
Middleware-based multi-agent development environment for building
and testing distributed intelligent systems

Francisco José Aguayo-Canela1 • Héctor Alaiz-Moretón1 • Marı́a Teresa Garcı́a-Ordás1 • José Alberto Benı́tez-
Andrades2 • Carmen Benavides2 • Paulo Novais3 • Isaı́as Garcı́a-Rodrı́guez1

Received: 3 June 2020 / Revised: 12 March 2021 / Accepted: 15 March 2021 / Published online: 25 March 2021

Abstract
The spread of the Internet of Things (IoT) is demanding new, powerful architectures for handling the huge amounts of data

produced by the IoT devices. In many scenarios, many existing isolated solutions applied to IoT devices use a set of rules to

detect, report and mitigate malware activities or threats. This paper describes a development environment that allows the

programming and debugging of such rule-based multi-agent solutions. The solution consists of the integration of a rule

engine into the agent, the use of a specialized, wrapping agent class with a graphical user interface for programming and

testing purposes, and a mechanism for the incremental composition of behaviors. Finally, a set of examples and a

comparative study were accomplished to test the suitability and validity of the approach. The JADE multi-agent mid-

dleware has been used for the practical implementation of the approach.

Keywords Rule-based agent � Multi-agent systems � Distributed intelligence � Development environment

1 Introduction

The proliferation of devices with Internet connection

capabilities in the so-called Internet of Things (IoT) is a

trend that is generating an overwhelming amount of new

streams of data. These data are crucial to the operation of

the systems where the devices are located but must be

properly managed to obtain useful information for decision

making. The distributed nature of these systems demands

decentralized architectures for the management and control

of the IoT devices, including tasks such as monitoring or

security assurance. The multi-agent paradigm has proven to

be a convenient approach for building this kind of decen-

tralized management and control systems [10]. This

‘‘agentification’’ idea underlies the notion of ‘‘building

intelligence’’ on the IoT devices, by including an agent

inside each of the IoT devices or by using an agent that

‘‘represents’’ the device.

In any case, the ‘‘intelligence’’ provided by the agents

may be based on the use of rules, different flavors of logic

and other deliberative mechanisms and Artificial Intelli-

gence (AI) techniques [17]. Many existing cognitive

functions used for building intelligence into the agent are

based on the reactive model, using an event-driven

& José Alberto Benı́tez-Andrades

jbena@unileon.es

Francisco José Aguayo-Canela

francisco.aguayo@ieee.org

Héctor Alaiz-Moretón

hector.moreton@unileon.es

Marı́a Teresa Garcı́a-Ordás

mgaro@unileon.es

Carmen Benavides

carmen.benavides@unileon.es

Paulo Novais

pjon@di.uminho.pt

Isaı́as Garcı́a-Rodrı́guez

isaias.garcia@unileon.es

1 SECOMUCI Research Group, Escuela de Ingenierı́as

Industrial e Informática, Universidad de León, Campus de

Vegazana s/n, C.P. 24071 León, Spain

2 SALBIS Research Group, Department of Electric, Systems

and Automatics Engineering, University of León, Campus of

Vegazana s/n, León, 24071 León, Spain

3 Algoritmi Centre/Department of Informatics University of

Minho, Braga, Portugal

(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-4450-349X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-021-03270-y&domain=pdf

mechanism that, with the aid of a set of rules, allows the

agent to sense its environment and trigger its behavior

when a change is detected [7]. This kind of approaches

have been applied to several domains as healthcare [18],

domestic electricity cost control [1] or dynamic caregiver

routing problems [15].

An especially useful application scenario for multi-agent

systems is IoT security and privacy [9, 11]. Many of the

security-oriented tools existing today rely on the definition

of a set of rules for detecting meaningful events or a set of

given patterns in the network traffic, as is the case of

intrusion detection systems (IDS) or firewalls. Thus,

incorporating these rule-based reactive systems into the

agents of a multi-agent system seems a convenient

approach for implementing distributed security IoT envi-

ronments [9], but the development of such rule-based

multi-agent systems is a difficult, time-consuming task.

There are two main approaches to build rule-based

multi-agent systems applied to IoT scenarios. The first

approach is based on the integration of a rule language (and

engine) into an agent component of an existing multi-agent

platform [14] and the second involves buiding agent and

multi-agent systems capabilities by programming them into

a rule language [19]. While the later may be useful in some

IoT scenarios where the agents must run within constrained

devices, the first approach takes advantage of the full

features of the multi-agent platform. For example, in the

case of JADE (Java Agent Development Framework) [5],

this platform can be used to build robust solutions

including the use of the FIPA-compliant Agent Commu-

nication Language (ACL) or built-in functionalities for

encryption, authentication and authorization.

This research aims at designing and building a devel-

opment environment for easing the construction and

debugging of multi-agent systems that use rules for

implementing the cognitive capacities of the agents. The

solution is based on a set of tools and functionalities

incorporated into the multi-agent middleware. Here, the

term middleware must be understood as the combination of

an agent framework (the software tools needed for building

the skeleton of a multi-agent system) and an agent platform

(the software package providing the functionalities for

deploying and running distributed multi-agent applications)

as stated in [6].

The set of hypotheses that guide this work relate to the

features and measures that the solution will have to exhibit

and accomplish, making it more suitable for the application

scenario (developing distributed management solutions for

the IoT) than existing solutions. These desired features can

be stated as follows:

– The integration of the rule engine into the agent must be

loosely coupled; in such a way that the solution does

not depends on the particular implementation technol-

ogy of the rule engine.

– As it is expected that this kind of agents are involved in

a great number of communication processes, the

execution of the reasoning must not block the agent,

allowing it to keep receiving communications from

other agents in the platform while performing the

reasoning.

– The solution must adhere to well-stablished multi-agent

platform standards.

– The development of the agents in the platform must be

incremental, with aids for testing not only the own

agent’s knowledge base, but also the cooperative

problem solving involving many agents.

This set of hypotheses directs the design and development

of the proposed platform. The solution is validated by

running some experiments for comparing its performance

to another similar approach and testing if the desired fea-

tures are achieved in the different prototypes to be

constructed.

The core components of the proposed framework

accomplishing the above hypotheses are:

– The integration of a rule engine into the agent, creating

a specialized rule-based agent component.

– The implementation of a communication mechanism

between rule-based agents.

– The creation of a wrapping agent component (working

as a development environment) that extends the main

agent component in the platform by exposing a very

rich graphical user interface for building and testing

rule-based agents.

– The modularization and externalization of the agent

behaviors, and the construction of a mechanism for the

incremental composition of behaviors into the agent.

The multi-agent middleware chosen for testing the practi-

cal solution is JADE. This choice is based on its maturity,

the size of the user community, and the use of behavior-

based agents, which can be exploited to integrate the rule

engine processes as behaviors.

Figure 1 shows a diagram of the proposed middleware

architecture. The rule engine (A) used by a given JADE

agent is loosely coupled to it through a software interface

(B) according to the technology of the engine. The rule-

based agent will communicate with other rule-based agents

by using the standard ACL (Agent Communication Lan-

guage) (C) developed by FIPA (Foundation for Intelligent

Agents) using a set of technology-neutral concepts for

describing actions in the rule engines that are stored in a

shared ontology (see Table 1). As well as the agent-to-

agent, also the agent-to-rule engine communication is

achieved by using FIPA-compliant ACL messages that the

123

agent sends to itself (D). Section 2 describes the integration

of the rule engine into the agent and these communication

processes.

Besides the integration of the agent and the rule engine,

the proposed solution includes a set of facilities to ease the

design, development and debugging of rule-based multi-

agent systems. The basic JADE Agent class has been

extended to build an incremental behavior composition

system by using a library of externalized behaviors (E) and

a mechanism for the dynamic load and incorporation of

these behaviors into the agent (F). This functionality is

detailed in Sect. 4.

Some graphical user interface windows have also been

built into the extended JADE Agent class to aid the pro-

grammer in the process of building the knowledge base for

each agent and test the distributed multi-agent system prior

to putting it into production. The ‘‘agent management tab’’

(G) includes a behavior edition window, a JADE Shell

editor and an ACL message visualization and edition

window; all of them are described in Sect. 3.1. On the other

hand, the ‘‘rule engine management tab’’ (H) includes a file

editor for creating and editing rules that are stored in an

external library (I), a synchronous shell for direct interac-

tion with the given rule engine used by the agent and an

asynchronous shell where the user can interact both with

the rule engine of the same agent or with any rule engine of

any agent in the platform. Section 3.2 gives further details

about these windows and their functionalities.

The rest of the paper is organized as follows: Section 5

describes the set of experiments used for the validation and

testing of the desired features stated in the hypotheses.

Some discussion about the results obtained is presented in

Fig. 1 Framework for the proposed solution

Table 1 Codes and description

for possible activities to be

communicated between rule-

based agents

Code Description

LOAD_FILE Load the file indicated as a parameter

LOAD_FACTS Loads the facts file indicated as a parameter.

LOAD_FROM_RESOURCE Loads the given resource file indicated as a parameter.

LOAD_FROM_STRING Loads data from a CSV file indicated as a parameter.

LOAD_ASSERT_STRING Loads facts from a string.

LOAD_BLOAD Memory restoring from a bin file.

LOAD_SLOAD Memory restoring from a plain text file.

RUN_INFINITELY Run indefinitely up to the end of rule activations.

RUN_NUMBER_OF_CYCLES Run a given number of cycles.

RUN_ONCE_THEN_BATCH Run and give the control back to the Shell.

RUN_INNER_SHELL Execute the internal Shell.

MAKE_RESET Perform a reset command.

MAKE_CLEAR Perform a clear command.

MAKE_MEMORY_DUMP Perform a security backup.

MAKE_ASSERT_STRING Inserts a fact from a string.

MAKE_BUILD Compile a query.

EVAL_COMMAND(*) Evaluate a sentence.

SET_INPUT_BUFFER_COUNT Requests the number of input characters entered.

APPEND_INPUT_BUFFER Appends to the given command.

SET_UNWATCH Not to analyze (debugger).

SET_WATCH Analyze (Facts, Modules, etc.).

GET_FACT_SLOT Get an slot value.

FACT_INDEX Move the cursor in the fact list.

123

Sect. 6. Finally, Sect. 7 is devoted to future work and

conclusions.

2 Integrating a rule engine into an agent:
the rule-based agent

The integration of the rule engine into the agent is crucial

to achieving the coordination of the agents and also the

flexibility needed to build and debug a multi-agent system,

the detailed description and discussion of the integration

can be found in [2]. The implementation is based on the

extension of the basic Agent JADE class to create the

‘‘rule-based agent’’ class, which is an agent with capacities

for integrating and communicating with an associated rule

engine.

The objectives of the integration of the rule engine into

the agent are:

– Neutrality concerning the particular technology of the

rule engine, for example, CLIPS [13], JESS [12] or

Drools [20].

– Agents with a rule-based behavior must be able to

communicate to other rule-based agents.

– Actions performed in the rule-based system of a given

agent must be fully and exclusively controlled by the

agent, separately from other activities or behaviors.

– The rule engine associated with an agent must not block

the basal agent behavior while performing the

reasoning.

– The design must help and ease the development of rule-

based multi-agent applications.

The framework proposed in this work uses an uncoupled

integration of the agent with its rule engine, in the sense of

being independent of the engine technology by using a

programming interface mechanism for interaction. The rule

engine is exclusively devoted to the agent, which distin-

guishes this approach from other ones where the reasoning

is built as a service in a special agent devoted to solely

perform the execution of the rules that other agents demand

[4].

2.1 Using an interface for managing the rule
engine from the agent

The interaction of the agent and its corresponding rule

engine is performed by using an interface (called RBEn-

gine) that allows the agent to interact with any rule engine

technology by creating an according implementation. The

initialization method for the agent includes the code for the

creation of the RBEngine, due to this, the agent has full

control over the functionalities and the responses coming

from the engine and, there is no need to decide the kind of

inference engine technology to be used for the agent until

the very moment of its creation in the platform.

The object that represents the rule engine is unique, and

is subordinated to the execution thread of the agent. It is

created when the agent is incorporated into the multi-agent

platform, not as part of the behavior lifecycle of the agent.

2.2 Inter-agent communication mechanism

The communication mechanism between agents with

integrated rule engines complies with the FIPA specifica-

tions, using ACL messages and a domain ontology for

storing the valid set of message contents.

The set of actions that a rule-based agent can ask

another one to perform on its rule engine is limited to a

predefined set of concepts (see Table 1) that represent the

usual activities of these kind systems (loading facts and

rules, executing a number of firing cycles, query facts and

rules, performing a reset or clear command, etc.).

These actions can be invoked by a rule-based agent

when communicating to another rule-based agent, but also

by a human (working within the enriched interface shell of

an agent, see Section III.B.3) that wants to communicate

with any other rule-based agent in the platform for

development or testing purposes. These two kinds of

interaction are distinguished by a field value within the

content of the ACL message, this way, the receiving agent

is aware of whether the message comes from another agent

or from a human developer.

2.3 Communication of the agent with its rule
engine

Figure 2 details the mechanism for the communication

between an agent and its rule engine when a message

arrives from another agent in the platform. The sender

agent is represented as A1 in figure 2 (note that it is

duplicated for coherence with the time line used for

Fig. 2 Schematic view of an agent A1 sending an ACL message

targeted at the rule engine in agent A2

123

representing the communication process). When a rule-

based agent (A2 in figure 2) receives an ACL message

from A1 containing actions that are to be performed by its

rule engine, the agent, initially, captures this message (first

loop with duration te in figure 2) and replies to the sender

agent the acceptance (or not) of the action (this reply is not

represented in figure 2 for clarity). Then, the receiver agent

creates and sends itself a new ACL message containing the

same action proposed by the sender, as well as the iden-

tification for both the conversation and the sender agent.

The action is placed in the receiving agent’s message queue

to be finally processed by its rule engine when it is ready to

do so (second loop with duration tp in Fig. 2).

During all this process, the receiving agent is able to

keep communicating with other agents from the platform

because its functions are not blocked. Once the rule engine

processes and executes the indicated set of actions, the

sender is informed about the result of these activities (it

receives the results at time t2 in Fig. 2). This mechanism is

based on a twofold implementation of a FIPA interaction

protocol (the first one for the sender agent to destination

agent communication and the second for the destination

agent to itself – towards its rule engine –), allowing a

private, controlled and ordered use of the rule engine of the

given agents. Using a FIPA interaction protocol is a

coherent decision for the implementation of the commu-

nication process, between agents and also between an agent

and its rule engine.

2.4 Execution of the rule engine activities
in a threaded behavior

A finite-state-machine (FSM) behavior is responsible for

processing a new message when the rule engine of the

agent is ready to do so. The first state of this FSM consists

of a listening behavior capturing the message that the agent

previously arranged and put in its own message queue. The

second state is implemented in an execution behavior,

obtaining the contents included in the message, and moving

them into the rule engine. A threaded behavior is used to

wrap this execution behavior with the objective of not

interrupting the execution thread of the agent with the

activity of the rule engine. The third state is the response

behavior, it starts when the activity of the rule engine ends

(and the execution behavior thread no longer exists). This

behavior obtains the output provided by the engine, builds

the message to be sent as a response and delivers it to the

requesting agent including the initial identification for the

conversation. Finally, this response behavior returns con-

trol of the finite-state-machine to the listening behavior

and, if there are any new ACL messages for the rule engine

in the message queue of the agent, the next one is

processed.

3 The development environment

A core component of the solution is the ‘‘development

environment’’, built as an agent extending the basic Agent

JADE class. It is primarily intended to ease the develop-

ment and debugging of agents with rule-based behaviors.

When in development and debugging time, the rule-based

agent must be invoked as a ‘‘development environment’’

agent in the platform. This invocation causes the agent to

launch with an enriched graphical user interface with a set

of functionalities for building and testing rule-based

agents.

This solution allows the interactive modification of the

agent internal code, as well as the interaction with its own

rule engine, or even with any other rule engine in any of the

agents in the platform. The graphical interface of the de-

velopment environment agent has two main tabs (see

Fig. 3). Tab 1 is called the ‘‘agent management tab’’ and

tab 2 is the ‘‘rule engine management tab’’. Their func-

tionalities are presented in the next sections.

3.1 The agent management tab

The agent management tab includes the following

windows:

– The JADE shell window.

– The behavior editing window.

– The message viewing and editing window.

3.1.1 The JADE shell window

The JADE shell window (see Fig. 4) contains the Bean-

Shell component [21] connected to the agent to allow a

Fig. 3 The graphical user interface of the development environment

123

human to program in Java and having direct access to the

JADE API objects, the methods and properties of the agent,

the methods and properties of the rule engine, etc. It allows

to build new classes and to instantiate new objects to be

incorporated into the agent, to look at the help files, to

perform unitary tests, to watch the message queue, to build

new messages and send them, to build and test new

behaviors, etc.

The BeanShell component also has a non-graphical

mode, that is used when the agent is in production (without

this graphical user interface) in order to read and load the

behaviors of the agent at runtime (see Sect. 4).

3.1.2 The behavior editing window

The behavior editing (see Fig. 5) contains a text editor

making use of the RSyntaxTextArea component (https://

bobbylight.github.io/RSyntaxTextArea/). It is used for

loading and modifying the behavior files of the agent (see

Sect. 4). It has syntax highlighting and word auto-com-

pletion capabilities. On the left part of the window, a list

shows the set of all the possible behavior files for the agent

to be loaded into the editor.

3.1.3 Message editor and trace window

The message editor window (see Fig. 6) contains a partial

implementation of the testAgent component in the jade.-

tools.testagent package distributed with the JADE mid-

dleware. It allows to watch the events in the message queue

of the agent and manually build new messages.

3.2 The rule engine management tab

The ‘‘rule engine management tab’’ includes the function-

alities to interact with the associated rule engines of the

multi-agent system. It is composed of three windows:

– The file editor, for the expert system managed by the

agent.

– The synchronous shell, for communicating with the

local rule engine.

– The asynchronous shell, for communicating with any

remote rule engine in another agent in the platform.

3.2.1 File editor window

Figure 7 shows the file editor window. It is used for editing

expert system files locally. It is based on the RSyn-

taxTextArea component and includes CLIPS and Jess

syntax highlighting. The files created here can be later

loaded into the agent’s rule engine or sent remotely to

another rule-based agent.

3.2.2 The synchronous shell window

The synchronous shell allows a human to interact directly

with the rule engine of the agent. It performs a direct

connection from the graphical interface to the inner rule

Fig. 4 JADE shell window

Fig. 5 Behavior editing window Fig. 6 Message editing window

123

https://bobbylight.github.io/RSyntaxTextArea/
https://bobbylight.github.io/RSyntaxTextArea/

engine, emulating a shell of the underlying technology

(CLIPS in the case of Fig. 8). This window should only be

used during the initial phases of the agent development,

and not during execution, where the asynchronous shell is

preferred so as not to block the agent operation.

3.2.3 The asynchronous shell window

This shell allows the communication with the rule engine

of any agent in the platform, including the one of the agents

where the interaction takes place (see Fig. 9). The com-

mand introduced in this window is included in an ACL

message that is sent to the rule engine of the destination

agent. It allows the communication with the agents and

their rule engines at runtime, using an interaction protocol,

without blocking the agent behaviors or the engine exe-

cution, as was described in Sect. 2.3.

Once the command is introduced in the upper text area,

it can be dispatched by using the combination

Shift?Ctrl?Enter, or clicking on the ‘‘Excecute!’’ button.

The list on the left allows selecting which of the agents in

the platform will be the destination agent, including the

own local agent (denoted by the word ‘‘itself’’ in the list).

The command is sent to the destination agent in an ACL

message and, once the rule engine of that agent processes

the instructions, the results are sent back to the sender in an

ACL Notification message associated with the conversation

thread created at the beginning of the interaction. There is a

text area at the bottom of the window where the responses

of the destination agent (usually the results of the pro-

cessing of the instructions by the rule engine) will appear.

As a result of the solution designed, the window is not

blocked while waiting for the response, neither is the

destination agent. So, new commands can be sent even to

the same destination agent.

4 Externalization and incremental
composition of behaviors

The externalization of behaviors allows an agent to load or

modify its behaviors by loading and processing them in

real-time from local files. The Java interpreter, incorpo-

rated into the agents (see Sect. 3.1) is responsible for the

processing of these external files and the incorporation of

the behaviors in the task manager at a proper time to avoid

collisions and incoherences.

This dynamic process of loading the agent behaviors is

the base for the incremental composition of behaviors

mechanism. The final, complete, behavior of the agent can

be composed of different behaviors that can be loaded one

at a time. This way, the behavior can be tested step by step,

starting with the simplest or basal ones. To ease this

modularity and progressivity in the construction of the final

behavior, the agents are initialized by going through a

series of steps very similar to the ‘‘runlevels’’ found in

UNIX-like operating systems.

Five runlevels are defined; each of them has an associ-

ated script file associated where the behaviors to be loaded

is indicated. Table 2 shows the different runlevels and the

associated processes that occur in each of them.

The execution level of the agent can be controlled with

the buttons ‘‘n-1’’, ‘‘n-3’’, ‘‘n-5’’ and ‘‘n-6!’’ in the graph-

ical user interface (see Fig. 10).

In practice, these runlevels can be used to incrementally

test the functionalities of the agents, for example when

building complex behaviors or when testing coordination

mechanisms with other agents.

Fig. 7 Message editing window

Fig. 8 The synchronous shell window

Fig. 9 The asynchronous shell window

123

5 Sample tests

A fully functional, self-contained test environment is

available for download at the following URL: https://seco

muci.com/research/MAS/IMAS/. Instructions for deploy-

ment and use are included, and a tutorial describing

different tests to be performed shows the different func-

tionalities of the development environment in a practical

context.

The rule-based agents, in their default configuration,

include behaviors devoted to communicating with other

agents in the platform and with the rule engines of these

agents. They have no specific cognitive functionality. The

first test to be accomplished is to launch the JADE platform

and to create two rule-based agents named ‘‘Agent200’’

and ‘‘Agent300’’. These agents are invoked in ‘‘debugging

mode’’ and so will be wrapped by the class that exposes the

graphical user interface for development and debugging

purposes.

By using the asynchronous shell window, a human can

interact with any rule engine of any agent in the platform.

For example, Fig. 11 shows how, from Agent300, a (facts)

command can be sent to the remote Agent200 rule engine,

and how this agent returns the information obtained after

issuing this command on its rule engine. The destination

agent for the command is chosen in the left list among all

the existing agents in the platform, in this case, Agent200 is

selected. The bottom part of the window shows the con-

versation maintained between Agent300 and Agent200.

The blue color is used for representing the message from

the origin to the destination, while the red color represents

the response from the destination. As was stated in

Sect. 2.3, the command is sent to Agent200 as an ACL

message, and Agent200 is responsible for processing the

message, deciding if the command can be passed to its rule

engine and building a new ACL message for sending the

results back to Agent300.

The human developer, by using Agent300, can send

facts and rules to Agent200 and ask for their execution.

Figure 12 shows how Agent300 sends the command for a

fact creation to Agent200 (Fig. 12a), a command for the

creation of a rule (Fig. 12b), and finally, the (run) com-

mand in order to execute the rule system, showing the

results in the response (Fig. 12c).

More complete examples are provided at https://seco

muci.com/research/MAS/IMAS/, showing, for instance,

how to incorporate a rule-based system as an agent

Table 2 Runlevels and corresponding actions

Level Process

0 The setup() method for the agent finished its execution. The agent is already incorporated into the multi-agent platform and its status is

active. The script file [level.00.bsh] is loaded and interpreted.

1 The script file [level.01.bsh] is loaded and interpreted, which results in the load of the ‘‘basal’’ behaviors for the agent.

3 Load and interpretation of the script [level.03.bsh]. Activation of behaviors loaded in level [1], objects of the type Behavior that appear

in the behavior collection are also loaded.

5 Load and interpretation of the script [level.05.bsh]. Activation of the behaviors that were loaded in level [3]. Wheever the scripts in

[level.05.bsh] are processed, the agent is considered in the state ‘‘in service’’, and the execution level is set to [5].

6 The script [level.06.bsh] contains commands that result in a ‘‘hot reboot’’ of the agent, which means that the agent is not removed from

the platform, but its active behaviors are stopped and removed from the agent. Following, the execution level [0] is entered.

Fig. 10 Buttons for runlevel activation

Fig. 11 Inserting a new fact in a remote rule-based agent

123

https://secomuci.com/research/MAS/IMAS/
https://secomuci.com/research/MAS/IMAS/
https://secomuci.com/research/MAS/IMAS/
https://secomuci.com/research/MAS/IMAS/

behavior and letting other agents send problem data and

retrieve the solution found.

5.1 Validation of the solution

The set of characteristics described in Sects. 3 and 4 con-

stitutes an enriched middleware framework that no other

multi-agent platform solution has. The sample test descri-

bed in the previous paragraphs demonstrates that the

desired set of functionalities established for the middleware

in the initial hypotheses were accomplished.

Section 2 describes the integration of the rule engine

into the agent, as well as the communication mechanism

through which the rule-based agents in the platform can

collaborate. To validate and test the proposed approach, a

comparative study has been designed and implemented.

The study compares the solution described in this paper to

the integration described in [8]. The study can be repro-

duced by following the indications and using the software

at https://secomuci.com/research/MAS/IMAS/validation.

The solution proposed in [8] integrates the JESS rule

engine into a JADE agent by taking advantage of the

shared programming language used by both technologies

(Java). This solution uses a new Agent class, JessAgent,

that can communicate with an instance of the JESS rule

engine. It uses a cyclic behavior, along with facilities for

reading and loading external rule files. Control of the

engine is accomplished by performing callbacks to the

JessSend function (an internal function declared in JESS)

from the agent.

The study compares the performance and response times

of an agent from the framework proposed in this paper and

a JessAgent from the solution proposed in [8], where the

initial JessAgent class was transformed into a new HLC-

jessAgent class to make it compatible with the JESS ver-

sion used by the approach proposed in this paper to put the

agents on equal conditions. The agent from the framework

proposed in this paper is called DPSNodeAC during this

section. The experiment was carried out using a single PC

with an AMD A9-9410 RADEON R5 processor.

The experiment consists in making a third agent, called

Analyzer, generate a number of messages to be sent to the

agents under test (HLCjessAgent and DPSNodeAC). The

messages can be of two types:

– Presence request messages (used for testing if the agent

is alive in the platform). The response is a simple

acknowledgement for confirming the presence of the

agent. The usual response time for this kind of message

in the mentioned computer was about 300 ms when the

agent is free from other reasoning processes.

– Requests messages asking for solving sudoku problems

of different difficulties. The response to these messages

is the solution found for the given problem and so they

take the agent more time to respond than the presence

request messages. There are four different sudoku

Fig. 12 Execution of a rule-based system on a remote rule-based

agent

123

https://secomuci.com/research/MAS/IMAS/validation

problems to be solved, with solving times (in the rule

base) from around 200 ms to 2500 ms.

The sequence of messages used is shown in Table 3. A

total of 40 messages were sequentially generated for each

agent. The first four are of type ‘‘presence request’’ (p in

Table 3), the fifth is of type ‘‘sudoku’’ (S in Table 3), then

nine more ‘‘presence request’’ messages are sent and one

‘‘sudoku’’ follows, this sequence is repeated twice, ending

with five more ‘‘presence’’ messages. Each message is

scheduled to be sent from the Analyzing agent every 250

ms. So, the entire message sequence is generated within 10

seconds.

The Analyzer agent is responsible for sending the mes-

sages and capturing the corresponding responses, annotat-

ing the time at which the message was issued and the time

when the corresponding response from the agent arrived,

the difference is the corresponding delay for the given

message.

Figure 13 shows the delays in the responses for each

message for the HLCjessAgent (a) and for the DPSNodeAC

agent (b). As can be seen, the approach described in this

paper outperforms the results of the other solution. For the

four first messages (of ‘‘presence request’’ type) the delay

in the responses is similar for both agents. But, after the

first sudoku request message (sudoku request messages are

represented as dotted columns in Fig. 13), the HLCjessA-

gent shows delays that are much bigger than those from the

DPSNodeAC agent for the following presence request

messages. Moreover, it can be seen that, each time a

sudoku request message is processed, the HLCjessAgent is

affected with bigger delays for the next presence request

messages.

Taking into account the total time, that is, the time from

the delivery of the first message from the Analyzer agent to

the reception of the last response from the corresponding

destination agent, the last message from the DPSNodeAC

agent arrived at 10392 ms, while the last response from

HLCjessAgent reached the Analyzer agent at 12124 ms,

that is, exceeding in more than 1700 ms.

6 Discussions

This work describes an enriched middleware for multi-

agent platforms that can be used as a development frame-

work for building multi-agent systems. The solution is

based on the flexible, loosely coupled and technology-in-

dependent integration of a rule engine into an agent, as

opposed to usual solutions that rely on a less flexible,

highly coupled integration [16]. The framework includes

the development of specialized agents with graphical user

interfaces for easing the development and debugging pro-

cesses, as well as a mechanism for incremental incorpo-

ration of externalized behaviors into the agents. The

approach used for implementing this integration maintains

a careful separation between the tasks of the agent and

those of the rule engine, but each rule-based agent has

associated its own rule engine, compared to other approa-

ches like the EMERALD framework [4] that uses the

‘‘reasoning as a service’’ paradigm.

Compared to the integration of a rule engine into an

agent described in [8], the solution proposed outperforms

the results using a simple stress test, showing that the

proposed integration allows the agent to keep on receiving

and processing messages while the rule engine is working

on the solution of a given problem. In a real scenario, this

would speed up the whole multi-agent system if these kinds

of agents were used.

Table 3 Sequence of messages for the experimental test of the

solution

Message# 1 2 3 4 5 6 7 8 9 10

Type p p p p S p p p p p

Message# 11 12 13 14 15 16 17 18 19 20

Type p p p p S p p p p p

Message# 21 22 23 24 25 26 27 28 29 30

Type p p p p S p p p p p

Message# 31 32 33 34 35 36 37 38 39 40

Type p p p p S p p p p p

Fig. 13 Delays in the responses of HLCjessAgent vs DPSNodeAC

123

The solution proposed in this paper is inspired by the

‘‘edge computing’’ paradigm [3], where the data processing

is achieved locally to where they have been generated; in

this case, the local environment of the agent includes its

associated rule engine. In a typical IoT scenario, especially

those related to monitoring and security solutions, the data

processing and communication processes among agents

would be very numerous, and so the solution presented in

this research seems to be adequate when dealing with the

use of such rule-based agents in the edge of IoT infras-

tructures. The multi-agent based architecture is one of the

paradigms usually employed for the implementation of IoT

edge-based solutions [22].

The examples in Sect. 5 show the flexibility of the

approach for building and debugging complex distributed

rule-based systems. Interaction with the human developer

was used to show how a developer can use the system, but

this kind of interaction is only meant to be used at devel-

oping or debugging time. When in production, the agents

will be created in the platform as rule-based agent objects

without these graphical user interfaces, and so only agent-

to-agent communication will be possible.

7 Conclusions

The framework described in this paper allows and eases the

incremental development and debugging of rule-based

multi-agent systems.The strategy used for integrating the

rule engine into the agent made it possible to obtain a more

flexible and faster solution than other similar ones, which is

an advantage in knowledge-intensive multi-agent applica-

tions. The framework can be downloaded from https://

github.com/dpsframework-/dpsFrameworkBuilder/

releases.

There is a need for implementing security and trust

mechanisms in order the agents can authenticate and decide

if the message, including actions involving its rule engine

come from an authorized agent. At this moment, the only

mechanism that the agent implements is to test whether the

message comes from another agent in the platform, but the

designed solution eases the implementation of more com-

plex authentication and authorization mechanisms because

of the double implementation of the interaction protocol

described in Sect. 2.3.

Future work includes the implementation of collabora-

tion and coordination mechanism for the rule-based agents,

and the use of Semantic Web formalisms (RDF, SWRL,

etc.) for representing rules and facts into the agents. The

development environment is currently being used for

building an intelligent distributed system for IoT security

based on the multi-agent paradigm.

References

1. Adhikaree, A., Makani, H., Yun, J., Qiao, W., Kim, T.: Internet of

Things-enabled multiagent system for residential DC microgrids.

In: IEEE International Conference on Electro Information

Technology (2017). https://doi.org/10.1109/EIT.2017.8053338

2. Aguayo-Canela, F.J., Alaiz-Moretón, H., Garcı́a-Rodrı́guez, I.,

Benavides-Cuellar, C., Benı́tez-Andrades, J.A., Novais, P.: A

FIPA-Compliant Framework for Integrating Rule Engines into

Software Agents for Supporting Communication and Collabora-

tion in a Multiagent Platform. In: A. Rocha, H. Adeli, L.P. Reis,

S. Costanzo (eds.) New Knowledge in Information Systems and

Technologies. WorldCIST’19 2019. Advances in Intelligent

Systems and Computing, vol. 931, pp. 124–133. Cham (2019)

3. Ai, Y., Peng, M., Zhang, K.: Edge computing technologies for

Internet of Things: a primer. Digit. Commun. Netw. 4(2), 77–86

(2018). https://doi.org/10.1016/j.dcan.2017.07.001

4. Bassiliades, N.: Agents and knowledge interoperability in the

semantic web era. In: Proceedings of the 2nd International

Conference on Web Intelligence, Mining and Semantics - WIMS

’12 (June 2012), 1 (2012). https://doi.org/10.1145/2254129.

2254140

5. Bergenti, F., Caire, G., Monica, S., Poggi, A.: The first twenty

years of agent-based software development with JADE. Auto.

Agents Multi-Agent Syst. 34(2), 36 (2020). https://doi.org/10.

1007/s10458-020-09460-z

6. Bădică, C., Ilie, S., Ivanović, M., Mitrović, D.: Role of agent

middleware in teaching distributed network application devel-

opment. Adv. Intell. Syst. Comput. 296, 267–276 (2014)

7. Calegari, R., Ciatto, G., Mascardi, V., Omicini, A.: Logic-based

technologies for multi-agent systems: a systematic literature

review. Auton. Agents Multi-Agent Syst. 35, (2021). https://doi.

org/10.1007/s10458-020-09478-3

8. Cardoso, H.L.: Integrating jade and jess. https://jade.tilab.com/

documentation/tutorials-guides/integrating-jade-and-jess/.

(2007). https://jade.tilab.com/documentation/tutorials-guides/inte

grating-jade-and-jess/. Accessed 5 Oct 2020

9. Coulter, R., Pan, L.: Intelligent agents defending for an IoT

world: a review. Comput. Secur. 73(2018), 439–458 (2018).

https://doi.org/10.1016/j.cose.2017.11.014

10. Darabseh, A., Freris, N.M.: A software-defined architecture for

control of IoT cyberphysical systems. Clust. Comput. 22(4),

1107–1122 (2019). https://doi.org/10.1007/s10586-018-02889-8

11. Elmisery, A.M., Rho, S., Aborizka, M.: A new computing envi-

ronment for collective privacy protection from constrained

healthcare devices to IoT cloud services. Clust. Comput. 22(1),

1611–1638 (2019). https://doi.org/10.1007/s10586-017-1298-1

12. Friedman-Hill, E.J., et al.: Jess: Java Expert System Software

(2018)

13. Giarratano, J.C.: CLIPS 6.4 user’s guide (2014)

14. Hatzivasilis, G., Papadakis, N., Hatzakis, I., Ioannidis, S., Var-

dakis, G.: Artificial intelligence-driven composition and security

validation of an internet of things ecosystem. Appl. Sc 10(14)

(2020). https://doi.org/10.3390/app10144862

15. Marcon, E., Chaabane, S., Sallez, Y., Bonte, T., Trentesaux, D.:

A multi-agent system based on reactive decision rules for solving

the caregiver routing problem in home health care. Simul. Model.

Pract. Theory 74, 134–151 (2017). https://doi.org/10.1016/j.sim

pat.2017.03.006

16. Munawar, S., Khalil Toor, S., Aslam, M., Aimeur, E.: Paca-its: A

multi-agent system for intelligent virtual laboratory courses.

Appl. Sci. 9(23), 5084. (2019). https://doi.org/10.3390/

app9235084

123

https://github.com/dpsframework-/dpsFrameworkBuilder/releases
https://github.com/dpsframework-/dpsFrameworkBuilder/releases
https://github.com/dpsframework-/dpsFrameworkBuilder/releases
https://doi.org/10.1109/EIT.2017.8053338
https://doi.org/10.1016/j.dcan.2017.07.001
https://doi.org/10.1145/2254129.2254140
https://doi.org/10.1145/2254129.2254140
https://doi.org/10.1007/s10458-020-09460-z
https://doi.org/10.1007/s10458-020-09460-z
https://doi.org/10.1007/s10458-020-09478-3
https://doi.org/10.1007/s10458-020-09478-3
https://jade.tilab.com/documentation/tutorials-guides/integrating-jade-and-jess/
https://jade.tilab.com/documentation/tutorials-guides/integrating-jade-and-jess/
https://jade.tilab.com/documentation/tutorials-guides/integrating-jade-and-jess/
https://jade.tilab.com/documentation/tutorials-guides/integrating-jade-and-jess/
https://doi.org/10.1016/j.cose.2017.11.014
https://doi.org/10.1007/s10586-018-02889-8
https://doi.org/10.1007/s10586-017-1298-1
https://doi.org/10.1016/j.simpat.2017.03.006
https://doi.org/10.1016/j.simpat.2017.03.006
https://doi.org/10.3390/app9235084
https://doi.org/10.3390/app9235084

17. Pico-Valencia, P., Holgado-Terriza, J.A.: Agentification of the

internet of things: a systematic literature review. (2018). https://

doi.org/10.1177/1550147718805945

18. Rahmani, A.M., Babaei, Z., Souri, A.: Event-driven IoT archi-

tecture for data analysis of reliable healthcare application using

complex event processing. Clust. Comput (2020). https://doi.org/

10.1007/s10586-020-03189-w

19. Rakib, A., Uddin, I.: An efficient rule-based distributed reasoning

framework for resource-bounded systems. Mobile Netw. Appl.

24(1), 82–99 (2019). https://doi.org/10.1007/s11036-018-1140-x

20. Samy Pessé, N.H.: rools on boarding, online https://github.com/

nheron/droolsonboarding, gitbook (2021). URL https://github.

com/nheron/droolsonboarding. Accessed 05 Mar 2021

21. Simone Tripodi, S.B.: Beanshell proposal. https://cwiki.apache.

org/confluence/display/incubator/BeanShellProposal (2019).

URL https://cwiki.apache.org/confluence/display/incubator/Bean

ShellProposal. Accessed 05 Mar 2021

22. Suganuma, T., Oide, T., Kitagami, S., Sugawara, K., Shiratori,

N.: Multiagent-based flexible edge computing architecture for iot.

IEEE Netw. 32(1), 16–23 (2018). https://doi.org/10.1109/MNET.

2018.1700201

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Francisco José Aguayo-Canela
Ph.D. received theB.Sc. degree

in mechanical engineering

fromthe Polytechnic School of

the University of Seville, in

1989, and the M.Sc. degree in

communication and information

technology management from

the Faculty of Computer Sci-

ence of the University of

Seville, in 2011, and the Ph.D.

degree in Intelligent Systems

Applied to Engineering from

School of Industrial, Computer

and Aerospace Engineering of

the Leon University, Spain, in 2017. From 1989 to 2001, he worked at

the Regional Office of the Institute of Cartography and Statistics, on

the development of macroeconometric models and the analysis of

evolution shown by time series of municipal variables. Until 2006, he

headed the Information Technology Department of the Regional

Econometric and Sociological Studies Foundation. From 2006 to

2011, he has formed key part of the team for the documentary and

archaeological catalog project of the Regional Office for the Con-

servation of Historical Heritage. From 2012 to the present, he has

been integrated as head of cybersecurity, at the telecommunications

department of the Regional Office. His research interests include:

intrusion detection algorithms, statistical modeling, real-time multi-

agent systems, and assisting agents.

Héctor Alaiz-Moretón Ph.D.

received his degree in Computer

Science, performing the final

project at Dublin Institute of

Technology, in 2003. He

received his Ph.D. in Informa-

tion Technologies in 2008

(University of Leon). He has

worked like a lecturer since

2005 at the School of Engi-

neering at the University of

Leon. His research interests

include knowledge engineering,

machine & deep learning, net-

works communication and

security. He has several works published in international conferences,

as well as books and scientific papers in peer review journals. He has

been member of scientific committees in conferences. He has headed

several Ph.D. Thesis and research projects.

Marı́a Teresa Garcı́a-Ordás Ph.D.

was born in León, Spain, in

1988. She received her degree

in Computer Science from the

University of León in 2010, and

her Ph.D. in Intelligent Sys-

temsin 2017. She was a recipi-

ent of a special mention award

for the best doctoral thesis on

digital transformation by Tec-

nalia. Since 2019, she works as

teaching assistant at the

University of León. Her

research interests include com-

puter vision and deep learning.

She has published several articles in impact journals and patents. She

has participated in many conferences all over the world.

José Alberto Benı́tez-Andrades
Ph.D. was born in Granada,

Spain, in 1988. He has received

his degree in Computer Science

from the University of León,

and the Ph.D. degree in Pro-

duction and Computer Engi-

neering in 2017 (University of

Leon). He was part time

instructor who kept a parallel

job from 2013 to 2018 and since

2018 he works as teaching

assistant at the University of

Leon. His research interests

include artificial intelligence,

knowledge engineering, semantic technologies. He was a recipient of

award to the Best Doctoral Thesis 2018 by Colegio Profesional de

Ingenieros en Informática en Castilla y León in 2018.

123

https://doi.org/10.1177/1550147718805945
https://doi.org/10.1177/1550147718805945
https://doi.org/10.1007/s10586-020-03189-w
https://doi.org/10.1007/s10586-020-03189-w
https://doi.org/10.1007/s11036-018-1140-x
https://github.com/nheron/droolsonboarding
https://github.com/nheron/droolsonboarding
https://github.com/nheron/droolsonboarding
https://github.com/nheron/droolsonboarding
https://cwiki.apache.org/confluence/display/incubator/BeanShellProposal
https://cwiki.apache.org/confluence/display/incubator/BeanShellProposal
https://cwiki.apache.org/confluence/display/incubator/BeanShellProposal
https://cwiki.apache.org/confluence/display/incubator/BeanShellProposal
https://doi.org/10.1109/MNET.2018.1700201
https://doi.org/10.1109/MNET.2018.1700201

Carmen Benavides Ph.D.

received her Bachelor degree in

Industrial Technical Engineer

from the University of León

(Spain) in 1996 and her Master

degree in Electronic Engineer-

ing from the University of Val-

ladolid (Spain) in 1998. Carmen

obtained her Ph.D. in Computer

Science from the University of

León in 2009 and she works as

an Assistant Professor at the

same University since 2001. Her

research interests are focused on

applied Knowledge Engineering

techniques, practical applications of Software Defined Networks and

Network Security. She has organized several congresses, and has

presented and published different papers in Journals, Conferences and

Symposia.

Paulo Novais Ph.D. degree in

computer sciences and the

Habilitation degree in computer

science (Agregação ramo do

conhecimento em Informática)

from the University of Minho,

Braga, Portugal, in 2003 and

2011, respectively, where he is

currently a Full Professor of

computer science with the

Department of Informatics,

School of Engineering, and a

Researcher with the ALGOR-

ITMI Centre, in which he is the

Leader of the Research Group

ISlab–Synthetic Intelligence, and a Coordinator of the research line

Computer Science and Technology. He is the Director of the Ph.D.

Program in Informatics and also the Co-Founder and the Deputy

Director of the master in law and informatics with the University of

Minho. He started his career developing scientific research in the field

of intelligent systems/artificial intelligence (AI), namely, in knowl-

edge representation and reasoning, machine learning, and multi-agent

systems. His interest, in the last years, was absorbed by different, yet

closely related concepts of ambient intelligence, ambient assisted

living, intelligent environments, behavioral analysis, conflict resolu-

tion, and the incorporation of AI methods and techniques in these

fields. His main research aim is to make systems a little more smart,

intelligent, and also reliable. He has led and participated in several

research projects sponsored by Portuguese and European public and

private institutions and has supervised several Ph.D. and M.Sc. stu-

dents. He has co-authored over 300 book chapters, journal papers, and

conference and workshop papers and books.

Isaı́as Garcı́a-Rodrı́guez Ph.D.

received his Bachelor degree in

Industrial Technical Engineer-

ing from the University of León

(Spain) in 1992 and her Master

degree in Industrial Engineering

from the University of Oviedo

(Spain) in 1996. Isaı́as obtained

his Ph.D. in Computer Science

from the University of León in

2008, where he is currently a

lecturer. His current research

interests include practical

applications of Software

Defined Networks, Network

Securityand applied Knowledge Engineering techniques. He has

published different scientific papers in journals, Conferences and

Symposia around the world.

123

	Middleware-based multi-agent development environment for building and testing distributed intelligent systems
	Abstract
	Introduction
	Integrating a rule engine into an agent: the rule-based agent
	Using an interface for managing the rule engine from the agent
	Inter-agent communication mechanism
	Communication of the agent with its rule engine
	Execution of the rule engine activities in a threaded behavior

	The development environment
	The agent management tab
	The JADE shell window
	The behavior editing window
	Message editor and trace window

	The rule engine management tab
	File editor window
	The synchronous shell window
	The asynchronous shell window

	Externalization and incremental composition of behaviors
	Sample tests
	Validation of the solution

	Discussions
	Conclusions
	References

