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Abstract
Most of the current Brain–Computer Interfaces (BCIs) application scenarios use electroencephalographic signals (EEG)

containing the subject’s information. It means that if EEG were maliciously manipulated, the proper functioning of BCI

frameworks could be at risk. Unfortunately, it happens in frameworks sensitive to noise-based cyberattacks, and more

efforts are needed to measure the impact of these attacks. This work presents and analyzes the impact of four noise-based

cyberattacks attempting to generate fake P300 waves in two different phases of a BCI framework. A set of experiments

show that the greater the attacker’s knowledge regarding the P300 waves, processes, and data of the BCI framework, the

higher the attack impact. In this sense, the attacker with less knowledge impacts 1% in the acquisition phase and 4% in the

processing phase, while the attacker with the most knowledge impacts 22% and 74%, respectively.

Keywords Brain–Computer Interfaces � Cybersecurity � Noise-based cyberattacks � Data Integrity �
Electroencephalographic signal � P300

1 Introduction

Brain–Computer Interfaces (BCIs) present a bidirectional

communication channel between the brain and external

devices. The BCI life cycle is bidirectional since it can

acquire neural activity produced by a subject and stimulate

or inhibit neurons. Figure 1 depicts a reduced view of the

full BCI cycle presented in our previous work [15] with the

processes and communications performed in both direc-

tions. Since this work focuses on neural data acquisition

(represented by the darker flow in Fig. 1), we will pay

more attention in that direction. In this sense, the brain

signals produced by the brain activity are acquired and

processed by the BCI. Finally, it is transformed into a

command that BCI applications can execute. Sometimes

this command generates visual, auditory, or somatosensory

feedback to the user, closing the loop. In the opposite

direction, in gray in Fig. 1, neural stimulation is also

possible to stimulate specific areas of the brain.

In the medical field, BCIs provide an alternative com-

munication system that helps rehabilitation, improvement

of motor skills, and control of robotic prostheses [3]. BCIs

are also used to treat cognitive dysfunction [20], neuro-

logical disorders such as Amyotrophic Lateral Sclerosis,

ALS [4], or even to identify and alleviate pain triggered by

phantom limb syndrome [21]. Alternatively, these systems

also permit the prediction of a seizure before it occurs,

allowing patients to receive the necessary care [12]. In

driving scenarios, there has also been increasing use of
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these devices to detect drunkenness [28] or drowsiness [11]

on the road. Both perspectives complement each other to

promote optimal driving, reducing possible accidents. In

other sectors such as entertainment, BCIs improve the

interaction, immersion, and, in short, the gameplay expe-

rience of gamers [1]. BCIs have even reached the military

sector, where BCIs are used in mental control of remote

drones [2] or exoskeletons [5].

Most of the previous application scenarios use the

electroencephalographic signal, EEG [18] and evoked

potentials [7] as a means of obtaining neuronal informa-

tion. Evoked potentials are signal patterns automatically

generated by the brain when stimuli are presented to the

individual. Depending on the kind of stimulus, there are

different types of potentials: visual, auditory, somatosen-

sory, or cognitive. The evoked potential P300 (or P3) [22]

is one of the most studied and well-known for brain

recording. This response originated by the brain carries an

appreciable positive signal peak in the EEG signal at

250–500 ms after a stimulus is presented to the individual

[22]. Different procedures can allow the P300 to appear in

the EEG signal, like the Oddball Paradigm [8]. This

paradigm consists of presenting a series of known stimuli,

randomly shuffled, to a subject of which 10–20% are

known or familiar. Visual and auditory stimuli can trigger

the P300, but this work focuses on visual ones.

Among the existing evoked potentials, the P300 is one

of the most widely used in end-use applications. This

potential has the ability to represent sizeable neural infor-

mation of the subject, making it a promising data source of

information for the end device. For this reason, it is cur-

rently used for numerous applications such as controlling

wheelchairs, military exoskeletons, and spellers. Despite

the many benefits provided by the P300, the relevance and

value of the neural data obtained increases the criticality in

BCI devices. In recent years, numerous articles in the lit-

erature have focused on the lack of security measures in

both BCI software and hardware. In this regard, some

research has been published offering a cybersecurity per-

spective on BCI devices and the acquired EEG signal.

More specifically, some authors detailed various cyberat-

tacks targeting data confidentiality and user privacy

[13, 17], while others focused on affecting the integrity of

the EEG signal by attenuating evoked potentials [30].

In this context, despite the number of papers dealing

with evoked potentials, more efforts are needed to measure

the impact that cyberattacks have on them. More specifi-

cally, there is a lack of literature on how the integrity of

data managed by BCI frameworks can be compromised.

This weakness is complemented by a limited analysis of

cyberattacks impact on the different phases of the BCI

cycle. In this sense, this paper proposes a study of the

impact of cyberattacks focused on maliciously generating

P300 in the EEG signal to determine the impact on BCI

devices and, consequently, on end applications. The

research aims to show the real impact of cyberattacks that

affect the integrity and the real concern for keeping devices

secure in a world where BCIs are taking a relevant role in

the way subjects communicate with the environment.

To improve some of the previous limitations, this work

presents the following main contributions:

– The selection of four noise-based attack profiles with

incremental knowledge to artificially generate P300

potentials within EEG signals. Therefore, the variation

between profiles depends on the existing knowledge

about the BCI device, aspects of the EEG signal, and

the framework. More in detail, the first attacker knows

the presence of wireless communication between the

BCI headset and the BCI framework; the second knows

theoretical concepts of the EEG signal and the P300

potential, such as its amplitude or generation interval;

the third knows the same as the second and the nature

and processing of the data exchanged; while the fourth

knows the same as the third, plus the classification

models used to detect the P300 and their predictions.

– The definition and deployment of a realistic scenario to

execute the previous attacks and demonstrate their

feasibility over two phases or processes of a BCI

framework: EEG acquisition and processing. The

proposed scenario considers a video containing images

known and unknown to the subject. These visual stimuli

generate a reaction in the subject’s brain waves based

Fig. 1 Overview of the phases of the BCI cycle. Darker clockwise

flow shows neural signal monitoring. Lighter counterclockwise flow

indicates neural stimulation
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on the Oddball paradigm, whereby familiar visual

stimuli (target) are presented within a set of unfamiliar

ones (non-target). The scenario also considers a BCI

headset to acquire the EEG and a framework that

implements the BCI cycle (see Fig. 1) to obtain the

EEG signals, process them, and detect the P300.

– The analysis of the impact of the four noise-based

attack profiles affecting the proposed scenario. In this

context, the obtained results demonstrated that higher

knowledge about the BCI and the scenario increases the

impact of noise-based cyberattacks. Likewise, it is

shown that the AUC score of the best classifier

detecting P300 is reduced the 1%, 3%, 12% and 22%

attacking the acquisition phase and the 4%, 10%, 41%,

and 74% when the data processing phase is affected by

each one of the four profiles, respectively.

The remainder of the paper is structured as follows. Sec-

tion 2 analyzes security issues in BCI devices and the most

relevant works of the literature. It also reviews manuscripts

focused on noise-based cyberattacks and their impacts.

After that, Sect. 3 focuses on noise-based cyberattacks

affecting BCI frameworks, describing the details of the

proposed four attack profiles. Section 4 presents the design

and implementation of a realistic scenario composed of a

use case and a BCI framework. Subsequently, Sect. 5

details the experiments and impacts of the four noise-based

attacks affecting the acquisition and processing phases of

the BCI framework. Finally, Sect. 6 presents some con-

clusions and future work.

2 Related work

This section reviews the state-of-the-art concerning com-

mon cybersecurity issues in BCIs. After that, it analyzes

works that use noise-based cyberattacks with the purpose

of affecting the acquired EEG signal.

2.1 Cybersecurity issues in BCIs

Over the last years, different works have studied the

cybersecurity implications of BCIs. However, these studies

only focus on partial aspects, missing the whole range of

cybersecurity issues. To address these limitations, López

Bernal et al. [15] analyzed the current state of cybersecu-

rity in BCI from the perspective of confidentiality, integ-

rity, and availability of the exchanged information. Finally,

the study included possible countermeasures for the

reviewed attacks.

Further studies have classified cyberattacks according to

the type of application scenario: medical applications,

entertainment, authentication, and smartphone-based

applications. In this sense, Li and Conti [14] detailed that

attackers can generate illicit commands and achieve mal-

functioning of prostheses or create incorrect actions. On the

other hand, they highlight the generation of patterns in the

EEG signal to breach authentication systems. Rushanan

et al. [25] focused on cybersecurity issues in the first and

last phases of the BCI cycle (see Fig. 1). The authors

demonstrated that communication with the BCI and with

end applications can be captured or eavesdropped on, in

some cases even modifying the transmitted data.

BCI devices based on EEG have gained popularity in

recent years due to their versatility and low cost, making

them an attractive target for potential cyberattacks. One of

the uses of these technologies is to acquire neural infor-

mation from stimuli. In this context, Martinovic et al. [17]

performed some experiments to steal critical information

from the subject, such as the 4-digit PIN code, banking

information, and even the person’s place of residence. The

authors used a commercial BCI, the Emotiv EPOC headset,

and sampled visual stimuli for 250 ms with a 2-s interval

between images. Lange et al. [13] expanded Martinovic’s

research with the total or partial recovery of the proposed

PIN code, adding different scenarios that vulnerate the

individual’s privacy. Similarly, Rosenfeld [24] reaffirmed

the concern with information extraction and presented

applications in forensic and counter-terrorism scenarios.

Other attacks, performed by Frank et al. [6], reduce the

intervals between visual stimuli by making them

subliminal.

The literature has also studied the impact of cyberat-

tacks on the processing phase of the BCI cycle. Most BCI

devices have a classification module that is responsible for

interpreting the acquired signal. Therefore, these attacks

corrupt the models with adversarial samples, causing a

significant impact on BCI and actions intended by the user.

In this sense, Zhang and Wu [29] defined an unsupervised

fast gradient sign method (UFGSM) to attack three popular

convolutional neural networks (CNN) in BCI, demon-

strating its effectiveness. In other cases, the density and

high frequency of the EEG signal make it challenging to

process the signal locally. Juhasz [10] discussed the pos-

sibility of migrating local clusters to a cloud infrastructure,

significantly reducing execution time and ensuring data

security.

2.2 Noise-based cyberattacks

Other works in the literature study cyberattacks affecting

the integrity and availability of transmitted data. More

specifically, cyberattacks have been designed to directly

affect the signal captured in the acquisition or processing

phases of the BCI cycle. These threats aim to hide seg-

ments of neural signal, primarily associated with Event-
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Related Potentials (ERPs). In other cases, they are intended

to encourage the attacker to generate them deliberately.

These data alterations constitute a significant problem in

many application scenarios.

In EEG devices, the problems are increased by acquiring

a signal that is very susceptible to noise. Therefore,

cyberattacks use the technique of noise generation to

impact the acquired data. In this context, Zhang et al. [30]

deployed an EEG-based speller system using P300. The

authors generate adversarial perturbations that are too

small to be perceived when added to EEG signals but can

induce the system to spell anything the attacker wants.

Likewise, they only consider a white-box scenario where

the attacker knows everything about the model used,

adjusting the parameters to the scenario deployed. Despite

being the first work demonstrating the impact of noise on

decision making, these attacks are limited only to affecting

the P300 and not enabling its generation in specific EEG

segments. Other studies, such as the one performed by

Jiang et al. [9], considered transferability-based black-box

attacks. To achieve this purpose, the attacker trained a

model to replicate the legitimate model. Subsequently, it

generated adversarial examples by employing dynamic

noise mechanisms with the trained model, using them to

attack the legitimate model. On the contrary, Meng et al.

[19] considered white-box attacks for regression problems

where all information about the learning algorithm is

known. This assumption makes it possible to generate

perturbations to the input EEG signal to vary the result by a

specific amount. Also, the authors considered the trans-

ferability of the procedure to black-box scenarios where the

models are unknown.

3 Noise-based cyberattacks to generate
fake P300 in BCI frameworks

This section presents four different attack profiles that use

noise-based cyberattacks to affect the detection of P300

waves by BCI framework detecting P300. The selection of

four profiles is determined by the number of phases of the

implemented BCI cycle: neural activity generation, EEG

signal acquisition, processing, and P300 detection. The

proposed cyberattacks aim to generate false P300 in EEG

signals that were previously absent. This procedure is

performed in two phases of the BCI cycle: acquisition and

processing. However, these are not the only types of threats

focused on breaching data integrity. There are other

modalities of noise-based cyberattacks in the literature,

where instead of artificially generating signals, the threat

causes an attenuation or removal of P300 in the EEG signal

[30]. These attacks are beyond the scope of this article,

although it is a good starting point for future work.

The profiles of the study are incrementally ordered

based on the knowledge that the attacker has about the BCI

framework and the application scenario. This incremental

knowledge implies that a particular profile presents the

characteristics and functionalities of the previous ones,

leading to more robust attack techniques to breach the BCI

framework. Figure 2 summarizes the characteristics of

each attacker profile graphically, showing in darker color

the data, processes, and background that the attacker

knows. Thus, the attacker profiles have knowledge asso-

ciated with the four phases of the BCI cycle implemented

in this work.

3.1 First profile: the attacker knows
the existence of a wireless communication

In this profile, the attacker is aware of the wireless com-

munication between the BCI headset and the BCI frame-

work. However, he/she does not know the data exchanged,

the phases of the BCI cycle implemented by the BCI

framework (detailed in Sect. 1), the format of the data

transmitted by the BCI headset, nor the information storage

structures implemented by the framework. Likewise, the

attacker does not have the necessary knowledge to under-

stand the EEG signals or P300 generation to make a precise

attack. Figure 2a shows the attacker’s knowledge regarding

the BCI framework phases and exchanging data, as well as

his/her background regarding EEG and P300.

Based on the previous assumption, the attacker gener-

ates a series of random noises. This noise belongs to a

given range determined by the attacker, pseudo-randomly

applied during the wireless data communication between

the BCI headset and the BCI framework.

3.2 Second profile: the attacker has background
regarding P300 waves

This attacker has some knowledge of the BCI framework

used in the scenario. In particular, he/she knows the most

common mechanisms for acquiring brain signals (phase 1

of Fig. 2b) and the weaknesses of each one. The EEG

weakness is the high sensitivity to external noise and the

need to process the data to obtain relevant information (see

Sect. 2.2). Similarly, the attacker knows about P300 gen-

eral information and the techniques to favor their genera-

tion or attenuation (latency, polarity, amplitude, or the

stimuli that trigger it).

According to the previous information, the attacker

generates a noise template with a shape similar to a P300

potential or pseudo-random noise to disrupt the detection

of a P300 potential. The different noises are randomly

applied to the EEG signal during the acquisition and pro-

cessing phases of the BCI framework.
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3.3 Third profile: the attacker has knowledge
about the BCI framework and P300 wave

This attacker is aware of the details of the data acquisition

and processing phases of the BCI framework. On the one

hand, he/she knows the data transmitted between the BCI

headset and the BCI framework. Specifically, the attacker

has permanent access to the voltage measured by each

electrode of the BCI headset. Thus, he/she is aware of the

BCI sampling frequency and the positions of the scalp

where the electrodes of the headset are located. On the

other hand, this attacker knows the processing techniques

applied to the signal data (more details in Sect. 4.2). It

means that the noise-based cyberattack can target the fre-

quencies not filtered by the band-pass filters (3–17 Hz in

the case of P300 processing). He/she is also aware of the

rejection parameters based on the peak-to-peak amplitude

applied at each electrode. Therefore, the attacker can

generate noise with dynamic amplitude adapted to the

previous voltage value. Figure 2c shows the attacker’s

knowledge (in darker color), as well as the unknown

aspects (in lighter color).

According to the previous assumptions, the attacker can

generate dynamic noise, varying its characteristics

according to the data acquired by the BCI. This attacker

has greater control over the BCI operation, modifying

exactly those data that he/she considers relevant to the

attack. In the case of the P300, the modification is intended

to affect the data of the different epochs to generate P300

waves, affecting external applications that use this ERP as

Fig. 2 Attacker profiles. Each sub-figure represents a different attacker profile: the components in red describe the data, processes and

background that the attacker knows
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a transmitter of neural information. In short, the attacker

attempts to breach the BCI by adapting the cyberattack

conditions to the acquisition and processing phases of the

BCI framework.

3.4 Fourth profile: the attacker knows
not only the same as the third,
but also the P300 detection model details
and outputs

The last attacker knows the whole BCI framework,

including its implementation and data exchanged by each

phase. The main difference compared to the previous

attacker is the knowledge about the machine or deep

learning-based classification module details able to detect

P300 waves, detailed in Sect. 4.3. This attacker knows the

models output, so he/she can adapt the cyberattack

according to this value obtained during the evaluation. In

other words, the attacker applies noise on the EEG signal

and, depending on the model’s output, adapts the attack for

successive evaluations (see Fig. 2d).

In this case, noise generation is based on the automatic

creation of templates depending on how well the model fits

the data. The use of noise templates can address some

issues: (1) adapting the noise to the deployed scenario,

regardless of the functionality being performed and (2)

adapting the noise to the external or physiological condi-

tions of the user, e.g., a patient manifesting a higher latency

on the P300 due to ALS.

4 Scenario setup

This section details the scenario deployed to obtain EEG

signals and detect P300 potentials. The scenario is divided

into three components: (1) a monitor where visual stimuli

are presented to the subject following the Oddball para-

digm, (2) a non-invasive BCI headset to acquire the EEG

signal while the subject visualizes the stimuli, and (3) a

BCI framework that obtains the EEG signal, synchronizes

it with the visual stimuli displayed on the monitor and

processes the data to detect P300 potentials.

4.1 Use case

The proposed use case aims to present visual stimuli to a

subject, which are part of a video, and generate P300

potentials. The Oddball paradigm has been employed to

trigger the generation of this evoked potential. A set of

images has been selected, where 20% of them were

familiar to the user (target images), and the rest were

unfamiliar (non-target images). The experiment begins

with 30 s for baseline EEG activity. Then, visual stimuli

are randomly displayed on the screen with a 0.250 s

interval between them (see Fig. 3). The experiment ends

when all images in the initial set are displayed to the user.

Table 1 includes all the parameters used in the deployment

of the framework and used during the experiments.

The experiments have been applied to two different

subjects with similar physical characteristics. They were 22

and 23 years old, respectively, both approximately 1.80 m

tall and with no cognitive or neurological problems. The

posture maintained during the experiment was perpendic-

ular to the floor, with the monitor in front of the subject’s

eyes, avoiding involuntary movements and, therefore,

additional noise to the EEG signal. Besides, the project

official repository [16] contains the necessary scripts for

the deployment of the scenario and the guidelines for its

customization.

4.2 EEG acquisition and processing

The acquisition phase is the process by which the BCI

framework obtains the neural activity generated by the

user’s brain. This study performs EEG acquisition using a

non-invasive BCI, OpenBCI Ultracortex Mark IV EEG

Headset [27]. During monitoring, eight electrodes (Fp1,

Fp2, C3, C4, P7, P8, O1, O2) are used. The electrodes are

distributed according to the international 10-20 system

[23], while the sampling frequency of the recording process

is 250 Hz. Simultaneously, there is a synchronization of the

visual stimuli displayed to the user and the monitored

signal. This timing adjustment is essential to determine the

generated waveform concerning the displayed target

image.

Acquired EEG signals may be altered by noise caused

by some artifacts such as blinking, muscle movements, eye

movements, or breathing. Noise can have an impact on BCI

performance by overloading it with extra data. For this

reason, the data is processed before continuing in the BCI

cycle. First of all, the signal is downsampled with ratio 5,

modifying from having 250 samples every second (250 Hz)

to 50 samples every second (50 Hz). Afterward, a Notch

filter is applied using the FIR superposition-addition

method with zero phase. This filter attenuates the frequency

at 50 Hz and multiples thereof due to the noise caused by

the electrical wiring of the BCI system in Europe. After

removing the specific frequency, EEG data is band-pass

filtered with the eighth-order Butterworth filter in the

Fig. 3 Time distribution of the presentation of different visual stimuli.

The symbol ‘‘T’’ denotes a target image, while ‘‘NT’’ denotes a non-

target image
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frequency range between 3 and 17 Hz to remove other high

frequency noises. The objective is to keep frequencies

within the specified frequency range and reject the rest.

Finally, Independent Component Analysis (ICA) is

employed in the processing, a powerful technique to reduce

noise by separating independent linearly mixed sources on

multiple electrodes. At the end of the processing phase, the

EEG signal is divided into epochs, EEG segments classi-

fied according to the eventuality produced. Each epoch

starts 0.1 s before the event occurs and 0.8 s after. The

segments corresponding to target events are assigned a

label with a value of ‘‘2’’, and non-target events are

assigned a value of ‘‘1’’. Figure 4 shows a set of epochs of

the scenario and the EEG signal segments corresponding to

each electrode. The epochs are associated with an event

identifier as previously discussed, ‘‘1’’ for target and ‘‘2’’

for non-target. The green vertical lines mark the beginning

of the event.

4.3 P300 detection

The last phase of the implemented BCI framework aims to

detect the P300 waves in the captured and processed EEG

signal. For this purpose, the BCI framework implemented

uses classifiers, which are elements belonging to super-

vised learning that attempt to predict the outcome based on

trained models.

The framework uses the following classifiers for the

detection of P300 potentials: Classifier I, employing scalar

standardization algorithms and regressions; Classifier II,

consisting in a model with a linear decision boundary,

generated by fitting conditional class densities to the data

and using Bayes’ rule; Classifier III, the same operation as

classifier II but adding xDAWN as spatial filter; Classifier

IV, estimation of the covariance matrix of the possible

potentials, spatial projection of the tangent and regressions;

and Classifier V, with an estimation of the covariance

matrix and classification by Minimum Distance to Mean.

Before training the classification models, EEG signal

activity is analyzed to check the quality of the data

obtained in the previous phase. Figure 5 shows the brain

activity at six different instants, using the average of all the

eventualities produced during target image visualization.

During the first second, when the visual stimulus is dis-

played, brain activity is observed in the occipital area

related to the processing of visual stimuli (first represen-

tation of Fig. 5). However, the brain activity increases

considerably at around 217 ms, followed by a decrease in

this activity to negative values in an interval of 90 ms. As

the literature states, increased electrical activity occurs in

the occipital area when the P300 is generated [26]. Like-

wise, it describes the P300 as a voltage decrease in the

signal, which can reach negative values (second represen-

tation in Fig. 5), then increases the voltage to a peak of 20–

40 lV (third representation) and finally, a slight decrease in

voltage (fourth representation) [22]. Finally, in the fifth and

sixth representations, the brain activity does not show

characteristic patterns concerning neutral areas of the

brain.

Once the brain activity is related to the possible P300,

the classifiers are trained with each of the labeled segments

obtained in the previous phase. The data is manually split

into two different sets: training data and test data, with

proportions of 75% and 25%, respectively. Cross-valida-

tion and stratified validation process (due to the unbalanced

nature of the dataset) have been applied to the training

dataset. The implemented strategy, StratifiedShuffleSplit,

allows 10 partitions of the input data, generating ten dif-

ferent combinations. Each combination is split into two

datasets again: training data and test data, with the same

proportions as the previous subset. While the first ones are

used to train the classifiers, the second ones are used to

evaluate the accuracy of the given predictions. Using cross-

Table 1 Parameters used in the experiment

Experiment parameter Value

External monitor size 1920 � 1080

Separation between individual and monitor 60 cm

Number of images 180

% Target images 20

% Non-target images 80

Interval time between images 0.250 s

Variable jitter time 0.2

Initial baseline 30 s

Fig. 4 Set of epochs of the labelled EEG signal

Fig. 5 Brain activity with the average of values captured during the

display of the target
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validation detects a situation of overfitting when the trained

model does not generalize well with new test data.

4.4 Noise generation

This subsection presents the noise generation procedure

used by attackers and the mathematical considerations of

the concepts necessary to generate them.

The main objective of noise generation is to alter the

original EEG signal. This technique must use noises of

different signal-to-noise ratios to evaluate the P300 clas-

sifier performance under various noisy conditions. The

signal-to-noise ratio (SNR) can be defined as follows:

SNR ¼ 10 log10

RMS2
signal

RMS2
noise

 !
; ð1Þ

where RMSsignal is the Root Mean Square (RMS) value of

the signal and RMSnoise is the RMS value of the noise.

Noise generation, based on random signals, is created

through a basic noise model called Additive White Gaus-

sian Noise (AWGN). Firstly, it is additive, so the generated

noise is added to the signal. Secondly, the noise has the

same power distribution at each frequency, being the power

spectral density constant. Finally, it is Gaussian in that it

uses a mathematical model to calculate the probability of

the generated events.

The AWGN model adds a zero-mean Gaussian random

variable to its original signal. The variance of that random

variable will affect the average noise power. For a Gaus-

sian random variable X, the average power is

E½X2� ¼ l2 þ r2: ð2Þ

In white noise generation l ¼ 0, so the average power is

then equal to the r2 variance. All in all, AWGN imple-

mentation can be performed in two different ways: (1)

calculating the variance as a function of the signal-to-noise

ratio (SNR) or (2) selecting a specific noise power and

applying it to the EEG signal. In this work, the second way

is implemented. Table 2 compares the different noise

generations used in this work, being each noise type dif-

ferentiated by the RMS noise level (dB) and by the dyna-

mism in its application in the EEG signal.

5 Results and discussion

This section summarizes the results of applying noise-

based cyberattacks on the EEG for each of the attacker

profiles defined in Sect. 3. These cyberattacks affect two

different phases of the BCI cycle: (1) acquisition phase,

where the noise is applied during the acquisition of the

brain waves by the electrodes placed on the scalp, and (2)

processing phase, in which the noise is applied once the

data is in the BCI framework and has been processed by the

third phase. Figure 8 shows the cyberattacks performed by

each profile for the same EEG signal segment and it pro-

vides a visual comparison between the attack techniques

and the resulting impact on the signal.

In order to perform the attacks, several considerations

have to be taken into account. On the one hand, the

physical (analog) noise used to attack this phase is simu-

lated digitally on the acquired signal. Therefore, a similar

impact is obtained without using additional equipment for

noise generation. On the other hand, the application of

noise in the processing phase represents malware affecting

the BCI framework, which generates an impact on the data

exchanged between phases three and four of the BCI

framework. The malware behaves similarly to the physical

attack in order to establish a comparison between attacker

profiles.

The attack profiles described in the following subsec-

tions share the same noise generation techniques described

in Sect. 4.4. Despite generating both noise behaviors

(physical and malware) with the same techniques, they

vary in time and manner depending on the attacker’s

knowledge of the framework, adapting and focusing the

noise generation target on provoking the appearance of the

P300, thus increasing the overall impact to the proposed

framework.

The impact generated by each attack profile is measured

from the BCI framework. In particular, the framework uses

the classifiers described in Sect. 4.3 to provide an aggre-

gated metric of performance attack using the Area Under

the Curve (AUC) metric. Since the attacks’ goal is to

generate P300 waves in the EEG signal that does not

contain them, the AUC value is obtained by evaluating

only non-target epochs of the EEG. Finally, a relationship

is established between the metrics obtained by affecting the

legitimate signal by noise and the attacker’s knowledge.

Table 2 Features of the noise

generated
Type of noise Power level RMS noise level (dB)

Gaussian with static range Low � 0:8

Gaussian with static range High � 5

Gaussian with dynamic range Adaptive Variation within the range 0.8 to 5
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5.1 Legitimate EEG signal

This section describes the EEG signal acquired during the

study without the disturbance caused by noise-based

cyberattacks. Figure 6 shows a fragment of the legitimate

EEG signal during the acquisition phase darker (in blue)

and after the processing phase lighter (in orange). More

specifically, the figure represents a 10-s segment of the

EEG signal captured during the study. While the unpro-

cessed EEG signal shows a usual noise caused by some

artifacts, the processed signal provides more information

by narrowing the frequency of brain waves and reducing

noise with processing techniques. In addition, the fig-

ure presents the beginning of each epoch with its corre-

sponding label according to the type of event produced

(target or non-target image).

Subsequently, the processed EEG signal is fed into the

trained classifiers of the P300 detection phase. Figure 7

shows the AUC values obtained by the five classifiers used

in this work. As can be seen, the framework can classify

approximately the 50–80% of non-target epochs. Among

all the classifiers, classifiers I and V (with AUC values of

0.746 and 0.792, respectively) stand out as the most

promising.

5.2 First attacker profile

The first attacker generates two different types of noise: (1)

Gaussian noise with static range 0.8 dB and (2) Gaussian

noise with static range 5 dB (see rectangular figure with

grey color in Fig. 8a). The attacker only knows the wireless

communication that occurs, so the objective is to alter the

signal in the acquisition phase. The generation of the noises

is prolonged during the whole acquisition phase, where

both noises are interspersed with an interval of 2–3 s.

Likewise, the attack is aimed at all BCI channels, applying

the same amount and interval of noise to all of them.

Besides, Fig. 8a includes cross and tick marks to indicate

whether the applied noise is detected as P300 by the best

performing classifier.

Table 3 shows the AUC values for each classifier and

noise behavior. The results obtained in Table 3 and the

following tables are the product of evaluating only the non-

target epochs of the EEG signal, as previously discussed at

the beginning of Sect. 5. Thus, the AUC values determine

the impact of the attacks to generate P300 waves and,

consequently, epochs labeled as target. From the results

obtained, it can be concluded that both malware noise and

physical noise obtain a similar reduction of AUC values

concerning the legitimate EEG signal. These results are

due to both noises are applied arbitrarily throughout the

EEG signal. The noise application affects a set of random

samples unknown to the attacker, spreading the attack over

the entire acquired EEG signal without any adaptation.

Therefore, the noise does not consider the EEG signal

acquisition parameters, such as sampling frequency, epochs

division, or the P300 wave characteristics. This procedure

causes both non-target and target epochs to be affected by

the noise, with the non-target epochs finally being evalu-

ated by the classifiers. The AUC values obtained indicate

Fig. 6 Legitimate EEG signal (Color figure online)

Fig. 7 AUC values obtained by classifier when evaluating non-target

using a legitimate EEG signal
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that the attack was not sufficient to trigger the generation of

P300 in the EEG signal.

5.3 Second attacker profile

The second attacker generates specific noises based on the

P300 wave. Therefore, it generates noises following the

characteristics and behavior of the P300, consisting of (1)

variable increment of the noise at the beginning of the

attack in the first 100 to 300 ms, trying that the EEG signal

is not in negative values, (2) a decrease of the noise, aiming

that the signal can reach negative voltage values close to

zero, (3) an increment of the noise pretending that the

signal reaches 20–40 lV, and (4) a decrease of the variable

noise between generations (see rectangular figure with grey

color in Fig. 8b).

This attacker profile presents a slight decrease of the

AUC values for all classifiers (see Table 4) compared to

those obtained with the legitimate signal. This generalized

decrease is due to not using long fragments with noise and

accentuating them in specific areas of the EEG signal.

Although the noise is generated by simulating the P300

wave, the attacker does not know the acquisition phase

variables, such as the sampling frequency, the voltage

range, or the synchronization with the stimuli.

5.4 Third attacker profile

The third attacker performs a process similar to the pre-

vious profile. The main difference is that now the attacker

generates the noise in the EEG signal segments affecting

different epochs individually (see Fig. 8c). It negatively

impacts the classifiers by generating more specific noise in

those EEG segments where a non-target event occurs.

Figure 8c shows an example of that, where a classifier

predicts the non-existence of P300 in the five epochs

attacked, except for the first one. The goal of the attacker is

to alter the EEG signal segment relative to the non-target

event and generate a P300 wave. Noise generation involves

monitoring the transmitted data and, more specifically, the

voltage measured by each electrode. Once the information

is known, the attacker generates noise similar to the P300

wave but with the frequency and amplitude adapted to the

rest of the EEG signal. Besides, it limits the noise power

bFig. 8 Impact of noise-based cyberattacks on the EEG signal

depending on the attacker profile

Table 3 AUC values by

classifier and noise behavior in

the first attacker profile

Noise behavior

Physical noise Malware noise Legitimate signal

Classifiers Classifier I 0.738 0.721 0.746

Classifier II 0.587 0.583 0.604

Classifier III 0.536 0.525 0.537

Classifier IV 0.716 0.701 0.725

Classifier V 0.783 0.759 0.792

Table 4 AUC values by

classifier and noise behavior in

the second attacker profile

Noise behavior

Physical noise Malware noise Legitimate signal

Classifiers Classifier I 0.737 0.701 0.746

Classifier II 0.587 0.581 0.604

Classifier III 0.521 0.517 0.537

Classifier IV 0.718 0.689 0.725

Classifier V 0.774 0.710 0.792
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level, adapting the signal to the processing phase parame-

ters. Likewise, both the physical noise and the malware

noise are generated on the O1 and O2 electrodes (placed in

the occipital region of the brain) since the attacker knows

the voltages of each scalp electrode and which ones are

involved in the generation of the P300 through visual

stimuli.

Table 5 shows the AUC values obtained in each noise-

based cyberattack. In this attacker profile, substantial

changes are observed concerning the AUC values obtained

in the legitimate signal, particularly malware noise. Con-

trary to the previous profiles, the knowledge of EEG signal

processing and synchronization regarding the displayed

stimuli generates a beneficial environment for the attacker.

Similarly, the noise is generated without exceeding the

artifact rejection of the framework, thus avoiding a voltage

reduction in the generated P300 wave. This conclusion has

its representation in (1) 6–12% decrease in AUC values

with physical noise and (2) 35–40% decrease with malware

noise, both concerning the legitimate signal.

5.5 Fourth attacker profile

The fourth profile focuses on attacking the acquisition and

processing phases of the BCI cycle but having information

about the classifier and its predictions. This type of attack

has similarities with adversarial attacks on machines and

deep learning in the literature, such as FGSM (Fast Gra-

dient Signed Method). The difference concerning FGSM is

that the latter needs to calculate the gradients using mod-

ifications to the epsilon, while the proposed attack uses the

P300 features to apply it in the form of adaptive noise to

the EEG signal. The objective is to modify the EEG signal,

maximizing the probability that the classifiers predict P300.

Figure 8d shows the noise adaptation along the EEG sig-

nal. While the classifiers initially predict the modification

of the epochs as Non-P300, the continuous noise adaptation

leads to the generation of the P300 in the EEG signal (fifth

epoch in the figure). Noise adaptation is continuous until

all epochs are classified as P300 (seventh epoch forward).

In short, the attacker uses the feedback received by the

classifiers to refine the generated noise, decreasing the

impact of the attack and enhancing the generation of the

P300.

Table 5 AUC values by

classifier and noise behavior in

the third attacker profile

Noise behavior

Physical noise Malware noise Legitimate signal

Classifier Classifier I 0.678 0.445 0.746

Classifier II 0.489 0.412 0.604

Classifier III 0.501 0.313 0.537

Classifier IV 0.679 0.389 0.725

Classifier V 0.695 0.468 0.792

Table 6 AUC values by

classifier and noise behavior in

the fourth attacker profile

Noise behavior

Physical noise Malware noise Legitimate signal

Classifiers Classifier I 0.603 0.201 0.746

Classifier II 0.441 0.112 0.604

Classifier III 0.467 0.104 0.537

Classifier IV 0.621 0.155 0.725

Classifier V 0.618 0.212 0.792
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The AUC values obtained in this profile (see Table 6)

are the lowest in the study, including those obtained by the

previous profiles and the legitimate signal. These values

comprise all the attack vectors performed, including the

learning period to generate the ideal noise to favor the

generation of the P300. This approach results in AUC

values greater than zero. When the classifier detects mostly

P300 with a specific noise template, it is applied in suc-

cessive attacks. Therefore, the classifier is always fooled,

which means that the attack can generate a P300 where

there was not is most of the time. While the AUC values

obtained with the physical noise have decreased by

20–28% concerning the legitimate signal, those of the

malware noise have decreased by a more significant pro-

portion, obtaining values between 0.104 and 0.212.

Finally, Table 7 compares the AUC values obtained by

Classifier V, the one with the best prediction performance

with the legitimate signal (see Fig. 7), according to the

noise behavior and the attacker profile. On the one hand,

the values demonstrate the slight progressive decrease of

the AUC with physical noise in the different profile attacks.

The decrease is between 1 and 22% concerning the legit-

imate signal, being 1% for the first profile and 22% for the

fourth profile. On the other hand, the AUC values of the

malware noise lead to a quantitative jump of decrease

between the second and third profiles, being 34% less, and

between third and fourth profiles, being 55% less. Simi-

larly, the application of malware noise in the fourth profile

has an impact of 74% in contrast with those obtained in the

legitimate signal. Therefore, the application of malware

noise in the processing phase by the fourth attacker profile

has the most significant impact on the AUC, which trans-

lates into a high generation of P300 potentials in the EEG

signal.

6 Conclusion

This work presents four incremental attacker profiles that

generate noise-based cyberattacks affecting intelligent BCI

frameworks that detect P300 waves. The first profile knows

about wireless communication between the BCI headset

and the BCI framework. The second has information about

P300 waves. The third knows the BCI framework, and the

fourth one also knows about P300 detection model details

and outputs. For each profile, two types of noise are con-

sidered: (1) physical, affecting the EEG signal acquisition

phase of BCI frameworks, and (2) malware-based,

impacting the processing phase. To measure the impact of

the attacks we have deployed a realistic scenario for EEG

signal acquisition composed of (1) a video showing known

and unknown visual stimuli, (2) a non-invasive BCI

headset, and (3) a BCI framework implementing the

acquisition, processing and P300 detection phases of the

BCI life cycle. The performed experiments have demon-

strated that increased knowledge about the BCI cycle

allows an attacker to perform more sophisticated attacks to

generate P300 waves. Likewise, we have observed attacks

affecting the processing phase have a more significant

impact on the generation of the P300. In particular, the

AUC score of the best classifier detecting P300 is reduced

the 1%, 3%, 12%, and 22% attacking the acquisition phase,

and the 4%, 10%, 41%, and 74% when the data processing

phase is affected by each one of the four profiles,

respectively.

As future work, we plan to study the impact of new

techniques and targets of noise application, creating new

attack vectors. Likewise, the materialization of different

attack vectors may give rise to new attacker profiles with a

different impact than those described in this work. One of

the future lines could delve into an attacker profile focused

on the BCI hardware, at a lower level of abstraction or

from the perspective of brain stimulation. It would be

interesting to compare the profiles and determine the

impact or criticality originated in future research. In the

same way, we consider a study with a more significant

number of labeled EEG signal samples for classifiers

training, as well as more sophisticated algorithms to detect

the P300. Finally, we propose to use a larger number of

electrodes in EEG signal monitoring since interpolation

could reduce the impact of these cyberattacks.
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ros, M.T., Balasubramaniam, S.: Security in brain–computer

interfaces: state-of-the-art, opportunities, and future challenges.

ACM Comput. Surv. (2021). https://doi.org/10.1145/3427376

16. Martı́nez Beltrán, E.T.: enriquetomasmb/bci (2021). Retrieved

February 21, 2021, from https://github.com/enriquetomasmb/bci

17. Martinovic, I., Davies, D., Frank, M., Perito, D., Ros, T., Song,

D.: On the feasibility of side-channel attacks with brain–com-

puter interfaces. In: 21st USENIX Security Symposium (USE-

NIX Security 12), pp. 143–158. USENIX Association, Bellevue

(2012). Retrieved January 15, 2021, from https://www.usenix.

org/conference/usenixsecurity12/technical-sessions/presentation/

martinovic

18. McFarland, D., Wolpaw, J.: EEG-based brain–computer inter-

faces. Curr. Opin. Biomed. Eng. 4, 194–200 (2017). https://doi.

org/10.1016/j.cobme.2017.11.004

19. Meng, L., Lin, C., Jung, T., Wu, D.: White-box target attack for

EEG-based BCI regression problems. In: Gedeon, T., Wong,

K.W., Lee, M. (eds) Neural Information Processing—26th

International Conference, ICONIP 2019, Sydney, NSW, Aus-

tralia, 12–15 December 2019, Proceedings, Part I, Lecture Notes

in Computer Science, vol 11953, pp. 476–488. Springer (2019).

https://doi.org/10.1007/978-3-030-36708-4_39

20. Monaco, A., Sforza, G., Amoroso, N., Antonacci, M., Bellotti, R.,

de Tommaso, M., Di Bitonto, P., Di Sciascio, E., Diacono, D.,

Gentile, E., Montemurno, A., Ruta, M., Ulloa, A., Tangaro, S.:

The PERSON project: a serious brain–computer interface game

for treatment in cognitive impairment. Health Technol. 9(2),

123–133 (2019). https://doi.org/10.1007/s12553-018-0258-y

46 Cluster Computing (2022) 25:33–48

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s140814601
https://doi.org/10.1109/IE49459.2020.9154926
https://doi.org/10.1109/IE49459.2020.9154926
https://www.sciencedaily.com/releases/2017/02/170206084904.htm
https://www.sciencedaily.com/releases/2017/02/170206084904.htm
https://doi.org/10.1212/WNL.0000000000005804
https://doi.org/10.1038/s41598-018-29091-5
https://doi.org/10.1038/s41598-018-29091-5
https://doi.org/10.1145/3139550.3139559
https://doi.org/10.1145/3139550.3139559
https://doi.org/10.1109/MIPRO.2016.7522174
https://doi.org/10.1109/MIPRO.2016.7522174
https://doi.org/10.6109/jicce.2011.9.2.125
https://doi.org/10.1109/SSCI44817.2019.9002719
https://doi.org/10.1109/SSCI44817.2019.9002719
https://doi.org/10.1007/s10586-020-03141-y
https://doi.org/10.1016/j.matpr.2021.01.784
https://doi.org/10.1007/s10586-017-1409-z
https://doi.org/10.1007/s10586-017-1409-z
https://doi.org/10.1186/s40708-018-0090-1
https://doi.org/10.1186/s40708-018-0090-1
https://doi.org/10.1109/CNS.2015.7346884
https://doi.org/10.1145/3427376
https://github.com/enriquetomasmb/bci
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/martinovic
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/martinovic
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/martinovic
https://doi.org/10.1016/j.cobme.2017.11.004
https://doi.org/10.1016/j.cobme.2017.11.004
https://doi.org/10.1007/978-3-030-36708-4_39
https://doi.org/10.1007/s12553-018-0258-y


21. Peña, A., Arango, J., Mazo, J.: Sistema para rehabilitación del

sı́ndrome del miembro fantasma utilizando interfaz cerebro-

computador y realidad aumentada. Rev. Ibér. Sist. Tecnol. Inf.

(2013). https://doi.org/10.4304/risti.11.93-106

22. Picton, T.: The P300 wave of the human event-related potential.

J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 9,

456–79 (1992). https://doi.org/10.1097/00004691-199210000-

00002

23. Rojas, G., Alvarez, C., Montoya, C., de la Iglesia-Vaya, M.,

Cisternas, J., Gálvez, M.: Study of resting-state functional con-

nectivity networks using EEG electrodes position as seed. Front.

Neurosci. (2018). https://doi.org/10.3389/fnins.2018.00235

24. Rosenfeld, J.P.: P300 in detecting concealed information and

deception: a review. Psychophysiology 57(7), e13362 (2020).

https://doi.org/10.1111/psyp.13362

25. Rushanan, M., Rubin, A.D., Kune, D.F., Swanson, C.M.: SoK:

security and privacy in implantable medical devices and body

area networks. In: 2014 IEEE Symposium on Security and Pri-

vacy, pp. 524–539 (2014). https://doi.org/10.1109/SP.2014.40

26. Takano, K., Ora, H., Sekihara, K., Iwaki, S., Kansaku, K.:

Coherent activity in bilateral parieto-occipital cortices during

P300-BCI operation. Front. Neurol. 5, 74 (2014). https://doi.org/

10.3389/fneur.2014.00074

27. The OpenBCI GUI: OpenBCI Documentation (2021). Retrieved

February 19, 2021, from https://docs.openbci.com/docs/06Soft

ware/01-OpenBCISoftware/GUIDocs

28. Vinothraj, T., Alfred, D.D., Amarakeerthi, S., Ekanayake, J.:

BCI-based alcohol patient detection. In: 2017 Joint 17th World

Congress of International Fuzzy Systems Association and 9th

International Conference on Soft Computing and Intelligent

Systems (IFSA-SCIS), pp. 1–6 (2017). https://doi.org/10.1109/

IFSA-SCIS.2017.8305564

29. Zhang, X., Wu, D.: On the vulnerability of CNN classifiers in

EEG-based BCIs. IEEE Trans. Neural Syst. Rehabil. Eng. (2019).

https://doi.org/10.1109/TNSRE.2019.2908955

30. Zhang, X., Wu, D., Ding, L., Luo, H., Lin, C.T., Jung, T.P.,

Chavarriaga, R.: Tiny noise, big mistakes: adversarial perturba-

tions induce errors in brain–computer interface spellers. Natl Sci.

Rev. (2020). https://doi.org/10.1093/nsr/nwaa233

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Enrique Tomás Martı́nez Beltrán
is a M.Sc. Student in New

Technologies at the University

of Murcia, specialized in net-

working and telematics. He is

currently working on his End of

Master Project based on cyber-

security and Brain–Computer

Interfaces. At the same time, he

is researching the automation of

attacks and defenses in different

scenarios with the CyberData-

Lab team. His interests include

cybersecurity and new

technologies.

Mario Quiles Pérez B.Eng. Stu-
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