Skip to main content

Advertisement

Log in

Mobility-aware computational offloading in mobile edge networks: a survey

  • Published:
Cluster Computing Aims and scope Submit manuscript

A Correction to this article was published on 16 August 2021

This article has been updated

Abstract

Technological evolution of mobile devices, such as smart phones, laptops, wearable and other handheld devices have come up with the emergence of different user applications in learning, social networking, entertainment, and community computing domains. Many of such applications are fully or partially offloaded to the nearby server capable with high computing and storage resources. The delivery of task offloading results to the users is a challenge in those networks where the frequency of user mobility is high, leading to increased latency, higher energy consumption and inefficient resource utilization. In this paper, we survey the existing studies which optimize the task offloading in edge networks with mobility management. We formulate taxonomy of the research domain for classification of research works. We compare the listed state-of-the-art research works based on the components identified from taxonomy. Moreover, we debate future research directions for mobility, security, and scalability aware MEC offloading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Wang, Z., Zhao, Z., Min, G., Huang, X., Ni, Q., Wang, R.: User mobility aware task/assignment for mobile edge computing. Futur. Gener. Comput. Syst. 85, 1–8 (2018)

    Google Scholar 

  2. Sardar Khaliquz Zaman, Tahir Maqsood, Mazhar Ali, Kashif Bilal, Sajjad A. Madani, and A. U. R. Khan, A load balanced task scheduling heuristic for large-scale computing systems, Computer Systems Science and Engineering, vol. 34, pp. 1–12, 2019 .

  3. Sheng, J., Hu, J., Teng, X., Wang, B., Pan, X.: Computation offloading strategy in mobile edge computing. Information 10, 191 (2019)

    Google Scholar 

  4. J. Shuja, A. Gani, M. H. ur Rehman, E. Ahmed, S. A. Madani, M. K. Khan, et al., Towards native code offloading based MCC frameworks for multimedia applications: a survey, Journal of Network and Computer Applications, vol. 75, pp. 335–354, 2016.

  5. Yu, W., Liang, F., He, X., Hatcher, W.G., Lu, C., Lin, J., et al.: A survey on the edge computing for the Internet of Things. IEEE Access 6, 6900–6919 (2017)

    Google Scholar 

  6. Ziming, Z., Fang, L., Zhiping, C., Nong, X.: Edge computing: platforms, applications and challenges. Journal of Computer Research and Development 55, 327–337 (2018)

    Google Scholar 

  7. Sun, X., Ansari, N.: Latency aware workload offloading in the cloudlet network. IEEE Commun. Lett. 21, 1481–1484 (2017)

    Google Scholar 

  8. Yusong, S., Hui, S., Jie, C., Quan, Z., Wei, L.: Edge computing: a new computing model in the age of internet of things. Computer Research Development 54, 907–924 (2017)

    Google Scholar 

  9. Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and computation offloading. IEEE Communications: Surveys Tutorials 19, 1628–1656 (2017)

    Google Scholar 

  10. Shuja, J., Gani, A., Naveed, A., Ahmed, E., Hsu, C.-H.: Case of ARM emulation optimization for offloading mechanisms in mobile cloud computing, Future Gener. Comput. Syst. 76, 407–417 (2017)

  11. Peng, Q., Xia, Y., Feng, Z., Lee, J., Wu, C., Luo, X., et al.: Mobility-aware and migration-enabled online edge user allocation in mobile edge computing. In: 2019 IEEE International Conference on Web Services (ICWS), pp. 91–98, 2019

  12. Uzaman, S.K., Shuja, J., Maqsood, T., Rehman, F., Mustafa, S.: A systems overview of commercial data centers: initial energy and cost analysis. Int. J. Inf. Technol. Web Eng. 14, 42–65 (2019)

    Google Scholar 

  13. Ahmed, E., Ahmed, A., Yaqoob, I., Shuja, J., Gani, A., Imran, M., et al.: Bringing computation closer toward the user network: is edge computing the solution? IEEE Commun. Mag. 55, 138–144 (2017)

    Google Scholar 

  14. Saleem, M., Saleem, Y., Hayat, M.F.: Stochastic QoE-aware optimization of multisource multimedia content delivery for mobile cloud. Clust. Comput. 23, 1381–1396 (2020)

    Google Scholar 

  15. Pham, Q.-V., Fang, F., Ha, V.N., Le, M., Ding, Z., Le, L.B., et al.: A survey of multi-access edge computing in 5G and beyond: fundamentals, technology integration, and state-of-the-art, arXiv preprint arXiv:1906.08452, 2019

  16. Shuja, J., Bilal, K., Alanazi, E., Alasmary, W., Alashaikh, A.: Applying machine learning techniques for caching in next-generation edge networks: a comprehensive survey. J. Netw. Comput. Appl. 181, 103005 (2021)

    Google Scholar 

  17. Pham, Q.-V., Fang, F., Ha, V.N., Piran, M.J., Le, M., Le, L.B., et al.: A survey of multi-access edge computing in 5G and beyond: fundamentals, technology integration, and state-of-the-art. IEEE Access 8, 116974–117017 (2020)

    Google Scholar 

  18. Waqas, M., Niu, Y., Li, Y., Ahmed, M., Jin, D., Chen, S., et al.: Mobility-aware device-to-device communications: principles, practice and challenges. IEEE Commun. Surv. Tutor. 22, 1863 (2019)

    Google Scholar 

  19. Zaman, S.K., Tahir Maqsood, M.A., Bilal, K.: A load balanced task scheduling heuristic for large-scale computing systems. Comput. Syst. Sci. Eng. 34, 4 (2019)

  20. Sardar Khaliq uz Zaman, A.U.R.K., Malik, S.U.R., Khan, A.N., Maqsood, T., Madani, S.A.: Formal verification and performance evaluation of task scheduling heuristics for makespan optimization and workflow distribution in large-scale computing systems. Comput. Syst. Sci. Eng. 32, 227 (2017)

  21. Al-Habob, A.A., Dobre, O.A., Armada, A.G., Muhaidat, S.: Task scheduling for mobile edge computing using genetic algorithm and conflict graphs. IEEE Trans. Veh. Technol. (2020). https://doi.org/10.1109/TVT.2020.2995146

    Article  Google Scholar 

  22. Khan, W.Z., Ahmed, E., Hakak, S., Yaqoob, I., Ahmed, A.: Edge computing: a survey. Futur. Gener. Comput. Syst. 97, 219–235 (2019)

    Google Scholar 

  23. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: Mobile edge computing: survey and research outlook, arXiv preprint arXiv:1701.01090, 2017

  24. Kemp, R., Palmer, N., Kielmann, T., Seinstra, F., Drost, N., Maassen, J., et al.: Eyedentify: multimedia cyber foraging from a smartphone. In: 2009 11th IEEE International Symposium on Multimedia, 2009, pp. 392–399

  25. Shi, B., Yang, J., Huang, Z., Hui, P.: Offloading guidelines for augmented reality applications on wearable devices. In: Proceedings of the 23rd ACM International Conference on Multimedia, 2015, pp. 1271–1274

  26. Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Netw. 24, 2795–2808 (2015)

    Google Scholar 

  27. Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., Wang, W.: A survey on mobile edge networks: convergence of computing, caching and communications. IEEE Access 5, 6757–6779 (2017)

    Google Scholar 

  28. Mach, P., Becvar, Z.: Cloud-aware power control for real-time application offloading in mobile edge computing. Trans. Emerg. Telecommun. Technol. 27, 648–661 (2016)

    Google Scholar 

  29. Nur, F.N., Islam, S., Moon, N.N., Karim, A., Azam, S., Shanmugam, B.: Priority-based offloading and caching in mobile edge cloud. J. Commun. Softw. Syst. 15, 193–201 (2019)

    Google Scholar 

  30. Hao, Y., Chen, M., Hu, L., Hossain, M.S., Ghoneim, A.: Energy efficient task caching and offloading for mobile edge computing. IEEE Access 6, 11365–11373 (2018)

    Google Scholar 

  31. Ioannou, A., Weber, S.: A survey of caching policies and forwarding mechanisms in information-centric networking. IEEE Commun. Surv. Tutor. 18, 2847–2886 (2016)

    Google Scholar 

  32. Yang, J., Jiang, B., Lv, Z., Choo, K.-K.R.: A task scheduling algorithm considering game theory designed for energy management in cloud computing. Futur. Gener. Comput. Syst. 105, 985 (2017)

    Google Scholar 

  33. Lyu, X., Tian, H., Sengul, C., Zhang, P.: Multiuser joint task offloading and resource optimization in proximate clouds. IEEE Trans. Veh. Technol. 66, 3435–3447 (2016)

    Google Scholar 

  34. Deng, M., Tian, H., Lyu, X.: Adaptive sequential offloading game for multi-cell mobile edge computing. In: 23rd International Conference on Telecommunications (ICT), 2016, pp. 1–5

  35. Yang, Y., Ma, Y., Xiang, W., Gu, X., Zhao, H.: Joint optimization of energy consumption and packet scheduling for mobile edge computing in cyber-physical networks. IEEE Access 6, 15576–15586 (2018)

    Google Scholar 

  36. Xu, X., Fu, S., Yuan, Y., Luo, Y., Qi, L., Lin, W., et al.: Multiobjective computation offloading for workflow management in cloudlet-based mobile cloud using NSGA-II. Comput. Intell. 35, 476–495 (2019)

    MathSciNet  Google Scholar 

  37. Cui, Y., He W., Ni, C., Guo, C., Liu, Z.: Energy-efficient resource allocation for cache-assisted mobile edge computing. In: 2017 IEEE 42nd Conference on Local Computer Networks (LCN), 2017, pp. 640–648

  38. Nunna, S., Kousaridas, A., Ibrahim, M., Dillinger, M., Thuemmler, C., Feussner, H., et al.: Enabling real-time context-aware collaboration through 5G and mobile edge computing. In: 2015 12th International Conference on Information Technology-New Generations, 2015, pp. 601–605

  39. Rehman, F., Khalid, O., Bilal, K., Madani, S.A.: Diet-Right: a smart food recommendation system. KSII Trans. Internet Inf. Syst. 11, 2910 (2017)

    Google Scholar 

  40. Rehman, F., Khalid, O., Madani, S.A.: A comparative study of location-based recommendation systems. Knowledge Eng. Review 32, e7 (2017)

    Google Scholar 

  41. R. Roman, J. Lopez, and M. Mambo, Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges, Future Gener. Comput. Syst., vol. 78, pp. 680–698, 2018.

  42. Vemulapalli, C., Madria, S.K., Linderman, M.: Security frameworks in mobile cloud computing. In: Handbook of Computer Networks and Cyber Security, Springer, Berlin, pp. 1–41 (2020)

  43. Zheng, T.-X., Wang, H.-M., Deng, H.: Improving anti-eavesdropping ability without eavesdropper’s CSI: a practical secure transmission design perspective. IEEE Wireless Communications Letters 7, 946–949 (2018)

    Google Scholar 

  44. Wu, W., Zhou, F., Hu, R.Q., Wang, B.: Energy-efficient resource allocation for secure NOMA-enabled mobile edge computing networks. IEEE Trans. Commun. 68, 493–505 (2020)

    Google Scholar 

  45. Wu, W., Wang, X., Zhou, F., Wong, K.-K., Li, C., Wang, B.: Resource allocation for enhancing offloading security in NOMA-enabled MEC networks. IEEE Syst. J. (2020). https://doi.org/10.1109/JSYST.2020.3009723

    Article  Google Scholar 

  46. Mtibaa, A., Harras, K., Alnuweiri, H.: Friend or foe? Detecting and isolating malicious nodes in mobile edge computing platforms. In: 2015 IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom), 2015, pp. 42–49

  47. He, X., Jin, R., Dai, H.: Deep PDS-learning for privacy-aware offloading in MEC-enabled IoT. IEEE Internet Things J. 6, 4547–4555 (2018)

    Google Scholar 

  48. Gazori, P., Rahbari, D., Nickray, M.: Saving time and cost on the scheduling of fog-based IoT applications using deep reinforcement learning approach. Futur. Gener. Comput. Syst. 110, 1098–1115 (2020)

    Google Scholar 

  49. Alam, M.G.R., Hassan, M.M., Uddin, M.Z., Almogren, A., Fortino, G.: Autonomic computation offloading in mobile edge for IoT applications. Futur. Gener. Comput. Syst. 90, 149–157 (2019)

    Google Scholar 

  50. Zhou, P., Finley, B., Li, X., Tarkoma, S., Kangasharju, J., Ammar, M., et al.: 5G MEC computation handoff for mobile augmented reality, arXiv preprint arXiv:2101.00256, 2021

  51. Tamilselvan, L.: Client aware scalable cloudlet to augment edge computing with mobile cloud migration service, iJIM, vol. 14, p. 165, 2020.

  52. Sonbol, K., Özkasap, Ö., Al-Oqily, I., Aloqaily, M.: EdgeKV: decentralized, scalable, and consistent storage for the edge. J. Parallel Distrib. Comput. 144, 28–40 (2020)

    Google Scholar 

  53. Chen, X.: Decentralized computation offloading game for mobile cloud computing. IEEE Trans. Parallel Distrib. Syst. 26, 974–983 (2014)

    Google Scholar 

  54. Kabir, M.T., Masouros, C.: A scalable energy vs latency trade-off in full-duplex mobile edge computing systems. IEEE Trans. Commun. 67, 5848–5861 (2019)

    Google Scholar 

  55. Abdellatif, A.A., Mohamed, A., Chiasserini, C.F., Tlili, M., Erbad, A.: Edge computing for smart health: context-aware approaches, opportunities, and challenges. IEEE Network 33, 196–203 (2019)

    Google Scholar 

  56. Chamola, V., Tham, C.-K., Chalapathi, G.S.: Latency aware mobile task assignment and load balancing for edge cloudlets. In: 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), 2017, pp. 587–592

  57. Alam, M.G.R., Tun, Y.K., Hong, C.S.: Multi-agent and reinforcement learning based code offloading in mobile fog. In: International Conference on Information Networking (ICOIN), 2016, pp. 285–290

  58. Lee, K., Shin, I.: User mobility-aware decision making for mobile computation offloading. In: IEEE 1st International Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA), 2013, pp. 116–119

  59. Wang, S., Urgaonkar, R., Zafer, M., He, T., Chan, K., Leung, K.K.: Dynamic service migration in mobile edge computing based on Markov decision process. IEEE/ACM Trans. Network. 27, 1272–1288 (2019)

    Google Scholar 

  60. Bittencourt, L.F., Diaz-Montes, J., Buyya, R., Rana, O.F., Parashar, M.: Mobility-aware application scheduling in fog computing. IEEE Cloud Comput. 4, 26–35 (2017)

    Google Scholar 

  61. Chiang, M., Balasubramanian, B., Bonomi, F.: Fog for 5G and IoT, vol. 288: Wiley, New York (2017)

  62. Shahzamal, M., Pervez, M., Zaman, M., Hossain, M.: Mobility models for delay tolerant network: a survey. Int. J. Wirel. Mob. Netw. 6, 121–134 (2014)

    Google Scholar 

  63. Deng, S., Huang, L., Taheri, J., Zomaya, A.Y.: Computation offloading for service workflow in mobile cloud computing. IEEE Trans. Parallel Distrib. Syst. 26, 3317–3329 (2015)

    Google Scholar 

  64. Ou, S., Wu, Y., Yang, K., Zhou, B.: Performance analysis of fault-tolerant offloading systems for pervasive services in mobile wireless environments. In: 2008 IEEE International Conference on Communications, 2008, pp. 1856–1860

  65. Bhattacharya, A., De, P.: A survey of adaptation techniques in computation offloading. J. Netw. Comput. Appl. 78, 97–115 (2017)

    Google Scholar 

  66. Shahzamal, M., Pervez, M., Zaman, M., Hossain, W., Networks, M.: Mobility models for delay tolerant network: a survey 6, 121–134 (2014)

  67. Lai, P., He, Q., Abdelrazek, M., Chen, F., Hosking, J., Grundy, J., et al.: Optimal edge user allocation in edge computing with variable sized vector bin packing. In: International Conference on Service-Oriented Computing, 2018, pp. 230–245

  68. Yao, H., Bai, C., Xiong, M., Zeng, D., Fu, Z.J.: Heterogeneous cloudlet deployment and user-cloudlet association toward cost effective fog computing. Concurr. Comput. 29, e3975 (2017)

    Google Scholar 

  69. Deng, S., Huang, L., Hu, D., Zhao, J.L., Wu, Z.: Mobility-enabled service selection for composite services. IEEE Trans. Serv. Comput. 9, 394–407 (2014)

    Google Scholar 

  70. Qi, Q., Liao, J., Wang, J., Li, Q., Cao, Y.: Software defined resource orchestration system for multitask application in heterogeneous mobile cloud computing. Mob. Inf. Syst. 2016, 1–17 (2016)

    Google Scholar 

  71. Li, Y., Wang, W.: Can mobile cloudlets support mobile applications? In: IEEE INFOCOM 2014-IEEE Conference on Computer Communications, 2014, pp. 1060–1068

  72. Huang, M., Liu, W., Wang, T., Liu, A., Zhang, S.: A cloud-MEC collaborative task offloading scheme with service orchestration. IEEE Internet Things J. 7, 5792 (2019)

    Google Scholar 

  73. Liu, Y., Zeng, Z., Liu, X., Zhu, X., Bhuiyan, M.Z.A.: A novel load balancing and low response delay framework for edge-cloud network based on SDN. IEEE Internet Things J. 7, 5922 (2019)

    Google Scholar 

  74. Zahoor, S., Javaid, N., Khan, A., Ruqia, B., Muhammad, F.J., Zahid, M.: A cloud-fog-based smart grid model for efficient resource utilization. In: 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), 2018, pp. 1154–1160

  75. Zahoor, S., Javaid, S., Javaid, N., Ashraf, M., Ishmanov, F., Afzal, M.K.: Cloud–fog-based smart grid model for efficient resource management. Sustainability 10, 2079 (2018)

    Google Scholar 

  76. Cao, B., Zhang, L., Li, Y., Feng, D., Cao, W.: Intelligent offloading in multi-access edge computing: a state-of-the-art review and framework. IEEE Commun. Mag. 57, 56–62 (2019)

    Google Scholar 

  77. Shakarami, A., Ghobaei-Arani, M., Shahidinejad, A.: A survey on the computation offloading approaches in mobile edge computing: a machine learning-based perspective. Comput. Netw. 182, 107496 (2020)

    Google Scholar 

  78. Hussein, M.K., Mousa, M.H.: Efficient task offloading for IoT-based applications in fog computing using ant colony optimization. IEEE Access 8, 37191–37201 (2020)

    Google Scholar 

  79. Peng, Z., Lin, J., Cui, D., Li, Q., He, J.: A multi-objective trade-off framework for cloud resource scheduling based on the Deep Q-network algorithm. Clust. Comput. 23, 2753–2767 (2020)

    Google Scholar 

  80. Hussein, M.K., Mousa, M.H., Alqarni, M.A.: A placement architecture for a container as a service (CaaS) in a cloud environment. J. Cloud Comput. 8, 7 (2019)

    Google Scholar 

  81. Boveiri, H.R., Khayami, R., Elhoseny, M., Gunasekaran, M.: An efficient Swarm-Intelligence approach for task scheduling in cloud-based internet of things applications. J. Ambient. Intell. Humaniz. Comput. 10, 3469–3479 (2019)

    Google Scholar 

  82. Fan, J., Wei, X., Wang, T., Lan, T., Subramaniam, S.: Deadline-aware task scheduling in a tiered IoT infrastructure. In: GLOBECOM 2017–2017 IEEE Global Communications Conference, 2017, pp. 1–7

  83. Xu, J., Li, X., Liu, X., Zhang, C., Fan, L., Gong, L., et al.: Mobility-aware workflow offloading and scheduling strategy for mobile edge computing. In: International Conference on Algorithms and Architectures for Parallel Processing, 2019, pp. 184–199

  84. Ouyang, T., Zhou, Z., Chen, X.: Follow me at the edge: mobility-aware dynamic service placement for mobile edge computing. IEEE J. Sel. Areas Commun. 36, 2333–2345 (2018)

    Google Scholar 

  85. Keshavarznejad, M., Rezvani, M.H., Adabi, S.: Delay-aware optimization of energy consumption for task offloading in fog environments using metaheuristic algorithms. Clust. Comput. (2021). https://doi.org/10.1007/s10586-020-03230-y

    Article  Google Scholar 

  86. Zhan, W., Luo, C., Min, G., Wang, C., Zhu, Q., Duan, H.: Mobility-aware multi-user offloading optimization for mobile edge computing. IEEE Trans. Veh. Technol. 69, 3341–3356 (2020)

    Google Scholar 

  87. Wu, C.-L., Chiu, T.-C., Wang, C.-Y., Pang, A.-C.: Mobility-aware deep reinforcement learning with glimpse mobility prediction in edge computing. In: ICC 2020–2020 IEEE International Conference on Communications (ICC), 2020, pp. 1–7

  88. Zhao, X., Shi, Y., Chen, S.: MAESP: mobility aware edge service placement in mobile edge networks. Comput. Netw. (2020). https://doi.org/10.1016/j.comnet.2020.107435

    Article  Google Scholar 

  89. Wu, C., Peng, Q., Xia, Y., Lee, J.: Mobility-aware tasks offloading in mobile edge computing environment. In: 2019 Seventh International Symposium on Computing and Networking (CANDAR), 2019, pp. 204–210

  90. Thananjeyan, S., Chan, C.A., Wong, E., Nirmalathas, A.: Mobility-aware energy optimization in hosts selection for computation offloading in multi-access edge computing. IEEE Open J. Commun. Soc. 1, 1056–1065 (2020)

    Google Scholar 

  91. Wang, D., Liu, Z., Wang, X., Lan, Y.: Mobility-aware task offloading and migration schemes in fog computing networks. IEEE Access 7, 43356–43368 (2019)

    Google Scholar 

  92. Shi, Y., Chen, S., Xu, X.: MAGA: a mobility-aware computation offloading decision for distributed mobile cloud computing. IEEE Internet Things J. 5, 164–174 (2017)

    Google Scholar 

  93. Li, J., Bu, K., Liu, X., Xiao, B.: Enda: embracing network inconsistency for dynamic application offloading in mobile cloud computing. In: Proceedings of the Second ACM SIGCOMM Workshop on Mobile Cloud Computing, 2013, pp. 39–44

  94. Ghosh, S., Mukherjee, A., Ghosh, S.K., Buyya, R.: Mobi-IoST: mobility-aware cloud-fog-edge-iot collaborative framework for time-critical applications. IEEE Trans. Netw. Sci. Eng. 7, 2271–2285 (2019)

    Google Scholar 

  95. Shekhar, S., Chhokra, A., Sun, H., Gokhale, A., Dubey, A., Koutsoukos, X., et al.: URMILA: dynamically trading-off fog and edge resources for performance and mobility-aware IoT services. J. Syst. Architect. 107, 101710 (2020)

    Google Scholar 

  96. Sousa, B., Zhao, Z., Karimzadeh, M., Palma, D., Fonseca, V., Simoes, P., et al.: Enabling a mobility prediction-aware follow-me cloud model. In: 2016 IEEE 41st Conference on Local Computer Networks (LCN), 2016, pp. 486–494

  97. Karimzadeh, M., Zhao, Z., Hendriks, L., Schmidt, R.D.O., la Fleur, S., van den Berg, H., et al.: Mobility and bandwidth prediction as a service in virtualized LTE systems. In: 2015 IEEE 4th International Conference on Cloud Networking (CloudNet), 2015, pp. 132–138

  98. Ma, Y., Liang, W., Guo, S.: Mobility-aware delay-sensitive service provisioning for mobile edge computing. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2019, pp. 270–276

  99. Bahreini, T., Grosu, D.: Efficient placement of multi-component applications in edge computing systems. In: Proceedings of the Second ACM/IEEE Symposium on Edge Computing, 2017, pp. 1–11

  100. Hoang, V.H., Ho, T.M., Le, L.B.: Mobility-aware computation offloading in MEC-based vehicular wireless networks. IEEE Commun. Lett. 24, 466–469 (2019)

    Google Scholar 

  101. Gupta, A.K., Sadawarti, H., Verma, A.K.: Performance analysis of MANET routing protocols in different mobility models. Int. J. Inf. Technol. Comput. Sci. 5, 73–82 (2013)

    Google Scholar 

  102. Misra, S., Bera, S.: Soft-VAN: Mobility-aware task offloading in software-defined vehicular network. IEEE Trans. Veh. Technol. 69, 2071–2078 (2019)

    Google Scholar 

  103. Hu, R.Q.: Mobility-aware edge caching and computing in vehicle networks: a deep reinforcement learning. IEEE Trans. Veh. Technol. 67, 10190–10203 (2018)

    Google Scholar 

  104. Feng, J., Liu, Z., Wu, C., Ji, Y.: AVE: autonomous vehicular edge computing framework with ACO-based scheduling. IEEE Trans. Veh. Technol. 66, 10660–10675 (2017)

    Google Scholar 

  105. Huang, C.-M., Chen, Y.-F., Xu, S., Zhou, H.: The vehicular social network (VSN)-based sharing of downloaded geo data using the credit-based clustering scheme. IEEE Access 6, 58254–58271 (2018)

    Google Scholar 

  106. Hou, X., Li, Y., Chen, M., Wu, D., Jin, D., Chen, S.: Vehicular fog computing: a viewpoint of vehicles as the infrastructures. IEEE Trans. Veh. Technol. 65, 3860–3873 (2016)

    Google Scholar 

  107. Yang, C., Liu, Y., Chen, X., Zhong, W., Xie, S.: Efficient mobility-aware task offloading for vehicular edge computing networks. IEEE Access 7, 26652–26664 (2019)

    Google Scholar 

  108. Zheng, K., Meng, H., Chatzimisios, P., Lei, L., Shen, X.: An SMDP-based resource allocation in vehicular cloud computing systems. IEEE Trans. Industr. Electron. 62, 7920–7928 (2015)

    Google Scholar 

  109. Deng, S., Huang, L., Taheri, J., Zomaya, P., Systems, D.: Computation offloading for service workflow in mobile. Cloud Comput. 26, 3317–3329 (2014)

  110. Liu, J., Mao, Y., Zhang, J., Letaief, K.B.: Delay-optimal computation task scheduling for mobile-edge computing systems. In: IEEE International Symposium on Information Theory (ISIT), 2016, pp. 1451–1455

  111. Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X., et al.: Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE Access 4, 5896–5907 (2016)

    Google Scholar 

  112. Tran, T.X., Pompili, D.: Joint task offloading and resource allocation for multi-server mobile-edge computing networks. IEEE Trans. Veh. Technol. 68, 856–868 (2018)

    Google Scholar 

  113. Yu, F., Chen, H., Xu, J.: DMPO: Dynamic mobility-aware partial offloading in mobile edge computing. Futur. Gener. Comput. Syst. 89, 722–735 (2018)

    Google Scholar 

  114. Sun, Y., Zhou, S., Xu, J.: EMM: Energy-aware mobility management for mobile edge computing in ultra dense networks. IEEE J. Sel. Areas Commun. 35, 2637–2646 (2017)

    Google Scholar 

  115. Dwivedi, S., Vardhan, M., Tripathi, S.: Building an efficient intrusion detection system using grasshopper optimization algorithm for anomaly detection. Clust. Comput. 1–20, 2021.

  116. Mishra, S.K., Manjula, R.: A meta-heuristic based multi objective optimization for load distribution in cloud data center under varying workloads. Clust. Comput. 23, 3079–3093 (2020)

    Google Scholar 

  117. Elashri, S., Azim, A.: Energy-efficient offloading of real-time tasks using cloud computing. Clust. Comput. 23, 1–16 (2020)

    Google Scholar 

  118. Duong, T.M., Kwon, S.: Vertical handover analysis for randomly deployed small cells in heterogeneous networks. IEEE Trans. Wireless Commun. 19, 2282–2292 (2020)

    Google Scholar 

  119. Puliafito, C., Gonçalves, D.M., Lopes, M.M., Martins, L.L., Madeira, E., Mingozzi, E., et al.: MobFogSim: simulation of mobility and migration for fog computing. Simul. Model. Pract. Theory 101, 102062 (2020)

    Google Scholar 

  120. Ruan, L., Bai, Y., Li, S., He, S., Xiao, L.: Workload time series prediction in storage systems: a deep learning based approach. Clust. Comput. (2021). https://doi.org/10.1007/s10586-020-03214-y

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: 19-COM-1-01-0016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Imran Jehangiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The corresponding author has been changed

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaman, S.K.u., Jehangiri, A.I., Maqsood, T. et al. Mobility-aware computational offloading in mobile edge networks: a survey. Cluster Comput 24, 2735–2756 (2021). https://doi.org/10.1007/s10586-021-03268-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03268-6

Keywords

Navigation