Skip to main content

Advertisement

Log in

A secure and flexible edge computing scheme for AI-driven industrial IoT

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

AI-driven edge computing is a development trend of the Industrial Internet of Things (IIoT). However, most existing solutions ignore the limitations of flexibility, security, and real-time performance caused by the rigid architecture of industrial control systems and the “end-to-end” computing paradigm of IIoT. This paper proposes an edge computing scheme for AI-driven IIoT. Specifically, we design a novel software-defined industry control architecture to enhance the flexibility and security of IIoT edge systems. The architecture decouples the software and hardware of Industrial devices by virtualization and industrial modeling technologies, which improves the flexibility and programmability of IIoT edge systems and alleviates the privacy issue of industrial data. Moreover, we adopt a new edge computing method, dispersed computing, to AI-driven IIoT to achieves better real-time performance and resource utilization. The proposed computing method optimizes the computing and networking of AI-driven industrial applications jointly by a multiobjective optimization scheduling algorithm. We also evaluated the performance of our scheme through experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://github.com/ChanningBJ/NetLatency.

  2. https://github.com/Cloudslab/cloudsim.

References

  1. Sisinni, E., Saifullah, A., Han, S., Jennehag, U., Gidlund, M.: Industrial internet of things: challenges, opportunities, and directions. IEEE Trans. Ind. Inform. 14(11), 4724–4734 (2018)

    Article  Google Scholar 

  2. Industrial Internet Consortium. Introduction to Edge Computing in IIoT. Industrial Internet Consortium White Paper, pp. 1 – 19 (2018)

  3. Zhang, K., Zhu, Y., Maharjan, S., Zhang, Y.: Edge intelligence and blockchain empowered 5G beyond for the Industrial Internet of Things. IEEE Netw. 33(5), 12–19 (2019)

    Article  Google Scholar 

  4. Lu, Y., Huang, X., Zhang, K., Maharjan, S., Zhang, Y.: Communication-efficient federated learning for digital twin edge networks in industrial IoT. IEEE Trans. Ind. Inform. 17(8), 5709–5718 (2021)

    Article  Google Scholar 

  5. Babu, B.S., Jayashree, N.: Edge Intelligence models for industrial IoT (IIoT). RV J. Sci. Technol. Eng. Art. Manage. 1, 5–17 (2020)

  6. Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., Zhang, J.: Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107(8), 1738–1762 (2019)

    Article  Google Scholar 

  7. Fang, H., Qi, A., Wang, X.: Fast authentication and progressive authorization in large-scale IoT: how to leverage AI for security enhancement. IEEE Netw. 34(3), 24–29 (2020)

    Article  Google Scholar 

  8. Xiong, J., Zhao, M., Bhuiyan, Md.Z.A., Chen, L., Tian, Y.: An AI-enabled three-party game framework for guaranteed data privacy in mobile edge crowdsensing of IoT. IEEE Trans. Ind. Inform. 17(2), 922–933 (2021)

    Article  Google Scholar 

  9. Foukalas, F., Tziouvaras, A.: Edge artificial intelligence for industrial internet of things applications: an industrial edge intelligence solution. IEEE Ind. Electron. Mag. 15(2), 28–36 (2021)

  10. Hong, Z., Chen, W., Huang, H., Guo, S., Zheng, Z.: Multi-hop cooperative computation offloading for industrial IoT-edge-cloud computing environments. IEEE Trans. Parallel Distrib. Syst. 30(12), 2759–2774 (2019)

    Article  Google Scholar 

  11. Mai, T., Yao, H., Guo, S., Liu, Y.: In-network computing powered mobile edge: toward high performance industrial IoT. IEEE Netw. 35(1), 289–295 (2021)

    Article  Google Scholar 

  12. Sun, W., Liu, J., Yue, Y.: AI-enhanced offloading in edge computing: when machine learning meets industrial IoT. IEEE Netw. 33(5), 68–74 (2019)

    Article  Google Scholar 

  13. Bellavista, P., Penna, R.D, Foschini, L., Scotece, D.: Machine learning for predictive diagnostics at the edge: an IIoT practical example. In: ICC 2020 - 2020 IEEE International Conference on Communications (ICC), pp. 1-7. (2020). https://doi.org/10.1109/ICC40277.2020.9148684

  14. Zhang, W., Yang, D., Peng, H., Wu, W., Quan, W., Zhang, H., Shen, X.: Deep reinforcement learning based resource management for DNN inference in industrial IoT. IEEE Trans. Veh. Technol. 9545(c), 1–14 (2021)

    Google Scholar 

  15. Ren, H., Anicic, D., Runkler, T.: The Synergy of complex event processing and tiny machine learning in industrial IoT. arXiv preprint arXiv:2105.03371 (2021)

  16. Yang, H., Yuan, J., Li, C., Zhao, G., Sun, Z., Yao, Q., Bao, B., Vasilakos, A.V., Zhang, J.: BrainIoT: brain-like productive services provisioning with federated learning in industrial IoT. IEEE Internet Things J. 4662(c), 1–1 (2021)

    Article  Google Scholar 

  17. Yang, C.S., Pedarsani, R., Salman Avestimehr, A.: Communication-aware scheduling of serial tasks for dispersed computing. IEEE/ACM Trans. Netw. 27(4), 1330–1343 (2019)

    Article  Google Scholar 

  18. Li, X., Wan, J., Dai, H.N., Imran, M., Xia, M., Celesti, A.: A hybrid computing solution and resource scheduling strategy for edge computing in smart manufacturing. IEEE Trans. Ind. Inform. 15(7), 4225–4234 (2019)

    Article  Google Scholar 

  19. Sodhro, A.H., Pirbhulal, S., De Albuquerque, V.H.C.: Artificial intelligence-driven mechanism for edge computing-based industrial applications. IEEE Trans. Ind. Inform. 15(7), 4235–4243 (2019)

    Article  Google Scholar 

  20. Sun, W., Lei, S., Wang, L., Liu, Z., Zhang, Y.: Adaptive federated learning and digital twin for industrial internet of things. IEEE Trans. Ind. Inform. 3203(c), 1–1 (2020)

    Google Scholar 

  21. Lu, Y., Huang, X., Dai, Y., Maharjan, S., Zhang, Y.: Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Trans. Ind. Inform. 16(6), 4177–4186 (2020)

    Article  Google Scholar 

  22. Xu, X., Huang, Q., Yin, X., Abbasi, M., Khosravi, M.R., Qi, L.: Intelligent offloading for collaborative smart city services in edge computing. IEEE Internet Things J. 7(9), 7919–7927 (2020)

    Article  Google Scholar 

  23. He, X., Liu, J.: Privacy-aware offloading in mobile-edge computing. In: 2017 IEEE Global Communications Conference, GLOBECOM 2017—Proceedings (2017)

  24. Yao, YF., Wang, ZY., Zhou, P.: Privacy-preserving and energy efficient task offloading for collaborative mobile computing in IoT: an ADMM approach. Comput. Secur. 96, 101886 (2020)

    Article  Google Scholar 

  25. Lin, S.-W., Miller, B., Durand, J., Bleakley, G., Chigani, A., Martin, R., Murphy, B., Crawford, M.: The Industrial Internet of Things Volume G1: Reference Architecture. Industrial Internet Consortium, White Paper IIC:PUB:G1:V1.80:20170131 (2017)

  26. Schurgot, M.R., Wang, M., Conway, A.E., Greenwald, L.G., David Lebling, P.: A dispersed computing architecture for resource-centric computation and communication. IEEE Commun. Mag. 57(7), 13–19 (2019)

    Article  Google Scholar 

  27. Stouffer, K., Falco, J., Scarfone, K.: Guide to Industrial Control Systems ( ICS ) Security Recommendations of the National Institute of Standards and Technology. NIST Special Publication 800-82, MD, Gaithersburg (2011)

  28. Cruz, T., Simoes, P., Monteiro, E.: Virtualizing programmable logic controllers: toward a convergent approach. IEEE Embed. Syst. Lett. 8(4), 69–72 (2016)

    Article  Google Scholar 

  29. Peltonen, M.: PLC Virtualization and Software Defined Architectures in Industrial Control Systems (August) (2017)

  30. Givehchi, O., Imtiaz, J., Trsek, H., Jasperneite, J.: Control-as-a-service from the cloud: a case study for using virtualized PLCs. IEEE International Workshop on Factory Communication Systems—Proceedings, WFCS, pp. 2–5 (2014)

  31. Hofer, F., Sehr, M., Sangiovanni-Vincentelli, A., Russo, B.: Industrial control via application containers: maintaining determinism in IAAS (2020)

  32. Goldschmidt, T., Hauck-Stattelmann, S., Malakuti, S., Grüner, S.: Container-based architecture for flexible industrial control applications. J. Syst. Archit. 84, 28–36 (2018)

    Article  Google Scholar 

  33. Sollfrank, M., Loch, F., Denteneer, S., Vogel-Heuser, B.: Evaluating Docker for lightweight virtualization of distributed and time-sensitive applications in industrial automation. IEEE Trans. Ind. Inform. 3203(c), 1–1 (2020)

    Google Scholar 

  34. Leitner, S.-H., Mahnke, W.: OPC UA—Service-oriented architecture for industrial applications. ABB Corporate Research Center, Ladenburg, Germany (2006)

  35. Vyatkin, V.: IEC 61499 as enabler of distributed and intelligent automation: state-of-the-art review. IEEE Trans. Ind. Inform. 7(4), 768–781 (2011)

    Article  Google Scholar 

  36. Darpa-baa-16-41. https://research-vp.tau.ac.il/sites/resauth.tau.ac.il/files/DARPA-Dispersed_Computing_BAA-16-41.DC_.pdf

  37. Hu, N., Tian, Z., Du, X., Guizani, N., Zhu, Z.: Deep-green: a dispersed energy-efficiency computing paradigm for green industrial IoT. IEEE Trans. Green Commun. 5(2), 750–764 (2021)

  38. Nayak, N.G., Dürr, F., Rothermel, K.: Time-sensitive software-defined network (TSSDN) for real-time applications. In: ACM International Conference Proceeding Series, 19–21-October, pp. 193–202 (2016)

  39. Nayak, N.G., Durr, F., Rothermel, K.: Incremental flow scheduling and routing in time-sensitive software-defined networks. IEEE Trans. Ind. Inform. 14(5), 2066–2075 (2018)

    Article  Google Scholar 

  40. Conway, A.E., Wang, M., Ljuca, E., Lebling, P.D.: A dynamic transport overlay system for mission-oriented dispersed computing over IoBT. In: Proceedings—IEEE Military Communications Conference MILCOM, 2019-November(i), pp. 815–820 (2019)

  41. Hu, D., Krishnamachari, B.: Throughput optimized scheduler for dispersed computing systems. In: Proceedings—2019 7th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, MobileCloud 2019, pp. 76–84 (2019)

  42. Hussain, T., Frey, G.: Solving the deployment problem of IEC 61499 applications. In: IFAC Proceedings Volumes (IFAC-PapersOnline) (2008)

  43. Liu, D., Lin, C.: Sherlock: a semi-automatic quiz generation system using linked data. In: International Semantic Web Conference (Posters & Demos) (2014)

  44. Abd Yusof, N.F., Lin, C., Guerin, F.: Analysing the causes of depressed mood from depression vulnerable individuals. In: Proceedings—The International Workshop on Digital Disease Detection using Social Media 2017 (DDDSM-2017), pp. 9–17 (2017)

  45. Xu, X., Li, Y., Huang, T., Xue, Y., Peng, K., Qi, L., Dou, W.: An energy-aware computation offloading method for smart edge computing in wireless metropolitan area networks. J. Netw. Comput. Appl. 133, 75–85 (2019)

    Article  Google Scholar 

  46. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006)

    Article  Google Scholar 

  47. Von Lücken, C., Barán, B., Brizuela, C.: A survey on multi-objective evolutionary algorithms for many-objective problems. Comput. Optim. Appl. 58(3), 707–756 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  49. Hu, N., Tian, Z., Du, X., Guizani, M.: An energy-efficient in-network computing paradigm for 6G. IEEE Trans. Green Commun. (2021). https://doi.org/10.1109/TGCN.2021.3099804

  50. Yeniay, Ö.: Penalty function methods for constrained optimization with genetic algorithms. Math. Comput. Appl. 10(1), 45–56 (2005)

    Google Scholar 

  51. Guerrero, C., Lera, I., Bermejo, B., Juiz, C.: Multi-objective optimization for virtual machine allocation and replica placement in virtualized hadoop. IEEE Trans. Parallel Distrib. Syst. 29(11), 2568–2581 (2018)

    Article  Google Scholar 

  52. Åkerberg, J., Gidlund, M., Bjorkman, M.: Future research challenges in wireless sensor and actuator networks targeting industrial automation. In: IEEE International Conference on Industrial Informatics (INDIN) (2011)

Download references

Acknowledgements

This work was supported in National Natural Science Foundation of China (Grant No. 61976064), National Defence Science and Technology Key Laboratory Fund (61421190306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Hu, N., Zhao, Y. et al. A secure and flexible edge computing scheme for AI-driven industrial IoT. Cluster Comput 26, 283–301 (2023). https://doi.org/10.1007/s10586-021-03400-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03400-6

Keywords

Navigation