Skip to main content

Advertisement

Log in

Software architecture for IoT-based health-care systems with cloud/fog service model

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Pervasive Healthcare systems are breeding rapidly and distributed systems such as fog, cloud, and IoT have made it possible for these systems to scale extensively with a certain need to sustain interoperability, reliability, availability, and response time. Notwithstanding those remarkable efforts that have been conducted for the architecting of such systems, there is a certain obligation toward the design of an architecture for the domain to constitute the aforementioned requirements. Our goal in this paper is to present a software architecture for IoT-based healthcare systems to address the above-mentioned non-functional requirements that include best practices of IoT, Fog, and Cloud planes. The proposed architecture is illustrated with 4 + 1 views and graph transformation is used to transform the models and expressing operational semantics. The architecture tradeoff analysis method is applied to evaluate different scenarios and both formal verifications and trade-off analysis proved the eligibility and competence of the proposed architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Deebak, B.D., Al-Turjman, F., Aloqaily, M., Alfandi, O.: IoT-BSFCAN: a smart context-aware system in IoT-Cloud using mobile-Fogging. Future Gener. Comput. Syst. 109, 368–381 (2020)

    Google Scholar 

  2. Casola, V., Benedictis, A.D., Rak, M., Villano, U.: Toward the automation of threat modeling and risk assessment in IoT systems. Internet Things 9, 100056 (2019)

    Google Scholar 

  3. Glória, A., Cercas, F., Souto, N.: Design and implementation of an IoT gateway to create smart environments. In: Proceedings of the 8th International Conference on Ambient Systems, Networks and Technologies (2017)

  4. Maheshwari, P., Teoh, A.: Supporting ATAM with a collaborative Web-based software architecture evaluation tool. Sci. Comput. Progr. 57(1), 109–128 (2005)

    MathSciNet  Google Scholar 

  5. Khan, R., Khan, S.-U., Zaheer, R., Khan, Sh.: Future internet: the internet of things architecture, possible applications and key challenges. In: Proceedings of the 2012 10th International Conference on Frontiers of Information Technology, India (2012)

  6. Akatyev, N., James, J.I.: Evidence identification in IoT networks based on threat assessment. Future Gener. Comput. Syst. 93, 814–821 (2019)

    Google Scholar 

  7. Nidhya, R., Karthik, S., Smilarubavathy, G.: An end-to-end secure and energy-aware routing mechanism for IoT-based modern health care system. In: Reddy, V.S. (ed.) Soft Computing and Signal Processing, pp. 379–388. Springer, Singapore (2019)

    Google Scholar 

  8. Gia, T.-N., Jiang, M., Rahmani, A.-M., Westerlund, T., Liljeberg, P., Tenhunen, H.: Fog computing in healthcare internet of things: a case study on ECG feature extraction. In: Proceeding of the 2015 IEEE International Conference on Computer and Information Technology (2015)

  9. Rahmani, A.-M., Gia, T.-N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., Liljeberg, P.: Exploiting smart E-health gateways at the edge of healthcare internet-of-things: a fog computing approach. Future Gener. Comput. Syst. 78, 641–658 (2018)

    Google Scholar 

  10. Chang, H., Hari, A., Mukherjee, S., Lakshman, T.-V.: Bringing the cloud to the edge. In: Proceedings of the IEEE Conference on INFOCOM Workshops (2014)

  11. Botta, A., Donato, W., Persico, V., Pescapé, A.: Integration of cloud computing and internet of things: a survey. Future Gener. Comput. Syst. 56, 684–700 (2016)

    Google Scholar 

  12. Gill, S.S., Garraghan, P., Buyya, R.: ROUTER: fog enabled cloud based intelligent resource management approach for smart home IoT devices. J. Syst. Softw. 154, 125–138 (2019)

    Google Scholar 

  13. RahimiMoosavi, S., NguyenGia, T., Nigussie, E., Rahmani, A.M., Virtanen, S., Tenhunen, H., Isoaho, J.: End-to-end security scheme for mobility enabled healthcare Internet. Future Gener. Comput. Syst. 64, 108–124 (2016)

    Google Scholar 

  14. Palanikkumar, D., Priya, S.: Ant colony based graph theory (ACGT) and resource virtual network mapping (RVNM) algorithm for home healthcare system in Cloud environment. Multimed. Tool Appl. 79, 3743–3760 (2020)

    Google Scholar 

  15. Rafe, V., Hajvali, M.: A reliable architectural style for designing pervasive healthcare systems. J. Med. Syst. 38(9), 1–9 (2014)

    Google Scholar 

  16. Maheswari, S., Vasanthayaki, C.: Secure medical health care content protection system (SMCPS) with watermark detection for multi Cloud computing environment. Multimed. Tool Appl. 79, 4075–4097 (2020)

    Google Scholar 

  17. Tartarisco, G., Baldus, G., Corda, D., Raso, R., Arnao, A., Ferro, M., Gaggioli, A., Pioggia, G.: Personal Health System architecture for stress monitoring and support. Comput. Commun. 35, 1296–1305 (2012)

    Google Scholar 

  18. Mani, N., Singh, A., Nimmagadda, S.: An IoT guided healthcare monitoring system for managing real-time notifications by fog computing services. Procedia Comput. Sci. 167, 850–859 (2020)

    Google Scholar 

  19. Bhatia, M.: Fog computing-inspired smart home framework for predictive veterinary healthcare. Microprocess. Microsyst. 78, 103227 (2020)

    Google Scholar 

  20. Manocha, A., Kumar, G., Bhatia, M., Sharma, A.: Video-assisted smart health monitoring for affliction determination based on fog analytics. J. Biomed. Inf. 109, 103513 (2020)

    Google Scholar 

  21. Wang, X., Cai, S.: Secure healthcare monitoring framework integrating NDN-based IoT with edge cloud. Future Gener. Comput. Syst. 112, 320–329 (2020)

    Google Scholar 

  22. Shakil, A.K., Zareen, J.F., Alam, M., Jabin, S.: BAMHealthCloud: a biometric authentication and data management system for healthcare data in cloud. J. King Saud Univ. Comput. Inf. Sci. 32(1), 57–64 (2020)

    Google Scholar 

  23. Woo, M.W., Lee, J.-W., Park, K.-H.: A reliable IoT system for personal healthcare devices. Future Gener. Comput. Syst. 78(2), 626–640 (2018)

    Google Scholar 

  24. Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., Mankodiya, K.: Towards fog-driven IoT eHealth: promises and challenges of IoT in medicine and healthcare. Future Gener. Comput. Syst. 78, 659–676 (2018)

    Google Scholar 

  25. Verma, P., Sood, S.-K.: Cloud-centric IoT based disease diagnosis healthcare framework. J. Parallel Distrib. Comput. 116, 27–38 (2018)

    Google Scholar 

  26. Din, S., Paul, A.: Smart health monitoring and management system: toward autonomous wearable sensing for internet of things using big data analytics. Future Gener. Comput. Syst. 91, 611–619 (2019)

    Google Scholar 

  27. Ullah, S., Kim, K., Kim, H.K., Imran, M., Khan, P., Tovar, E., Ali, F.: UAV-enabled healthcare architecture: issues and challenges. Future Gener. Comput. Syst. 97, 425–432 (2019)

    Google Scholar 

  28. Kumari, A., Tanwar, S., Tyagi, S., Kumar, N.: Fog computing for Healthcare 4.0 environment: opportunities and challenges. Comput. Electr. Eng. 72, 1–13 (2018)

    Google Scholar 

  29. Dhanvijay, M.M., Patil, C.S.: Internet of things: a survey of enabling technologies in healthcare and its applications. Comput. Netw. 153, 113–131 (2019)

    Google Scholar 

  30. Rafe, V., Hajvali, M.: Designing an architectural style for pervasive healthcare systems. J. Med. Syst. 37(2), 1–13 (2013)

    Google Scholar 

  31. Mshali, H., Lemlouma, T., Moloney, M., Magoni, D.: A survey on health monitoring systems for health smart homes. Int. J. Ind. Ergon. 66, 26–56 (2018)

    Google Scholar 

  32. Hazra, A., Adhikari, M., Amgoth, T., Srirama, S.N.: Stackelberg game for service deployment of IoT-enabled applications in 6G-aware fog networks. IEEE Internet Things J. 8(7), 5185–5193 (2021). https://doi.org/10.1109/JIOT.2020.3041102

    Article  Google Scholar 

  33. Hazra, A., Adhikari, M., Amgoth, T., Srirama, S.N.: Joint computation offloading and scheduling optimization of IoT applications in fog networks. IEEE Trans. Netw. Sci. Eng. 7(4), 3266–3278 (2020). https://doi.org/10.1109/TNSE.2020.3021792

    Article  MathSciNet  Google Scholar 

  34. Tuli, S., Basumatary, N., Sukhpal Singh Gill, S.S., Kahani, M., Arya, C.R., Wander, S.G., Buyya, R.: HealthFog: “an ensemble deep learning based smart healthcare system for automatic diagnosis of heart diseases in integrated IoT and fog computing environments.” Future Gener. Comput. Syst. 104, 187–200 (2020)

    Google Scholar 

  35. Pham, M., Mengistu, Y., Do, H., Sheng, W.: Delivering home healthcare through a Cloud based Smart Home Environment (CoSHE). Future Gener. Comput. Syst. 81, 129–140 (2018)

    Google Scholar 

  36. Constant, N., Borthakur, D., Abtahi, M., Dubey, H., Mankodiya, K: Fog-assisted wiot: a smart fog gateway for end-to-end analytics in wearable internet of things. arxiv (2017)

  37. Ali, F., El-Sappagh, S.H., Riazul Islam, S.M., Ali, A., Attique, M., Imran, M., Kwak, K.-S.: An intelligent healthcare monitoring framework using wearable sensors and social networking data. Future Gener. Comput. Syst. 114, 23–43 (2021)

    Google Scholar 

  38. Kaur, A., Sood, S.-K.: Cloud-fog assisted energy efficient architectural paradigm for disaster evacuation. Inf. Syst. (2021). https://doi.org/10.1016/j.is.2021.101732

    Article  Google Scholar 

  39. Alam, M.D., ShirajumMunir, M.D., Zia Uddin, M.D., ShamsulAlam, M.D., Nguyen Dang, T., Hong, C.H.: Edge-of-things computing framework for cost-effective provisioning of healthcare data. J. Parallel Distrib. Comput. 123, 54–60 (2019)

    Google Scholar 

  40. Rahmani, A.M., Babaei, Z., Souri, A.: Event-driven IoT architecture for data analysis of reliable healthcare application using complex event processing. Clust. Comput. 24, 1347 (2020)

    Google Scholar 

  41. Sahoo, P.K., Mohapatra, S.K., Wu, S.L.: SLA based healthcare big data analysis and computing in cloud network. J. Parallel Distrib. Comput. 119, 121–135 (2018)

    Google Scholar 

  42. Sarrab, M.: Assisted-fog-based framework for IoT-based healthcare data preservation. Int. J. Cloud Appl. Comput. (IJCAC) 11, 1–16 (2021)

    Google Scholar 

  43. Abbasi, M., Mohammadi-Pasand, E., Khosravi, M.R.: Intelligent workload allocation in IoT–Fog–cloud architecture towards mobile edge computing. Comput. Commun. 169, 71–80 (2021)

    Google Scholar 

  44. Chudhary, R., Sharma, S.: Fog-cloud assisted framework for heterogeneous internet of healthcare things. Procedia Comput. Sci. 184, 194–201 (2021)

    Google Scholar 

  45. Mahini, H., Rahmani, A.M., Mousavirad, S.M.: An evolutionary game approach to IoT task offloading in fog-cloud computing. J. Supercomput. 77, 5398–5425 (2021)

    Google Scholar 

  46. Chihoub, E.H., Ibrahim, S., Antoniu, G., Perez, S.M.: Consistency management in Cloud storage systems. In: Sakr, S., Gaber, M. (eds.) Advances in Data Processing Techniques in the Era of Big Data. CRC Press, Boca Raton (2014)

    Google Scholar 

  47. Kumari, A., Tanwar, S., Tyagi, S., Kumar, N., Parizi, M.-R., Choo, R.K.K.: Fog data analytics: a taxonomy and process model. J. Netw. Comput. Appl. 128, 90–104 (2019)

    Google Scholar 

  48. Davami, F., Adabi, S., Rezaee, A., et al.: Fog-based architecture for scheduling multiple workflows with high availability requirement. Computing (2021). https://doi.org/10.1007/s00607-021-00905-1

    Article  Google Scholar 

  49. Zeng, D., Gu, L., Guo, S., Cheng, Z., Yu, S.: Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system. IEEE Trans. Comput. 65(12), 3702 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Pham, X.Q., Man, N.D., Tri, N.D.T., Thai, N.Q., Huh, E.N.: A cost- and performance-effective approach for task scheduling based on collaboration between Cloud and Fog computing. Int. J. Distrib. Sens. Netw. 13(11), 1550147717742073 (2017)

    Google Scholar 

  51. Gia, N.T., Rahmani, M.A., Westerlund, T., PasiLiljeberg, P., HannuTenhunen, H.: Fog computing approach for mobility support in internet-of things systems. IEEE Access 6, 36064 (2018)

    Google Scholar 

  52. Couto, R.S., Sadok, H., Cruz, P., Silva, F., Sciammarella, T., Campista, M., Costa, H.L., Velloso, B.P., Rubinstein, G.M.: Building an IaaS cloud with droplets: a collaborative experience with OpenStack”. J. Netw. Comput. Appl. 117, 59–71 (2018)

    Google Scholar 

  53. Venkatesh, K., Srinivas, L.N.B., Krishnan, M., Shanthini, A.: QoS improvisation of delay sensitive communication using SDN based multipath routing for medical applications. Future Gener. Comput. Syst. 93, 256–265 (2019)

    Google Scholar 

  54. Kruchten, P.: The 4 + 1 view model of architecture. IEEE Softw. 12(6), 42–50 (1995)

    Google Scholar 

  55. Basirati, M.R., Femmer, H., Eder, S., Fritzsche, M., Widera, A.: Understanding changes in use cases: a case study. In: Proceedings of the 2015 IEEE 23rd International Requirements Engineering Conference (RE) (2015)

  56. Kalaee, A., Rafe, V.: Model-based test suite generation for graph transformation system using model simulation and search-based techniques. Inf. Softw. Technol. 108, 1–29 (2019)

    Google Scholar 

  57. Pira, E., Rafe, V., Nikanjam, A.: EMCDM: efficient model checking by data mining for verification of complex software systems specified through architectural styles. Appl. Soft Comput. 49, 1185–1201 (2016)

    Google Scholar 

  58. GROOVE Manual Version 5.7.4 and GROOVE website. http://www.groove.sourceforge.net/groove-index.html (2019)

  59. Ghamarian, H., Mol, D.M., Rensink, A., Zambon, E., Zimakova, M.: Modelling and analysis using GROOVE. Int. J. Softw. Tools Technol. Transf. 14(1), 15–40 (2012)

    Google Scholar 

  60. Kahani, N., Bagherzadeh, M., Cordy, R.J., Dingel, J., Varró, D.: Survey and classification of model transformation tools. Softw. Syst. Model. 18(4), 2361–2397 (2019)

    Google Scholar 

  61. Gabmeyer, S., Kaufmann, P., Seidl, M., Gogolla, M., Kappel, G.: A feature-based classification of formal verification techniques for software models. Softw. Syst. Model. 18(1), 473–498 (2019)

    Google Scholar 

  62. Kouchnarenko, O., Webe, F.-J.: Component-based systems reconfigurations using graph transformations with GROOVE. Autom. Control Comput. Sci. 51(7), 463–477 (2017)

    Google Scholar 

  63. Zhou, Y., Huang, Y., Wei, O., Huang, Z.: Verifying specifications with associated attributes in graph transformation systems. Front. Comput. Sci. 9(3), 364–374 (2015)

    Google Scholar 

  64. Ghasemi, F., Rezaee, A., Rahmani, M.A.: Structural and behavioral reference model for IoT-based elderly health-care systems in smart home. Int. J. Commun. Syst. 32(2), e4002 (2019)

    Google Scholar 

  65. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn., pp. 276–306. Addison-Wesley Professional, Boston (2003)

    Google Scholar 

  66. Montenegro, H.C., Astudillo, H., Álvarez, G.C.M.: ATAM-RPG: a role-playing game to teach Architecture Trade-off Analysis Method (ATAM). In: Proceedings of the 2017 XLIII Latin American Computer Conference (CLEI) (2017)

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Adabi.

Ethics declarations

Conflict of interest

All the authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajvali, M., Adabi, S., Rezaee, A. et al. Software architecture for IoT-based health-care systems with cloud/fog service model. Cluster Comput 25, 91–118 (2022). https://doi.org/10.1007/s10586-021-03375-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03375-4

Keywords

Navigation