: Distributed stable matching problems. In: Principles and Practice of Constraint Programming-CP 2005. Springer, pp. 152–166 (2005)

  29. Meng, T.: Security and performance tradeoff analysis of offloading policies in mobile Cloud Computing (2017)

  30. Barbera, M. V., Kosta, S., Mei, A., Stefa, J.: To offload or not to offload? The bandwidth and energy costs of mobile cloud computing. In: Proceedings IEEE INFOCOM, pp. 1285–1293. IEEE, Turin (2013)

  31. Huang, D., Wang, P., Niyato, D.: A dynamic offloading algorithm for mobile computing. IEEE Trans. Wireless Commun. 11(6), 1991–1995 (2012)

    Article  Google Scholar 

  32. Zheng, K., et al.: Delay-optimized offloading for mobile cloud computing services in heterogenous networks. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 133, pp. 122–131 (2014)

  33. Kwak, J., Kim, Y., Lee, J., Chong, S.: DREAM: dynamic resource and task allocation for energy minimization in mobile cloud systems. IEEE J. Sel. Areas Commun. 33(12), 2510–2523 (2015)

    Article  Google Scholar 

  34. Nir, M., Matrawy, A., St-Hilaire, M.: An energy optimizing scheduler for mobile cloud computing environments. In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 404–409. IEEE, Toronto (2014)

  35. Liu, X., Li, Y., Chen, H.: Wireless resource scheduling based on backoff for multiuser multiservice mobile cloud computing. IEEE Trans. Veh. Technol. 65(11), 9247–9259 (2016)

    Article  Google Scholar 

  36. Meskar, E., Todd, T.D., Zhao, D., Karakostas, G.: Energy aware offloading for competing users on a shared communication channel. IEEE Trans. Mob. Comput. 16(1), 87–96 (2017)

    Article  Google Scholar 

  37. Chen, X.: Decentralized computation offloading game for mobile cloud computing. IEEE Trans. Parallel Distrib. Syst. 26(4), 974–983 (2015)

    Article  Google Scholar 

  38. Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Network. 24(5), 2795–2808 (2016)

    Article  Google Scholar 

  39. Liu, Y., Lee, M.J., Zheng, Y.: Adaptive multi-resource allocation for cloudlet-based mobile cloud computing system. IEEE Trans. Mob. Comput. 15(10), 2398–2410 (2016)

    Article  Google Scholar 

  40. Kuang, Z., Guo, S., Liu, J., Yang, Y.: A quick-response framework for multi-user computation offloading in mobile cloud computing. Fut. Gener. Comput. Syst. 81, 166–176 (2018)

    Article  Google Scholar 

  41. Chekuri, C., Khanna, S.: A PTAS for the multiple knapsack problem. In: Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms (SODA ’00), Society for Industrial and Applied Mathematics, pp. 213–222. ACM (2000)

  42. El Haber, E., Nguyen, T.M., Assi, C.: joint optimization of computational cost and devices energy for task offloading in multi-tier edge-clouds. IEEE Trans. Commun. 67(5), 3407–3421 (2019)

    Article  Google Scholar 

  43. Fang, Z., Lin, J.-H., Srivastava, M.B., Gupta, R.K.: Multi-tenant mobile offloading systems for real-time computer vision applications. In: Proceedings of the 20th International Conference on Distributed Computing and Networking (ICDCN ’19), pp. 21–30. Association for Computing Machinery, New York (2019)

  44. Ghobaei-Arani, M., Souri, A., Rahmanian, A.A.: Resource management approaches in fog computing: a comprehensive review. J. Grid Comput. 18, 1–42 (2020)

    Article  Google Scholar 

  45. Lakhan, A., Li, X.: Transient fault aware application partitioning computational offloading algorithm in microservices based mobile cloudlet networks. Computing 102, 105–139 (2020)

    Article  Google Scholar 

  46. Verma, R.K., Panigrahi, C.R., Pati, B., Sarkar, J.L.: An efficient approach for running multimedia applications using mobile cloud computing. In: Pati, B., Panigrahi, C., Buyya, R., Li, K.C. (eds.) Advanced Computing and Intelligent Engineering, Advances in Intelligent Systems and Computing, vol. 1089. Springer, Singapore (2020)

    Google Scholar 

  47. Shakarami, A., Shahidinejad, A., Ghobaei-Arani, M.: A review on the computation offloading approaches in mobile edge computing: a game-theoretic perspective. Softw: Pract Exper. 1–41 (2020)

  48. Nagasundari, S., Ravimaran, S., Uma, G.V.: Enhancement of the dynamic computation-offloading service selection framework in mobile cloud environment. Wireless Pers. Commun. 112, 225–241 (2020)

    Article  Google Scholar 

  49. De, D., Mukherjee, A., GuhaRoy, D.: Power and delay efficient multilevel offloading strategies for mobile cloud computing. Wireless Pers. Commun. 112, 2159–2186 (2020)

    Article  Google Scholar 

  50. Ghobaei-Arani, M., Khorsand, R., Ramezanpour, M.: An autonomous resource provisioning framework for massively multiplayer online games in cloud environment. J. Netw. Comput. Appl. 142, 76–97 (2019)

    Article  Google Scholar 

  51. Derhab, A., Belaoued, M., Guerroumi, M., Khan, F.A.: Two-factor mutual authentication offloading for mobile cloud computing. IEEE Access. 8, 28956–28969 (2020)

    Article  Google Scholar 

  52. Ghobaei-Arani, M., Rahmanian, A.A., Souri, A., Rahmani, A.M.: A moth-flame optimization algorithm for web service composition in cloud computing: simulation and verification. Softw. Pract. Exper. 48, 1865–1892 (2018)

    Google Scholar 

  53. Ghobaei-Arani, M., et al.: CSA-WSC: cuckoo search algorithm for web service composition in cloud environments. Soft. Comput. 22, 8353–8378 (2018)

    Article  Google Scholar 

  54. Nir, M., Matrawy, A., St-Hilaire, M.: Economic and energy considerations for resource augmentation in mobile cloud computing. IEEE Trans. Cloud Comput. 6(1), 99–113 (2018)

    Article  Google Scholar 

  55. Chen, L., et al.: ENGINE: cost effective offloading in mobile edge computing with fog-cloud cooperation. arXiv:1711.01683 (2017)

  56. Alfakih, T., Hassan, M.M., Gumaei, A., Savaglio, C., Fortino, G.: Task offloading and resource allocation for mobile edge computing by deep reinforcement learning based on SARSA. IEEE Access 8, 54074–54084 (2020)

    Article  Google Scholar 

  57. Alam, M.G.R., et al.: Autonomic computation offloading in mobile edge for IoT applications. Fut. Gener. Comput. Syst. 90, 149–157 (2019)

    Article  Google Scholar 

  58. Enayet, A., et al.: Mobility-aware optimal resource allocation architecture for big data task execution on mobile cloud in smart cities. IEEE Commun. Mag. 56(2), 110–117 (2018)

    Article  Google Scholar 

  59. Islam, M.M., Razzaque, M.A., Hassan, M.M., Ismail, W.N., Song, B.: Mobile cloud-based big healthcare data processing in smart cities. IEEE Access. 5, 11887–11899 (2017)

    Article  Google Scholar 

  60. Bedi, R.K., Singh, J., Gupta, S.K.: Design and implementation of an efficient multi cloud storage approach for resource constrained mobile devices. Cluster Comput. 22, 13143–13157 (2019)

    Article  Google Scholar 

  61. Durga, S., Mohan, S., Peter, J.D., et al.: Context-aware adaptive resource provisioning for mobile clients in intra-cloud environment. Cluster Comput. 22, 9915–9928 (2019)

    Article  Google Scholar 

  62. Saleem, M., Saleem, Y., Hayat, M.F.: Stochastic QoE-aware optimization of multisource multimedia content delivery for mobile cloud. Cluster Comput. 23, 1381–1396 (2020)

    Article  Google Scholar 

  63. Elashri, S., Azim, A.: Energy-efficient offloading of real-time tasks using cloud computing. Cluster Comput (2020)

  64. Milan, S.T., Rajabion, L., Darwesh, A., et al.: Priority-based task scheduling method over cloudlet using a swarm intelligence algorithm. Cluster Comput. 23, 663–671 (2020)

    Article  Google Scholar 

  65. Miao, Y., et al.: Intelligent task prediction and computation offloading based on mobile-edge cloud computing. Fut. Gener. Comput. Syst. 102, 925–931 (2020)

    Article  Google Scholar 

  66. Xu, X., Chen, Y., Zhang, X., Liu, Q., Liu, X., Qi, L.: A blockchain-based computation offloading method for edge computing in 5G networks. Softw. Pract. Exper. 1–18 (2019)

  67. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurr. Comput. 24(13), 1397–1420 (2012)

    Article  Google Scholar 

  68. Statservice. http://moses.us.es/statservice

  69. Parejo, J.A., Garca, J., Ruiz-Cortl’s, A., Riquelme, J.C.: Statservice: Herramienta de analisis estadstico como soporte para la investigacin con metaheursticas. In: Actas del VIII Congreso Expaol sobre Metaheursticas, Algoritmos Evolutivos y Bio-inspirados (2012)

  70. Social Science Statistics. https://www.socscistatistics.com/

Download references

Acknowledgements

We would like to thank the editor and anonymous reviewers for their valuable and insightful comments, which have significantly improved the quality and acceptability of the paper. The work is partially supported by the Department of Science and Technology (DST), Government of India under ICPS Programme through the Project No.: DST/ICPS/CPS-Individual/2018/403(G), “Low-cost Energy-Efficient Cloud for Cyber-Physical Disaster Management Systems.” The first author, Yashwant Singh Patel, acknowledges Visvesvaraya PhD Scheme, MeitY, Govt. of India<MEITY-PHD-2525> for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashwant Singh Patel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, Y.S., Reddy, M. & Misra, R. Energy and cost trade-off for computational tasks offloading in mobile multi-tenant clouds. Cluster Comput 24, 1793–1824 (2021). https://doi.org/10.1007/s10586-020-03226-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-020-03226-8

Keywords

Navigation