
Parallel analysis of Ethereum blockchain transaction data using cluster
computing

Baran Kılıç1 • Can Özturan1 • Alper Sen1

Received: 28 April 2021 / Revised: 2 November 2021 / Accepted: 6 December 2021 / Published online: 4 January 2022
� The Author(s) 2022

Abstract
Ability to perform fast analysis on massive public blockchain transaction data is needed in various applications such as

tracing fraudulent financial transactions. The blockchain data is continuously growing and is organized as a sequence of

blocks containing transactions. This organization, however, cannot be used for parallel graph algorithms which need

efficient distributed graph data structures. Using message passing libraries (MPI), we develop a scalable cluster-based

system that constructs a distributed transaction graph in parallel and implement various transaction analysis algorithms. We

report performance results from our system operating on roughly 5 years of 10.2 million block Ethereum Mainnet

blockchain data. We report timings obtained from tests involving distributed transaction graph construction, partitioning,

page ranking of addresses, degree distribution, token transaction counting, connected components finding and our new

parallel blacklisted address trace forest computation algorithm on a 16 node economical cluster set up on the Amazon

cloud. Our system is able to construct a distributed graph of 766 million transactions in 218 s and compute the forest of

blacklisted address traces in 32 s.

Keywords Parallel � Cluster � Blockchain � Graph � Transaction

1 Introduction

Recently, public blockchain platforms that operate auton-

omously under the control of no one have become popular

globally. Blockchains can be used to generate and keep

securely ownership records of cryptocurrencies and tok-

enized assets. Tokens can be used to represent valuable

assets such as company shares, tickets, governance privi-

leges, stable coins that represent national currencies (such

as the USD and the EURO) and various resources.

Recently blockchain-based fraudulent incidents such as

ransomware and theft of crypto assets have increased

[1, 2]. Also, since the public blockchain networks span the

globe, they can also be used to transfer assets among dif-

ferent jurisdictions making it possible to evade the regu-

lations. As a result, a system that performs fast tracing

fraudulent activities on massive public blockchain trans-

action data is needed in the field of finance. This need has

also led to the emergence of firms such as the Chainalysis

[3] that is highly valued or the CipherTrace that has

recently been acquired [4]. Financial Action Task Force

(FATF) is an inter-governmental body that publishes rec-

ommendations for combatting global money laundering

and terrorist financing activities. FATF has recently pre-

pared guidance [5] that calls for monitoring of virtual

assets. Since blockchain transaction throughputs are

improving, massive transaction data will be accumulating.

All these developments provide evidence that scalable and

parallel systems will be needed that can analyze big

blockchain graph transaction data in the near future. This is

the problem that is addressed in this paper.

In this work, we focus on the Ethereum Mainnet

blockchain, which also supports the execution of smart

This work was carried out as part of the Infinitech Project

which is supported by the European Union’s Horizon 2020

Research and Innovation Programme under Grant Agreement

No. 856632.

& Can Özturan

ozturaca@boun.edu.tr

Baran Kılıç
baran.kilic@boun.edu.tr

Alper Sen

alper.sen@boun.edu.tr

1 Bogazici University, Istanbul, Turkey

123

Cluster Computing (2022) 25:1885–1898
https://doi.org/10.1007/s10586-021-03511-0(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-0465-2519
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-021-03511-0&domain=pdf
https://doi.org/10.1007/s10586-021-03511-0

contracts. Ethereum Mainnet is the most popular block-

chain supporting smart contracts and hosting billions of

dollars worth of token contracts. Standardized ERC20

smart contracts are now used to deploy tokens

(stable coins) representing fiat currencies in a 1-to-1

manner (for example, 1 token equaling 1 EUR or 1 USD)

by finance companies. Gemini USD (GUSD), Tether USD

(USDT), Tether Gold (XAUT), Statis Euro (EURS), and

Turkish BiLira (TRYB) are examples of tokens currently

available on the Ethereum blockchain. Note that these

contracts act like bridges between the public Ethereum

blockchain ecosystem and the traditional finance ecosys-

tems. Valuable blockchain assets such as cryptocurrencies

can be exchanged with stable coins and stable coins can, in

turn, be redeemed as fiat money in the traditional finance

ecosystem. Therefore, assets that are acquired fraudulently

can go through various transfers and exchanges on the

blockchain and end up as fiat money in different countries.

It is possible that a business accepts crypto assets that can

be traced to addresses involved in fraudulent activities.

Holding crypto assets that can be traced to fraudulent or

sanctioned addresses can be risky for businesses. As a

result, a transaction graph processing system can help us to

detect such cases and take appropriate actions. Our work

aims to provide a scalable distributed transaction graph

processing system that will enable fast graph operations to

be performed on the massive blockchain transaction data.

The blockchain data that is synced as a node is acces-

sible as a sequence of blocks containing transactions. This

way of accessing transaction data, however, is too slow for

applications that require a transaction graph to be con-

structed. Since blockchain data is continuously growing

and since future blockchain versions will support hundreds

to thousands of transactions per second (tps), a scalable

transaction graph system is needed. We contribute:

– A cluster-based system that constructs a distributed

transaction graph in parallel out of raw transaction data

that comes from the blockchain.

– A parallel algorithm that computes all shortest path

based transaction traces to fraud-related blacklisted

blockchain addresses.

– A parallel system that offers the advantage of being

able to scale by simply increasing the number of nodes

in the cluster.

– Performance tests of our system using the whole

Ethereum blockchain data.

Our system has been developed using the C?? language

and the MPI message passing interface. MPI was chosen

since it is the de facto standard communication library that

is used on high performance clusters.

In the rest of the paper, we first cover the previous work

done on the topic of blockchain transaction graph analysis

in Sect. 2. Section 3 explains the architecture of the system

we are developing. Section 4 presents our distributed graph

construction algorithm. Section 5 presents our newly con-

tributed shortest path based parallel calculation of the

blacklisted address trace forest algorithm. Section 6 pre-

sents various tests that use the distributed graph and report

timings obtained on an economical cluster set up on

Amazon cloud. Finally, the paper is ended with a discus-

sion and conclusions in Sect. 7.

2 Previous work

One of the earliest works carried out to study blockchain

transaction graphs is that of [6] who analyze bitcoin

transactions mainly for privacy issues. They investigate the

structure of two networks, the transaction and the user

networks, constructed from the public Bitcoin blockchain

data and their implications for user anonymity. They con-

clude that it is possible to relate many addresses with each

other. By making use of external identifying information

and appropriate tools, they also conclude that the activity

of known users can be observed.

The work by [7] analyzes bitcoin transactions for sta-

tistical properties. They download 180,000 HTML files

from a blockexplorer site containing bitcoin transactions

for the period from January 2009 to May 2012 and parse

them to obtain transactions. They use a union-find graph

algorithm [8] so that they can locate sets of addresses

which are expected to belong to the same user. They

combine all the nodes and the transactions which can be

related to an identity and thus, form a graph called entity

graph out of these. They report statistics and subgraphs of

related transactions using the entity graph as well as the

original bitcoin transaction graph with Bitcoin addresses as

the nodes.

There have also been some recent works on the analysis

of Ethereum transaction graph. The work in [9] studies

Ethereum transactions from the perspective of network

science and statistical laws of the data. The two datasets

they use are small and contain 610K and 680K transactions

which are extracted from blocks numbered 200K–300K

and 3M–3.2M, respectively. The work by [10] focuses on

the topic of whether attackers can de-anonymize addresses

on the blockchain. They make use of Neo4j graph database

to store and analyze the graph. The results they present are

quite limited to simple cases.

Recently, ERC20 tokens have been quite popular. There

are some works on the analysis of token transactions.

Reference [11] provide an overview of 64K ERC20 token

networks and analyze the top 1K tokens. Their results show

that individual token networks are frequently dominated by

a single hub and spoke pattern. The work by [12] presents a

1886 Cluster Computing (2022) 25:1885–1898

123

tool called TokenScope to inspect all token transactions

and check to see if the behaviors of the deployed tokens are

conforming to the ERC20 standard.

Table 1 presents a comparison of our work with related

works. There are also parallel distributed graph processing

works such as [13] that operate on massive graphs in the

area of scientific computing. The work by [14] discusses

the importance of big graph processing, the challenges and

what needs to be done in the future for big graph pro-

cessing to be successful. Scalability, efficiency, diversified

querying and analytical capabilities are listed as require-

ments. The work by [15] discusses parallel graph analytics

and identifies three main challenges (i) large graph size, (ii)

diversity in graph structure and (iii) complex patterns of

parallelism in graph problems. They mention that most

current systems may not be providing solutions to all these

challenges. We are not aware of any work that performs

parallel transaction graph analysis on massive blockchain

data.

Our proposed work in this paper differs from the pre-

vious works in various aspects. The earlier works used data

generated over a few years representing the early block-

chain technology emergence phase. The data was relatively

small and could fit on one node of a computer system. This,

however, will no longer be the case because blockchain

data is constantly accumulating and new technologies such

as sharding and proof of stake in Ethereum2 [17], and

Snowflake to Avalanche family of metastable consensus

protocols [18] are expected to increase transaction

throughputs greatly. In particular, experiments in [19]

demonstrate that 3400 tps can be achieved in Avalanche.

There has also been work carried out by [20] in order to

accelerate transaction speeds and scalability of proof-of-

work based blockchain systems. The work by [21] is

another approach that attempts to improve blockchain

performance by using graph data structure and parallel

mining. All these efforts provide evidence that there will be

blockchain systems that provide much higher throughput,

which in turn, will lead to massive growth of transaction

data. As a result, in order to do analysis on the whole

blockchain transaction graph, we need a cluster computer

based parallel graph system especially designed for the

blockchain data so that as the numbers of transactions grow

drastically, the system can simply be scaled by using a

larger number of cluster nodes. This is the main objective

that we try to achieve in this paper.

Our proposed work also differs from the previous works

in that we design our system so that it can handle both

cryptocurrency and the popular ERC20 token transactions.

In particular, we parse calldata of Ethereum transactions in

order to extract 40 popular ERC20 token transfers. Earlier

works concentrated mainly on bitcoin or ether cryptocur-

rency transactions.

We note that blockchains also have important uses in the

Internet of Things (IoTs) area and have been the target of

recent IoT research works [22, 23]. IoT devices can gen-

erate massive amounts of data and transactions. Hence, our

work, which aims to analyze transactions in a parallel and

scalable way, can also be relevant to the analysis of mas-

sive IoT blockchain transactions. For example, the work

[24] proposes a scalable decentralized service composition

solution that uses a combination of blockchain, software

defined networks and fog computing technologies.

This paper is an extended version of our conference

paper [25]. In particular, we extend our earlier work by

contributing a new parallel algorithm that computes all

shortest path based transaction traces to fraud-related

blacklisted blockchain addresses. This computation results

in a compact forest of trace trees which can later be used by

web servers to provide fast transaction trace query service

to end-users. The extended version also contributes an

implementation of parallel connected components algo-

rithm of [26] and its performance tests on the massive

Ethereum blockchain graph. Overall, this extended paper

provides a total of nine application tests as opposed to five

tests that appear in [25]. The blockchain data that has been

Table 1 Comparison with previous works

Paper Application Parallel computer Dataset

[6] Blockchain No 1M bitcoin transaction data

[7] Blockchain No 3M bitcoin transaction data

[9] Blockchain No 680K and 610K ether transaction data

[10] Blockchain No Subset of ether transaction data

[16] Scientific computing/social

networks

Yes, on a 128 node cluster Mesh, geometric, Delaunay, web graphs

[12] Scientific computing Yes, on 2048 node Blue Waters supercomputer Mesh, sparse matrix, web graphs

This paper Blockchain Yes, on a 16 node cloud cluster Massive 766M ether and token

transaction data

Cluster Computing (2022) 25:1885–1898 1887

123

used in the tests have also been updated to cover a larger

roughly 5-year interval.

3 Blockchain graph system architecture

Figure 1 depicts the architecture of our blockchain graph

analysis system architecture. Block data can be retrieved

either from a blockchain node or an Ethereum gateway

such as the Infura or Cloudflare Ethereum gateways.

Syncing a node can take days and therefore, in our case, we

have used the Cloudflare gateway to retrieve blocks. The

blocks are then parsed for ether cryptocurrency and ERC20

token transfer transactions. These transactions are then

saved in files. These files are then input into our blockchain

graph system. The dataset and its detailed format are

available at the Zenodo site [27]. In addition to ether, the

transfers of 40 ERC20 token contracts including

stable coins such as USDT, PAX, EURS, BUSD, GUSD,

TRYB and XAUT are extracted from the blocks.

The first blue bottom layer of our system stack in Fig. 1

illustrates the infrastructure layer that provides the com-

putational and data resources. Currently, we use the

Amazon cloud to build our cluster providing computational

and storage services. For cluster configuration and man-

agement, we use the StarCluster tool [28]. The second blue

layer in the figure shows the parallel programming libraries

that can be used to do programming. In particular, since we

are aiming to build a scalable system, we want to maintain

a dynamically growing transaction graph which is parti-

tioned into several parts. Hence, each cluster node will be

responsible for a part of the graph and MPI message

passing libraries will be used to facilitate communication

among the nodes.

The third layer of the stack is responsible for the parallel

scalable graph construction, sorting and dynamic dis-

tributed graph data structures components of our system.

This layer gives service to the fourth layer which is the

graph analysis layer that includes graph queries and algo-

rithms. Given the big dataset files that contain ether and

token transfers in the form of from and to addresses and the

amount of transfer, this part constructs the global dis-

tributed transaction graph by first computing distinct

blockchain addresses and then associating the transactions

with each address. Note that both addresses and transac-

tions are kept as partitioned data on each node, hence

paving the way for a scalable system that can be scaled

easily by simply increasing the number of nodes in the

cluster.

4 Distributed transaction graph
construction

The distributed transaction graph construction algorithm is

presented in Algorithm 1 and the symbols used in it are

described in Table 2.

In our blockchain transaction data, we have both ether

transactions and the ERC20 token transfer transactions of

the tokens listed in Table 3. The union of the set of account

addresses Vc and the set of smart contract addresses Vs

makes up the nodes V of the distributed transaction graph.

Each ether transaction EETH and token transfer transaction

Et is an edge E of the transaction graph.

The first phase (lines 2–9) of distributed transaction

graph construction involves the building of the whole node

set V of the graph by finding unique Ethereum addresses

and giving them global IDs. We need these global IDs to

build the transaction graph. Our blockchain transaction

data is stored in multiple files. Each line in these files stores

the information of one transaction, such as sender address,

receiver address and amount of the transaction. The

detailed transaction format is given in [27]. Each processor

takes a subset of these files as input, reads the files and

creates the set of sender (s) and receiver (t) addresses (lines

2–5). This is the local address set.

The address set is copied to an array because we cannot

sort a set. The address set is sorted using parallel sample

sort (line 6) [29]. This parallel sample sort is not local. It

sorts all addresses in the address array in each processor

globally. For better understanding, the global sorting can

be thought of as taking the address array of each processor,

concatenating these arrays, sorting the concatenated array,

splitting the sorted array and putting the addresses back

into the address array in each processor. The sample sort is

not centralized but distributed and works in parallel.

Fig. 1 Blockchain transaction graph system architecture

1888 Cluster Computing (2022) 25:1885–1898

123

Before sorting the addresses, the addresses in each

processor are locally unique, but they are not necessarily

unique after sorting them. Suppose that the same address is

on the first and second processors. These two addresses

will be on the same processor when the addresses are

globally sorted. Therefore, the duplicate addresses need to

be removed after the sorting operation. The duplicate

addresses are removed by comparing the consecutive

addresses and taking only the addresses that are not the

same (line 7). Comparing the boundary values, i.e., the last

address in one processor and the first one in the next pro-

cessor, is not needed since sample sort places the same

elements on the same processors.

Table 3 Ethereum blockchain data statistics used in tests

(a) Blocks 0–10,199,999

(b) Time coverage of blocks 30.07.2015–04.06.2020

(c) No. of transactions 766,899,042

(d) No. of addresses 78,945,214

(e) No. of 40 major ERC20 token

transfer transactions

43,371,941

(f) List of symbols of 40 major ERC20

tokens

USDT TRYb XAUt BNB LEO LINK HT HEDG MKR CRO VEN INO PAX INB SNX REP MOF

ZRX SXP OKB XIN OMG SAI HOT DAI EURS HPT BUSD USDC SUSD HDG QCAD PLUS

BTCB WBTC cWBTC renBTC sBTC imBTC pBTC

Table 2 Symbols and their meanings

Symbol Meaning

Vc Set of account addresses

Vs Set of smart contract addresses

V All blockchain addresses V ¼ Vc [Vs

EETH All blockchain transactions with zero or more ether payments

T Set of major ERC20 tokens tracked, T ¼ fUSDT ;PAX; TRYB; . . .g, full list given in Table 3

Et ERC20 token t transfer transactions, t 2 T

E All transfer transactions E ¼ EETH [Et

G(V, E) Transaction graph

ID(v) Global ID of address v, IDðvÞ 2 ½0; jV j � 1�
P Number of processors

p ID of current processor (0-indexed)

Vp Blockchain addresses on processor p

Ep Transfer transactions on processor p

GpðVp;EpÞ Transaction subgraph on processor p

B Set of blacklisted addresses

Ap Set of addresses to be traversed on processor p

Fp Trace forest on processor p

Dp Distance of addresses on processor p from blacklisted address

Sp Set of parent node and depth pairs on processor p to be sent to remote processors

Rp Set of parent node and depth pairs received from other processors

C Total number of parent node and depth pairs to be sent

Cluster Computing (2022) 25:1885–1898 1889

123

At this point, we have the unique ethereum addresses

and need to give each address a global ID. The addresses in

all processors as a whole stand for our addresses. The ID of

the first address in the current processor is found by sum-

ming the number of addresses in the processors, whose ID

ranges from 0 to the current processor ID (excluding) (line

8). The ID of an address is the sum of the ID of the first

address and the index of the address in the array (line 9).

In the second phase (lines 10–33), the adjacency list of

the graph is constructed from the Ethereum transactions

and global IDs of the transaction addresses. The sender and

receiver addresses need to be mapped to their corre-

sponding global IDs. Since the address set is distributed,

each processor has only a part of the addresses. But we

need to know the global ID of all addresses to be able to

map them. To solve this problem, each processor sends its

addresses to the next processor and receives the addresses

from the previous processor in a ring fashion. These send

and receive operations are done for the number of pro-

cessor times. At each iteration, the processor will have new

addresses and will be able to map these addresses to their

corresponding global IDs. Two buffers with the size of the

largest address set are used to be able to both send the

addresses to the next processor and receive the addresses

from the previous processor at the same time (lines 10–11).

The buffer that contains the addresses will alternate with

every iteration (line 13). The other buffer only receives the

addresses for the next iteration (line 14). Each processor

iterates for the number of processor times (line 12) and

processes the address information again (line 15). If the

sender or receiver address is found in the address set (lo-

cated in the buffer), the address is given its global ID (lines

16–23). The current address set is sent to the next processor

(line 27). The address set to be used at the next iteration is

received from the previous processor (line 28).

The edges of the graph are converted from local IDs to

the global IDs (line 30). The edges are sorted according to

IDs of address pairs, (ID(s), ID(t)), making up the trans-

actions (line 31) and the adjacency list representation of the

graph is formed. This adjacency list is the output of the

algorithm. Figure 2 illustrates the execution of our algo-

rithm on a small example dataset.

5 Distributed calculation of the blacklisted
address trace forest

When fraudulent activities are carried out on the block-

chains, addresses that engage in fraud are usually posted on

the Internet by companies or government agencies. We

refer to these addresses as blacklisted addresses. We are

interested in transactions that originate from these black-

listed addresses. Such a trace forms a directed subgraph in

general. Our system provides the capability to return sub-

graphs that contain transactions that trace to blacklisted

addresses. We have also developed an additional algorithm

that will output a more compact and optionally prunable

forest of trees trace. Such a compact trace can be used by a

web server to provide fast answers to trace queries since

the traces are small and precomputed. Figure 3a, b show a

forest of trees computed to depth 5 and an example tree

trace to a blacklisted address of the DragonEx hacker [30].

The distributed calculation of the blacklisted addresses

trace forest is presented in Algorithm 2 and the symbols

used in it are described in Table 2. This algorithm takes

distributed transaction graph and the ID of blacklisted

nodes (addresses) and outputs a transaction trace forest of

trees, whose roots are the blacklisted nodes, in a distributed

array format. The algorithm can calculate the full shortest

path based forest of trees. It can also calculate the forest of

pruned trees up to depth D. The algorithm traverses the

nodes of the graph starting from blacklisted nodes and adds

the visited nodes to the trace forest. Since the graph is

distributed, not every node can be visited on a processor.

The algorithm first visits all local nodes and stores the

1890 Cluster Computing (2022) 25:1885–1898

123

Local graph Local to global mapping Global graph Active buffer

p=0 p=1 p=2

0x3 0x9

0x2 0x3

0x2 0x7 0x1 0x2
Tx

Step 1 - Create local address set

0x3 0x2 0x1

0x9 0x7 0x2

0x2

V

Step 2 - Sort addresses

0x1 0x3 0x9

0x2 0x7

0x2

0x2

SA

Step 3 - Remove duplicate addresses

0x1 0x3 0x9

0x2 0x7
V 2 2

1

Step 4 - Give ID

0x1, 0 0x3, 2 0x9, 4

0x2, 1 0x7, 3

Step 5 - Read transactions and create address set

0x3 → 0 0 1 0x2 → 0 0 1 0x1 → 0 0 1

0x9 → 1 2 1 0x7 → 1 0x2 → 1

0x2 → 2

Step 6 - Create send receive buffer

SR0
0 SR0

1 SR1
0 SR1

1 SR2
0 SR2

1

0x1, 0 0x3, 2 0x9, 4

0x2, 1 0x7, 3

0 → 0 → 0 →
1 → 1 → 3 1 →
2 → 1

ID

Step 7 - Send receive address buffer

0x1, 0 0x9, 4 0x3, 2 0x1, 0 0x9, 4 0x3, 2

0x2, 1 0x7, 3 0x2, 1 0x7, 3

0 → 0 → 1 0 →
1 → 4 1 → 3 1 →
2 → 1

0x3, 2 0x9, 4 0x9, 4 0x1, 0 0x1, 0 0x3, 2

0x7, 3 0x2, 1 0x2, 1 0x7, 3

0 → 2 0 → 1 0 → 0

1 → 4 1 → 3 1 → 1

2 → 1

Step 8 - Convert local IDs to global IDs

0x3 → 2 2 4 0x2 → 1 1 3 0x1 → 0 0 1

0x9 → 4 1 4 0x7 → 3 0x2 → 1

0x2 → 1

Step 9 - Sort edges

0 1 1 3 2 4

1 4

Step 10 - Form adjacency list

0: 1 1: 3,4 2: 4

3:

4:

Fig. 2 Example showing steps of Algorithm 1

Fig. 3 Example tree trace to blacklisted address of the DragonEx

hacker [30]

Cluster Computing (2022) 25:1885–1898 1891

123

remote nodes that need to be visited. The stored node

information is then exchanged between processors. These

new nodes are traversed locally again. This traversal and

communication cycle continues until there is no remote

node left to be visited.

Each node in the forest F points to its parent. The root,

which are blacklisted nodes in our case, points to itself. The

depth D is used to store the distance of the node from the

blacklist. It is also equivalent to the depth in the forest. The

nodes that need to be visited are stored on a stack (line 2).

Each processor adds the blacklisted nodes that belong to

the current processor to the forest as a root and to its stack

(lines 6–12). The total number of nodes in the stack of all

processors is calculated (line 13). While there are nodes to

be visited, the traversal and communication cycle will

continue (lines 14–42).

In the traversal part (lines 15–29), a node is popped from

the top of the stack (line 17) and its edges are visited if

there is any node in the stack. If the target node of the edge

is a local node (line 19), and if the node is unvisited or it is

visited but a shorter path is found, the node is added to the

stack, the source node of the edge is set as its parent in the

forest, and its depth is set as one added to the depth of the

source node (lines 46–50). If the target node of the edge is

a remote node (line 21), the source node and depth infor-

mation is stored in a map S to be sent to the corresponding

node in the communication part (lines 22–26). This source

node and depth information in the map is updated if a

shorter path is found.

After the traversal part, the number of cut edges is

calculated to determine whether the cut edge communica-

tion part is needed (line 30). If there are cut edges, the cut

edge information is sent and received. For each received

node (line 36), if the node is unvisited or it is visited but a

shorter path is found, the node is added to the stack, the

source node of the edge is set as its parent in the forest, and

its depth is set as one added to the depth of the source node

(line 38).

At the end of the loop, the total number of nodes in the

stack of all processors is calculated again (line 41). If there

is any node in the stack, the traversal and communication

cycle will continue. If not, the algorithm will return the

forest. Figure 4 illustrates the execution of our algorithm

on a small example dataset.

6 Tests

Our cluster-based system for analyzing Ethereum block-

chain transaction data is tested on Amazon EC2 cloud

using 16 c5.4xlarge machine instances, each of which has

16 virtual CPUs (8 core with hyper-threading) and 32 GiB

memory. We store the Ethereum data in a gp3 volume

(Amazon EBS). Network file system (NFS) is set up on the

master node to access data. Amazon provides 4750 Mbps

EBS bandwidth and up to 10 Gbps network bandwidth to

EC2 instances. The placement group of machines is set as

‘‘cluster’’ so that EC2 packs the instances close together.

Various statistics about the Ethereum blockchain dataset

that we used are given in Table 3.

1892 Cluster Computing (2022) 25:1885–1898

123

The descriptions of the tests that are carried out are

given in Table 4. All these tests are programmed in C??

using the MPI libraries. In the first test, T1, the directed,

transposed, and undirected transaction graph is constructed

in parallel. The parallel directed transaction graph con-

struction algorithm is presented in Sect. 4. In test T2, we

use ParMetis [31] software in order to partition the undi-

rected transaction graph in parallel. Test T3 runs the par-

allel page ranking algorithm on the transaction graph. Test

T4 is a smaller test involving computing degree distribu-

tions (i.e., number of incoming and outgoing edges) of each

address node in the graph. Test T5 computes the total

number of transfer transactions of 40 major tokens. In test

T6, the number of connected components in the transaction

graph is calculated. In test T7, the trace forest of black-

listed nodes is built. In test T8, the following features are

calculated for each node: outdegree, indegree, unique

outdegree, unique indegree, total outgoing ether, total

incoming ether, net ether balance, timestamp of the first

transaction, timestamp of the last transaction, the differ-

ence between first and last transaction timestamps, whether

the last transaction is outgoing, last transaction amount,

average outgoing ether per transaction, average incoming

ether per transaction. In test T9, the subgraph between a

blacklisted node and a query node for a given time range is

calculated.

Since each node of the cluster has 16 virtual CPUs, we

also run tests with multiple MPI processes per cluster node.

Table 5 shows the timings obtained from the tests. In the

table, we report P, which is the total number of MPI

processes.

Each test is repeated twice and their average is given in

the table. Note that ParMetis [31] partitioner test (T2) takes

a long time to complete. In order to avoid high Amazon

cloud costs, we only performed it on 16 nodes with 1 MPI

process per node.

p=0 p=1 p=2

0 2 4 5 8 9

1 3 7 6 10 11

G

Step 1 - Add blacklisted nodes as tree root

F0 D0 F1 D1 F2 D2

0 ∅ ∅ 4 ∅ ∅ 8 ∅ ∅

1 ∅ ∅ 5 5 0 9 ∅ ∅

2 ∅ ∅ 6 ∅ ∅ 10 ∅ ∅

3 ∅ ∅ 7 ∅ ∅ 11 ∅ ∅

Step 2 - Traverse locally (Iteration 1)

F0 D0 F1 D1 F2 D2

0 ∅ ∅ 4 ∅ ∅ 8 ∅ ∅

1 ∅ ∅ 5 5 0 9 ∅ ∅

2 ∅ ∅ 6 5 1 10 ∅ ∅

3 ∅ ∅ 7 ∅ ∅ 11 ∅ ∅

S0 S1 S2

2 6,2

8 6,2

Step 3 - Send cut edge info to remote processors (Iteration 1)

R0 R1 R2

2 6,2 8 6,2

Step 4 - Traverse locally (Iteration 2)

F0 D0 F1 D1 F2 D2

0 ∅ ∅ 4 ∅ ∅ 8 6 2

1 ∅ ∅ 5 5 0 9 8 3

2 6 2 6 5 1 10 ∅ ∅

3 2 3 7 ∅ ∅ 11 ∅ ∅

S0 S1 S2

7 3,4

Step 5 - Send cut edge info to remote processors (Iteration 2)

R0 R1 R2

7 3,4

Step 6 - Traverse locally (Iteration 3)

F0 D0 F1 D1 F2 D2

0 ∅ ∅ 4 ∅ ∅ 8 6 2

1 ∅ ∅ 5 5 0 9 8 3

2 6 2 6 5 1 10 ∅ ∅

3 2 3 7 3 4 11 ∅ ∅

5 6 2 3 7

8 9

Fig. 4 Example showing steps of Algorithm 2

Table 4 Description of tests

Test Description

T1 Transaction graph construction

T2 Graph partitioning using ParMetis [31]

T3 Page ranking on transaction graph

T4 Node degrees and degree distributions of transaction graph

T5 No. of transfer transactions of 40 major ERC20 tokens

T6 Connected component count

T7 Blacklisted node trace forest

T8 Extracting node features

T9 Example of trace subgraph of a blacklisted address

Cluster Computing (2022) 25:1885–1898 1893

123

We plot the distributed transaction graph test T1 in

Fig. 5. The plot shows that as we increase the number of

processors, the timings decrease, leveling off at around 128

processors. At 128 processors, the whole distributed graph

can be constructed in 218 s.

ParMetis graph partitioner (test T2) reports the number

of edges cut among partitions. These results are shown in

Table 6.

Parallel MPI implementation of Pagerank algorithm is

also run as test T3 on the whole distributed transaction

graph that was constructed. In the ranking computed, the

topmost important five are reported to be addresses of

Binance, Bitfinex, Shapeshift, Plus Token and MSD Token.

With the exception of Plus Token and MSD Token, the rest

are cryptocurrency exchange companies. Using 96 pro-

cesses with 8 per node, Pagerank algorithm is able to rank

the addresses in 150 s.

Tests T4 and T5 involve simpler queries over the

addresses. Test T4 computes node incoming and outcom-

ing degrees and degree distributions of transaction graph

and its fastest run took 7.1 s with 32 processes. We com-

pute individual incoming and outcoming node degrees for

each node because this information can be made use of as

features in machine learning algorithms in the future.

Outcoming nodes degrees are readily available in the data

structures, but incoming degrees require communication

Table 5 Timings of tests in seconds

Test 1 MPI process per node

P = 4 P = 8 P = 12 P = 16

T1 1314 748 509 443

T2 –* 5768 6056 5718

T3 991 622 370 372

T4 14.5 10.8 8.3 7.5

T5 149 85.6 53.4 45.1

T6 1319 855 580 491

T7 11243 3383 1082 323

T8 116 70.5 39.9 34.1

T9 4.0 1.9 1.4 1.2

2 MPI processes per node

P = 8 P = 16 P = 24 P = 32

T1 712 430 331 297

T3 566 369 276 247

T4 10.2 8.2 7.1 6.8

T5 81 45.3 26.8 20.8

T6 841 487 355 329

T7 2178 355 108 58.2

T8 66.4 32.3 26.3 22.3

T9 1.9 1.1 0.9 0.8

4 MPI processes per node

P = 16 P = 32 P = 48 P = 64

T1 480 327 286 256

T3 401 232 206 167

T4 8.3 7.1 11.1 11.0

T5 43 20.7 33.8 21.3

T6 505 309 254 219

T7 260 58.2 46.1 33.5

T8 34.2 21.1 18.7 14.3

T9 1.2 0.7 0.6 0.5

8 MPI processes per node

P = 32 P = 64 P = 96 P = 128

T1 401 287 227 218

T3 252 163 150 156

T4 7.1 10.5 14.5 18.3

T5 20.8 20.2 19.8 19.3

T6 324 224 197 180

T7 57.5 37.2 37.6 32.4

T8 22.3 14.2 12.7 12.7

T9 0.8 0.5 0.5 0.5

12 MPI processes per node

P = 48 P = 96 P = 144 P = 192

T1 506 303 251 234

Table 5 (continued)

12 MPI processes per node

P = 48 P = 96 P = 144 P = 192

T3 213 212 211 219

T4 14.2 15.9 25.6 35.5

T5 44.4 30.9 25.7 25.3

T6 305 229 177 186

T7 53.7 51.9 33.0 37.6

T8 24.8 15.9 16.2 14.9

T9 0.8 0.6 0.7 1.5

16 MPI processes per node

P = 64 P = 128 P = 192 P = 256

T1 426 352 331 331

T3 247 219 209 224

T4 14.2 24.6 38.3 55.0

T5 29.5 28.2 27.7 31.6

T6 284 216 188 184

T7 39.0 34.9 42.3 42.7

T8 20.0 17.1 14.8 16.1

T9 0.9 0.6 0.5 1.5

*Out of memory

1894 Cluster Computing (2022) 25:1885–1898

123

among processors. Note that in T4 test the fraction of

computation is very little compared to communication.

That is why the running time increases as the number of

processors is increased. Test T5 computes number of

transfer transactions which involve a global summation

operation and its fastest run took 19.3 s with 128 processes.

Figure 6 shows the indegree and outdegree distributions of

the blockchain addresses. Figure 7 shows the numbers of

transfer transactions of ten major ERC20 tokens reported

by our program. Figures 8 and 9 show plots of timings

obtained on the tests T4 and T5, respectively.

For test T6, we implement the parallel connected com-

ponents algorithm of [26] named FastSV on our blockchain

transaction graph system. The fastest run of this algorithm

takes 177 s on 144 processes. Considering a costly super-

computer is used to carry out FastSV tests in [26], our

experiments with the FastSV algorithm confirm that this

algorithm runs fast on economical cloud based clusters.

The timing plot for test T6 is given in Fig. 10.

Test T7 runs the distributed trace forest algorithm con-

tributed in Sect. 5. In this test, full forest of trees compu-

tation is performed with no limitation on tree depth (i.e., no

pruning). The fastest run takes 32.4 s on 128 processors.

Figure 11 plots the timings obtained when running test T7.

Finally, we note that test T8 involves iterating over all

addresses but does a simple calculation and hence taking a

small amount of time. On the other hand, T9 involves

traversals around the blacklisted node, hence taking a very

small amount of time.

7 Discussion and conclusion

Currently, Ethereum blockchain is able to deliver around

14 tps. As of April 23, 2021, the total number of transac-

tions since July 30, 2015, was reported to be 1.1 billion

[32]. If tps reaches 100, it will mean around 3.15 billion

transactions per year. If tps reaches 1000, then 31.5 billion

yearly transactions may be possible. If one needs to do

graph analysis on such a huge and dynamically growing

graph, a parallel cluster-based system is needed so that the

system can be scaled by increasing the number of nodes.

Our objective in this work is to develop the cluster and

software stack so that when the blockchain data deluge hits

because of the arrival of new consensus technologies with

large tps [17, 19], we will be able to carry out our block-

chain transaction graph analysis processes without

interruption.

The timings obtained for graph construction as well as

other queries were good. Our blockchain transaction data

was 81 GB of edge data. Our system was able to load and

construct adjacency distributed graph representation in

4 8 16 32 64 128 256

200

400

600

800

1,000

1,200

1,400

No. of processors (P)

T
im

e
(s
ec
)

T1(1)

T1(2)

T1(4)

T1(8)

T1(12)

T1(16)

Fig. 5 Test T1 distributed transaction graph construction timings. The

integers i in parentheses T1ðiÞ indicate number of MPI processes per

cluster node

Table 6 Edges cut across

partitions reported by ParMetis
P No. of edges cut

4 –*

8 35,527,579

12 43,722,740

16 47,462,684

*Out of memory

0 20 40

degree

1001-34M

101-1000

11-100

6-10

3-5

2

1

0

millions of addresses with outdegree

02040

millions of addresses with indegree

Fig. 6 Degree distributions of transaction graph nodes

379715HT

419998VEN

435657SAI

785576BNB

1000332LINK

1023175ZRX

1103106PAX

1615426USDC

1826793OMG

33042807USDT

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
million transfers

Fig. 7 Numbers of transfer transactions of ten major ERC20 tokens

Cluster Computing (2022) 25:1885–1898 1895

123

about 3.63 min on a 16 node Amazon cluster. With 68

cents per node cost, our 16 node cluster system would

enable 1 h of analysis to be carried out for 10.88 dollars. A

large company like a bank can keep this cluster running

continuously and offer analysis services to many small

businesses by charging a subscription fee.

Graph partitioning packages like ParMetis divide the

graph into multiple parts in such a way that (i) each part is

load-balanced, i.e. having roughly the same number of

graph nodes and (ii) the number of edges cut across par-

tition boundaries are minimized. The latter enables com-

munication volume to be reduced. We perform graph

traversals for tracing addresses to see if they are involved

in transactions originating from fraudulent addresses.

Therefore, if the number of edges cut among partitions is

minimized, it can reduce jumping from one partition (i.e.,

one processor) to another while doing traversals. ParMetis

is currently taking more than an hour to partition the whole

graph into 16 parts. In the future, we plan to work on

developing our own speedier graph partitioning heuristics

designed especially for the blockchain transaction graph.

Now that we have our distributed graph infrastructure, we

also plan to use it to perform graph analysis based on

machine learning algorithms.

Author contributions All authors contributed to design and develop-

ment of the system as well as the manuscript. All authors have read

and approved the final manuscript.

4 8 16 32 64 128 256

10

20

30

40

50

60

No. of processors (P)

T
im

e
(s
ec
)

T4(1)

T4(2)

T4(4)

T4(8)

T4(12)

T4(16)

Fig. 8 Test T4 node indegree and outdegree degree distributions of

transaction graph nodes computation timings. The integers i in

parentheses T4ðiÞ indicate number of MPI processes per cluster node

4 8 16 32 64 128 256

50

100

150

No. of processors (P)

T
im

e
(s
ec
)

T5(1)

T5(2)

T5(4)

T5(8)

T5(12)

T5(16)

Fig. 9 Test T5 no. of transfer transactions of 40 major ERC20 tokens

computation timings. The integers i in parentheses T5ðiÞ indicate

number of MPI processes per cluster node

4 8 16 32 64 128 256

200

400

600

800

1,000

1,200

1,400

No. of processors (P)

T
im

e
(s
ec
)

T6(1)

T6(2)

T6(4)

T6(8)

T6(12)

T6(16)

Fig. 10 Test T6 connected component count computation timings.

The integers i in parentheses T6ðiÞ indicate number of MPI processes

per cluster node

4 8 16 32 64 128 256

0

0.2

0.4

0.6

0.8

1

1.2

·104

No. of processors (P)

T
im

e
(s
ec
)

T7(1)

T7(2)

T7(4)

T7(8)

T7(12)

T7(16)

Fig. 11 Test T7 distributed forest of trees blacklisted address trace

computation timings. The integers i in parentheses T7ðiÞ indicate

number of MPI processes per cluster node

1896 Cluster Computing (2022) 25:1885–1898

123

Funding This work has received funding from the European Union’s

Horizon 2020 Research and Innovation Programme under Grant

Agreement No. 856632.

Data availability The datasets generated during and/or analysed dur-

ing the current study are available in the Zenodo Repository: https://

zenodo.org/record/4718440 (version 2).

Declarations

Conflict of interest The authors declare that they have no known

competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Bing, C.: Exclusive: U.S. to give ransomware hacks similar pri-

ority as terrorism (June 2021). https://www.reuters.com/technol

ogy/exclusive-us-give-ransomware-hacks-similar-priority-terror

ism-official-says-2021-06-03/. Accessed 2 Nov 2021

2. Office of Public Affairs: Department of Justice Seizes 2.3 Million

in Cryptocurrency Paid to the Ransomware Extortionists Dark-

side. Office of Public Affairs (June 2021). https://www.justice.

gov/opa/pr/department-justice-seizes-23-million-cryptocurrency-

paid-ransomware-extortionists-darkside. Accessed 2 Nov 2021

3. del Castillo, M.: Bitcoin investigation giant to raise 100 million at

1 billion valuation (Nov 2020). https://www.forbes.com/sites/

michaeldelcastillo/2020/11/20/bitcoin-investigation-giant-to-

raise-100-million-at-1-billion-valuation. Accessed 2 Nov 2021

4. Mastercard acquires CipherTrace to enhance crypto capabilities

(September 2021). https://www.mastercard.com/news/press/

2021/september/mastercard-acquires-ciphertrace-to-enhance-

crypto-capabilities. Accessed 2 Nov 2021

5. FATF: Guidance for a Risk-Based Approach, Virtual Assets and

Virtual Asset Service Providers. FATF, Paris (2019). https://

www.fatf-gafi.org/publications/fatfrecommendations/documents/

guidance-rba-virtual-assets.html. Accessed 2 Nov 2021

6. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin

system. In: 2011 IEEE Third International Conference on Pri-

vacy, Security, Risk and Trust and 2011 IEEE Third International

Conference on Social Computing, pp. 1318–1326 (2011)

7. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin

transaction graph. In: International Conference on Financial

Cryptography and Data Security, pp. 6–24. Springer (2013)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Intro-

duction to Algorithms. MIT Press, Cambridge (2009)

9. Guo, D., Dong, J., Wang, K.: Graph structure and statistical

properties of ethereum transaction relationships. Inf. Sci. 492,
58–71 (2019)

10. Chan, W., Olmsted, A.: Ethereum transaction graph analysis. In:

12th International Conference for Internet Technology and

Secured Transactions (ICITST), 2017, pp. 498–500. IEEE (2017)

11. Victor, F., Lüders, B.K.: Measuring ethereum-based ERC20

token networks. In: International Conference on Financial

Cryptography and Data Security, pp. 113–129. Springer (2019)

12. Chen, T., Zhang, Y., Li, Z., Luo, X., Wang, T., Cao, R., Xiao, X.,

Zhang, X.: TokenScope: automatically detecting inconsistent

behaviors of cryptocurrency tokens in ethereum. In: Proceedings

of the 2019 ACM SIGSAC Conference on Computer and Com-

munications Security (2019)

13. Slota, G.M., Rajamanickam, S., Devine, K., Madduri, K.: Parti-

tioning trillion-edge graphs in minutes. In: IEEE International

Parallel and Distributed Processing Symposium (IPDPS), 2017,

pp. 646–655 (2017)

14. Sakr, S., Bonifati, A., Voigt, H., Iosup, A., Ammar, K., Angles,

R., Aref, W., Arenas, M., Besta, M., Boncz, P.A., et al.: The

future is big graphs: a community view on graph processing

systems. Commun. ACM 64(9), 62–71 (2021)

15. Lenharth, A., Nguyen, D., Pingali, K.: Parallel graph analytics.

Commun. ACM 59(5), 78–87 (2016)

16. Meyerhenke, H., Sanders, P., Schulz, C.: Parallel graph parti-

tioning for complex networks. IEEE Trans. Parallel Distrib. Syst.

28(9), 2625–2638 (2017)

17. Ethereum 2.0 phases (2019). https://docs.ethhub.io/ethereum-

roadmap/ethereum-2.0/eth-2.0-phases/. Accessed 2 Nov 2021

18. Rocket Team: Snowflake to Avalanche: A Novel

Metastable Consensus Protocol Family for Cryptocurrencies

(2018)

19. Rocket Team, Yin, M., Sekniqi, K., van Renesse, R., Sirer, E.G.:

Scalable and probabilistic leaderless BFT consensus through

metastability (2019). arXiv preprint arXiv:1906.08936

20. Hazari, S.S., Mahmoud, Q.H.: A parallel proof of work to

improve transaction speed and scalability in blockchain systems.

In: 2019 IEEE 9th Annual Computing and Communication

Workshop and Conference (CCWC), pp. 0916–0921 (2019)

21. Kan, J., Chen, S., Huang, X.: Improve blockchain performance

using graph data structure and parallel mining. In: 2018 1st IEEE

International Conference on Hot Information-Centric Networking

(HotICN), pp. 173–178. IEEE (2018)

22. Alfandi, O., Otoum, S., Jararweh, Y.: Blockchain solution for

IoT-based critical infrastructures: Byzantine fault tolerance. In:

NOMS 2020-2020 IEEE/IFIP Network Operations and Manage-

ment Symposium, pp. 1–4. IEEE (2020)

23. Tseng, L., Yao, X., Otoum, S., Aloqaily, M., Jararweh, Y.:

Blockchain-based database in an IoT environment: challenges,

opportunities, and analysis. Clust. Comput. 23(1), 1–15 (2020)

24. Al Ridhawi, I., Aloqaily, M., Boukerche, A., Jaraweh, Y.: A

blockchain-based decentralized composition solution for IoT

services. In: ICC 2020-2020 IEEE International Conference on

Communications (ICC), pp. 1–6. IEEE (2020)

25. Kılıç, B., Özturan, C., Sen, A.: A cluster based system for ana-

lyzing ethereum blockchain transaction data. In: Second Inter-

national Conference on Blockchain Computing and Applications

(BCCA), 2020, pp. 59–65 (2020)

26. Zhang, Y., Azad, A., Hu, Z.: FastSV: a distributed-memory

connected component algorithm with fast convergence. In: Pro-

ceedings of the 2020 SIAM Conference on Parallel Processing for

Scientific Computing, pp. 46–57. SIAM (2020)

27. Özturan, C., Şen, A., Kılıç, B.: Transaction Graph Dataset for the

Ethereum Blockchain (April 2021). https://doi.org/10.5281/

zenodo.4718440. Accessed 2 Nov 2021

Cluster Computing (2022) 25:1885–1898 1897

123

https://zenodo.org/record/4718440
https://zenodo.org/record/4718440
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.reuters.com/technology/exclusive-us-give-ransomware-hacks-similar-priority-terrorism-official-says-2021-06-03/
https://www.reuters.com/technology/exclusive-us-give-ransomware-hacks-similar-priority-terrorism-official-says-2021-06-03/
https://www.reuters.com/technology/exclusive-us-give-ransomware-hacks-similar-priority-terrorism-official-says-2021-06-03/
https://www.justice.gov/opa/pr/department-justice-seizes-23-million-cryptocurrency-paid-ransomware-extortionists-darkside
https://www.justice.gov/opa/pr/department-justice-seizes-23-million-cryptocurrency-paid-ransomware-extortionists-darkside
https://www.justice.gov/opa/pr/department-justice-seizes-23-million-cryptocurrency-paid-ransomware-extortionists-darkside
https://www.forbes.com/sites/michaeldelcastillo/2020/11/20/bitcoin-investigation-giant-to-raise-100-million-at-1-billion-valuation
https://www.forbes.com/sites/michaeldelcastillo/2020/11/20/bitcoin-investigation-giant-to-raise-100-million-at-1-billion-valuation
https://www.forbes.com/sites/michaeldelcastillo/2020/11/20/bitcoin-investigation-giant-to-raise-100-million-at-1-billion-valuation
https://www.mastercard.com/news/press/2021/september/mastercard-acquires-ciphertrace-to-enhance-crypto-capabilities
https://www.mastercard.com/news/press/2021/september/mastercard-acquires-ciphertrace-to-enhance-crypto-capabilities
https://www.mastercard.com/news/press/2021/september/mastercard-acquires-ciphertrace-to-enhance-crypto-capabilities
https://www.fatf-gafi.org/publications/fatfrecommendations/documents/guidance-rba-virtual-assets.html
https://www.fatf-gafi.org/publications/fatfrecommendations/documents/guidance-rba-virtual-assets.html
https://www.fatf-gafi.org/publications/fatfrecommendations/documents/guidance-rba-virtual-assets.html
https://docs.ethhub.io/ethereum-roadmap/ethereum-2.0/eth-2.0-phases/
https://docs.ethhub.io/ethereum-roadmap/ethereum-2.0/eth-2.0-phases/
http://arxiv.org/abs/1906.08936
https://doi.org/10.5281/zenodo.4718440
https://doi.org/10.5281/zenodo.4718440

28. StarCluster (2013). http://star.mit.edu/cluster/. Accessed 2 Nov

2021

29. Shi, H., Schaeffer, J.: Parallel sorting by regular sampling.

J. Parallel Distrib. Comput. 14(4), 361–372 (1992)

30. Khatri, Y.: Singapore-based crypto exchange DragonEx has been

hacked (March 2019). https://www.coindesk.com/singapore-

based-crypto-exchange-dragonex-has-been-hacked. Accessed 2

Nov 2021

31. Karypis, G., Kumar, V.: METIS: Unstructured Graph Partitioning

and Sparse Matrix Ordering System, Version 4.0. University of

Minnesota, Minneapolis (2009). http://glaros.dtc.umn.edu/

gkhome/views/metis. Accessed 2 Nov 2021

32. Ethereum daily transactions (2020). https://etherscan.io/chart/tx.

Accessed 2 Nov 2021

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Baran Kılıç received his B.Sc.

Degree in Computer Engineer-

ing from Bogaziçi University in

2019. He is currently pursuing

his M.Sc. Degree in Computer

Engineering from Boğaziçi

University. His current research

interests include blockchain,

parallel programming and

machine learning.

Can Özturan received his Ph.D.

Degree in Computer Science

from Rensselaer Polytechnic

Institute, Troy, NY, USA, in

1995. After working as a Post-

doctoral Staff Scientist at the

Institute for Computer Applica-

tions in Science, NASA Langley

Research Center, he joined the

Department of Computer Engi-

neering, Bogazici University in

Istanbul, Turkey, as a Faculty

Member in 1996. His research

interests are blockchain tech-

nologies, parallel processing,

scientific computing, resource management, graph algorithms and

grid/cloud computing.

Alper Sen received the B.S. and

M.S. Degrees in Electrical and

Electronics Engineering from

Middle East Technical Univer-

sity, Ankara, Turkey, in 1995

and 1997, respectively, and the

Ph.D. Degree in Electrical and

Computer Engineering from the

University of Texas at Austin,

Austin, TX, USA, in 2004. He is

currently a Full Professor with

the Department of Computer

Engineering, Bogazici Univer-

sity, Istanbul, Turkey. His cur-

rent research interests include

software testing, verification, and machine learning.

1898 Cluster Computing (2022) 25:1885–1898

123

http://star.mit.edu/cluster/
https://www.coindesk.com/singapore-based-crypto-exchange-dragonex-has-been-hacked
https://www.coindesk.com/singapore-based-crypto-exchange-dragonex-has-been-hacked
http://glaros.dtc.umn.edu/gkhome/views/metis
http://glaros.dtc.umn.edu/gkhome/views/metis
https://etherscan.io/chart/tx

	Parallel analysis of Ethereum blockchain transaction data using cluster computing
	Abstract
	Introduction
	Previous work
	Blockchain graph system architecture
	Distributed transaction graph construction
	Distributed calculation of the blacklisted address trace forest
	Tests
	Discussion and conclusion
	Author contributions
	Open Access
	References

