Skip to main content

Advertisement

Log in

A new clustering-based routing method in the mobile internet of things using a krill herd algorithm

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Internet of things has become an essential principle of human life with the widespread acceptance of intelligent environments, where everyday objects can communicate through the internet. Mobility is the most critical factor in today’s internet of things devices to apply in real-world applications. Also, proper routing protocol plays a vital role in communication and reduces devices’ energy consumption. The clustering approach is one of the efficient routing techniques to improve energy consumption and enhance network life. Due to the NP-Hard nature of clustering, a krill herd optimization algorithm is proposed in this paper to select the cluster head nodes and intermediate nodes required for routing. The simulation results using NS-3 confirmed that the proposed technique performs better than particle swarm optimization and cuckoo search in terms of network lifetime. The proposed technique increases the total network lifetime by at least 11.1% compared to the current clustering methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pourghebleh, B., Navimipour, N.J.: Data aggregation mechanisms in the internet of things: a systematic review of the literature and recommendations for future research. J. Netw. Comput. Appl. 97, 23–34 (2017)

    Article  Google Scholar 

  2. Azad, P., et al.: The role of structured and unstructured data managing mechanisms in the internet of things. Cluster Comput. 23, 1185–1198 (2019)

    Article  Google Scholar 

  3. Pourghebleh, B., Wakil, K., Navimipour, N.J.: A comprehensive study on the trust management techniques in the internet of Things. IEEE Internet Things J. 6(6), 9326–9337 (2019)

    Article  Google Scholar 

  4. Sokolov, S., et al.: IoT security: threats, risks, attacks. In: Mottaeva, A. (ed.) Proceedings of the XIII International Scientific Conference on architecture and construction 2020, pp. 47–56. Springer, Singapore (2020)

    Google Scholar 

  5. Wang, Z., Qin, X., Liu, B.: An energy-efficient clustering routing algorithm for WSN-assisted IoT. In: 2018 IEEE wireless communications and networking conference (WCNC). IEEE, New Jersy (2018)

    Google Scholar 

  6. Ghanbari, Z., et al.: Resource allocation mechanisms and approaches on the internet of things. Cluster Comput. 22(4), 1253–1282 (2019)

    Article  Google Scholar 

  7. Jain, A., et al.: A route selection approach for variable data transmission in wireless sensor networks. Cluster Comput. 23, 1697–1709 (2020)

    Article  Google Scholar 

  8. Pushpalatha, A., Kousalya, G.: A prolonged network life time and reliable data transmission aware optimal sink relocation mechanism. Cluster Comput. 22(5), 12049–12058 (2019)

    Article  Google Scholar 

  9. Hasan, M.Z., Al-Rizzo, H., Al-Turjman, F.: A survey on multipath routing protocols for QoS assurances in real-time wireless multimedia sensor networks. IEEE Commun. Surv. Tutor. 19(3), 1424–1456 (2017)

    Article  Google Scholar 

  10. Ahmed, B.S., et al.: Aspects of quality in internet of things (IoT) solutions: a systematic mapping study. IEEE Access 7, 13758–13780 (2019)

    Article  Google Scholar 

  11. Kiruthika, J., Khaddaj, S.: Software quality issues and challenges of Internet of Things. In: 2015 14th International symposium on distributed computing and applications for business engineering and science (DCABES). IEEE, New Jersy (2015)

    Google Scholar 

  12. Bures, M., Cerny, T., Ahmed, B.S.: Internet of things: current challenges in the quality assurance and testing methods. In: Kim, K.J., Baek, N. (eds.) Information science and applications 2018. Springer, Singapore (2018)

    Google Scholar 

  13. Al-Turjman, F.M.: Information-centric sensor networks for cognitive IoT: an overview. Ann. Telecommun. 72(1–2), 3–18 (2017)

    Article  Google Scholar 

  14. Pourghebleh, B., JafariNavimipour, N.: Towards efficient data collection mechanisms in the vehicular ad hoc networks. Int. J. Commun. Syst. 32(5), e3893 (2019)

    Article  Google Scholar 

  15. Narendran, M., Prakasam, P.: An energy aware competition based clustering for cluster head selection in wireless sensor network with mobility. Cluster Comput. 22, 11019–11028 (2019)

    Article  Google Scholar 

  16. Choudhury, N., et al.: NCHR: a non-threshold-based cluster-head rotation scheme for IEEE 802.15.4 cluster-tree networks. IEEE Int. Things J. 8, 168–178 (2020)

    Article  Google Scholar 

  17. Choudhury, N., et al.: A non-threshold-based cluster-head rotation scheme for IEEE 802.15.4 cluster-tree networks. In: 2018 IEEE global communications conference (GLOBECOM). IEEE, New Jersy (2018)

    Google Scholar 

  18. Sadrishojaei, M., Jafari Navimipour, N., Reshadi, M., Hosseinzadeh, M.: Clustered routing method in the internet of things using a moth-flame optimization algorithm. Int. J. Commun. Syst. https://doi.org/10.1002/dac.4964

  19. Pantazis, N.A., Nikolidakis, S.A., Vergados, D.D.: Energy-efficient routing protocols in wireless sensor networks: a survey. IEEE Commun. Surv. Tutor. 15(2), 551–591 (2012)

    Article  Google Scholar 

  20. Aloise, D., et al.: NP-hardness of Euclidean sum-of-squares clustering. Mach. Learn. 75(2), 245–248 (2009)

    Article  MATH  Google Scholar 

  21. Chen, Y., Wang, H.: Evolutionary energy balanced ant colony algorithm based on WSNs. Cluster Comput. 22(1), 609–621 (2019)

    Article  MathSciNet  Google Scholar 

  22. Reddy, M.P.K., Babu, M.R.: Implementing self adaptiveness in whale optimization for cluster head section in internet of things. Cluster Comput. 22(1), 1361–1372 (2019)

    Article  Google Scholar 

  23. Agrawal, D., et al.: GWO-C: grey wolf optimizer-based clustering scheme for WSNs. Int. J. Commun. Syst. 33(8), e4344 (2020)

    Article  Google Scholar 

  24. Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Abualigah, L.M., Khader, A.T., Hanandeh, E.S.: Hybrid clustering analysis using improved krill herd algorithm. Appl. Intell. 48(11), 4047–4071 (2018)

    Article  Google Scholar 

  26. Kafi, M.A., et al.: A study of wireless sensor networks for urban traffic monitoring: applications and architectures. Procedia Comput. Sci. 19, 617–626 (2013)

    Article  Google Scholar 

  27. FaizanUllah, M., Imtiaz, J., Maqbool, K.Q.: Enhanced three layer hybrid clustering mechanism for energy efficient routing in IoT. Sensors 19(4), 829 (2019)

    Article  Google Scholar 

  28. Halder, S., Ghosal, A., Conti, M.: LiMCA: an optimal clustering algorithm for lifetime maximization of internet of things. Wireless Netw. 25(8), 4459–4477 (2019)

    Article  Google Scholar 

  29. Priyan, M., Devi, G.U.: Energy efficient node selection algorithm based on node performance index and random waypoint mobility model in internet of vehicles. Cluster Comput. 21(1), 213–227 (2018)

    Article  Google Scholar 

  30. Madhurikkha, S., Sabitha, R.: A smart power saving protocol for IoT with wireless energy harvesting technique. Cluster Comput. 22(2), 3313–3324 (2019)

    Article  Google Scholar 

  31. El Alami, H., Najid, A.: ECH: an enhanced clustering hierarchy approach to maximize lifetime of wireless sensor networks. IEEE Access 7, 107142–107153 (2019)

    Article  Google Scholar 

  32. Morsy, N.A., AbdelHay, E.H., Kishk, S.S.: Proposed energy efficient algorithm for clustering and routing in WSN. Wireless Pers. Commun. 103(3), 2575–2598 (2018)

    Article  Google Scholar 

  33. Adnan, M.A., et al.: A novel cuckoo search based clustering algorithm for wireless sensor networks. In: Advanced computer and communication engineering technology, pp. 621–634. Springer, Cham (2016)

    Chapter  Google Scholar 

  34. Rao, P.S., Jana, P.K., Banka, H.: A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wireless Netw. 23(7), 2005–2020 (2017)

    Article  Google Scholar 

  35. Hofmann, E.E., et al.: Lagrangian modelling studies of Antarctic krill (Euphausia superba) swarm formation. ICES J. Mar. Sci. 61(4), 617–631 (2004)

    Article  Google Scholar 

  36. Nicol, S.: Living krill, zooplankton and experimental investigations: a discourse on the role of krill and their experimental study in marine ecology. Mar. Fresh. Behav. Physiol. 36(4), 191–205 (2003)

    Article  Google Scholar 

  37. Murphy, E.J., et al.: Scales of interaction between Antarctic krill and the environment. In: Antarctic ocean and resources variability, pp. 120–130. Springer, Berlin (1988)

    Chapter  Google Scholar 

  38. Gandomi, A.H., Alavi, A.H.: An introduction of krill herd algorithm for engineering optimization. J. Civ. Eng. Manag. 22(3), 302–310 (2016)

    Article  Google Scholar 

  39. Bolaji, A., et al.: A comprehensive review: krill herd algorithm (KH) and its applications. Appl. Soft Comput. 49, 437–446 (2016)

    Article  Google Scholar 

  40. Wang, G.-G., et al.: A hybrid method based on krill herd and quantum-behaved particle swarm optimization. Neural Comput. Appl. 27(4), 989–1006 (2016)

    Article  Google Scholar 

  41. Shopon, M., Adnan, M.A., Mridha, M.F.: Krill herd based clustering algorithm for wireless sensor networks. In: 2016 International workshop on computational intelligence (IWCI). IEEE, New Jersy (2016)

    Google Scholar 

  42. Li, Q., Liu, B.: Clustering using an improved krill herd algorithm. Algorithms 10(2), 56 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Jiang, P., et al.: Dynamic layered dual-cluster heads routing algorithm based on krill herd optimization in UWSNs. Sensors 16(9), 1379 (2016)

    Article  Google Scholar 

  44. Abualigah, L.M., et al.: A new hybridization strategy for krill herd algorithm and harmony search algorithm applied to improve the data clustering. In: 1st EAI International Conference on computer science and engineering. European Alliance for Innovation (EAI), Belgium (2016)

    Google Scholar 

  45. Sadrishojaei, M., et al.: A new preventive routing method based on clustering and location prediction in the mobile internet of things. IEEE Int. Things J. 8, 10562–10664 (2021)

    Google Scholar 

  46. Riley, G.F., Henderson, T.R.: The ns-3 network simulator. In: Modeling and tools for network simulation, pp. 15–34. Springer, Berlin (2010)

    Chapter  Google Scholar 

  47. Carneiro, G.: NS-3: Network simulator 3. In: UTM Lab Meeting, vol. 20, pp. 4–5 (2010)

  48. Taheri, H., et al.: An energy-aware distributed clustering protocol in wireless sensor networks using fuzzy logic. Ad Hoc Netw. 10(7), 1469–1481 (2012)

    Article  Google Scholar 

  49. Sharma, M., Shaw, A.K.: Transmission time and throughput analysis of EEE LEACH, LEACH and direct transmission protocol: a simulation based approach. Adv. Comput. 3(5), 97 (2012)

    Google Scholar 

  50. Murali, S., Jamalipour, A.: Mobility-aware energy-efficient parent selection algorithm for low power and lossy networks. IEEE Int. Things J. 6(2), 2593–2601 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Jafari Navimipour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadrishojaei, M., Navimipour, N.J., Reshadi, M. et al. A new clustering-based routing method in the mobile internet of things using a krill herd algorithm. Cluster Comput 25, 351–361 (2022). https://doi.org/10.1007/s10586-021-03394-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03394-1

Keywords

Navigation