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Abstract Understanding flow traffic patterns in net-

works, such as the Internet or service provider networks,

is crucial to improving their design and building them

robustly. However, as networks grow and become more

complex, it is increasingly cumbersome and challeng-

ing to study how the many flow patterns, sizes and

the continually changing source-destination pairs in the

network evolve with time.

We present Netostat, a visualization-based network anal-

ysis tool that uses visual representation and a mathe-

matics framework to study and capture flow patterns,

using graph theoretical methods such as clustering, sim-

ilarity and difference measures. Netostat generates an

interactive graph of all traffic patterns in the network,

Sugeerth Murugesan
Department of Computer Science
University of California
Davis, CA 95616
U.S.A.
E-mail: smuru@ucdavis.edu

Mariam Kiran
Berkeley Lab
1 Cyclotron Rd
Berkeley, California
U.S.A.
E-mail: mkiran@lbl.gov

Bernd Hamann
Department of Computer Science
University of California
Davis, CA 95616
U.S.A.
E-mail: bhamann@ucdavis.edu

Gunther. H. Weber
Berkeley Lab
1 Cyclotron Rd
Berkeley, California
U.S.A.
E-mail: ghweber@lbl.gov

to isolate key elements that can provide insights for

traffic engineering. We present results for U.S. and Eu-

ropean research networks, ESnet and GEANT, demon-

strating network state changes, to identify major flow

trends, potential points of failure, and bottlenecks.

Keywords Graph analysis, local clustering algorithm,

difference graphs, wide area networks, network design.

1 Introduction

Computer networks are engineered to cope with chal-

lenges of traffic overhead, load-balancing, or prevent

many potential points of failure [1]. However, network

behavior is difficult to diagnose or comprehend, espe-

cially during pivotal time points, e.g., when unexpected

traffic flows arise or an anomalous event or a burst of

traffic occurs through the network. By modeling net-

work behavior as a graph theory problem, one can char-

acterize the flow data in great detail and understand

which nodes connect frequently, how the addition or

deletion of links affect network performance, or how

this information can help with improving or building

better networks. Studying network traffic flow patterns

can provide insights relevant for better configuration

and optimization of networks.

Using topological structure and historical flow data can

reveal past network congestion points that have been

resolved by updating routing table configurations [2],

[3]. However, as networks grow and become increas-

ingly complex, it is very cumbersome to study their be-

havioral patterns and make suggestions. Various tech-

niques that are commonly used in social network anal-

ysis, e.g., centrality measures, connection degree, or

community formations, can help determine how flow
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patterns change over time in a network. Such patterns

provide us with a holistic network view, enabling com-

prehensive characterization of regular vs. non-regular

or weekend vs. weekday patterns. For example, certain

users coming online at particular days of times and an

experimental detector running only some times in the

year can cause consistent network flow traffic. When

exploring a wide area network (WAN) setting, these

techniques can reveal more intricate insights on source-

destination movements that can help improve network

design and engineering.

Current approaches used for network performance anal-

ysis fail to identify network states as a collection of

time-points [4]. Further, solutions for visualizing dy-

namic graph changes are limited, due to change blind-

ness. i.e., the difficulty to notice significant changes

when similar images are placed adjacently[5]; non-compliance

of mental-map preservation; and a lack of temporal vi-

sual scalability [6],[7]. Current techniques are not suf-

ficient for depicting flow changes in network behavior

patterns, e.g., new flows, new sources of data, newly

formed connections, or effects on network bandwidth.

Our tool, Netostat, adapts network flow analysis tech-

niques for WAN networks based on flow graphs, with

nodes representing sites and edges indicating active flow

transfers. Our approach is based on community-detection,

similarity, and difference algorithms, making it possible

to detect flow patterns in the network or identify flow

pattern changes when a network state changes. Com-

pared to the Internet, research and education (R&E)

WAN networks are characterized by more unsystematic

and erratic traffic patterns behavior as proven many

times [8] [9] because of the high variability in files and

users. Unlike the Internet exhibiting periodic patterns

[10], research networks depend on the kinds of science

experiments that are performed and what devices are

running, or which groups are involved and what type of

data transfers happen, varying from small to very large

transfers requiring minutes or hours [11].

Our approach focuses on analyzing dynamic patterns,

with state detection mechanism using difference graph

techniques, to determine major changes in time-varying

network flow data and identify topological flow changes.

We visualize this behavior by encoding differences be-

tween current and adjacent time steps, by computing a

difference graph and mapping states to find the domi-

nant day and night patterns. Our analysis uses packet

information routed via UDP, TCP, and ICMP network

flows, captured by routers at network gateways. The

data contains the source IP address, destination IP ad-

dress, file size, port numbers, time sent, and relevant

flags. The flows are time-stamped, sometimes with flow

duration and transfer size. In this paper, our contribu-

tions support WAN flow analysis using difference and

similarity graphs. Our analysis is based on dynamic

graphs, allowing us to identify important information

about site connections, daily patterns, and network growth

as a consequence of sites starting (or shutting down).

To the best of our knowledge, no such tools for WAN

research network analysis exist.

1. We present a difference analysis framework based on

social network analysis principles to identify growth

and decay of flow data across networks and recog-

nize potential points of failure ahead of time.

2. We develop a network visual analysis tool, Neto-

stat, that processes time-varying network flow in-

formation to efficiently identify recurring day/night

patterns, and detect load imbalance in the network

flow infrastructure.

3. We apply our techniques to real WAN data sets –

the U.S. and European research networks – demon-

strating our method’s capability to highlight flow

characteristics and time-varying behavior that is hard

to comprehend using existing network analysis tech-

niques.

2 Background and Motivation

In this section, we present key issues of network change

patterns and demonstrate motivating examples of de-

veloping techniques from social network analysis.

2.1 Network Analysis and Visualizations

Network monitoring tools can help model flow patterns,

such as using parallel coordinates [12] and network maps

[13] to understand overall network loads and topol-

ogy [14]. Additionally, visualizing dynamic network pat-

terns has gained much attention in both industry and

research worldwide [15–17].

Network analysis methods have evolved to become very

sophisticated supporting easy investigation for scientific

and managerial purposes. For example, Erbacher [18]

et al. and Ball et al. [19] employed a detailed approach

to analyzing connectivity patterns from the intranet

level to individual machines. Further, Goodall et al. [20]

and Lakkaraju et al. [21] utilized aggregation and fil-

tering mechanisms to reduce clutter and help users fo-

cus on regions of interest. Other techniques aided scal-

able exploration of data that involve sliders, dynamic

queries [22], brushing, and linking[23].
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The aforementioned techniques can be categorized into

methods that utilize two or three-dimensional space.

Examples utilizing three-dimensional techniques mostly

require sophisticated interaction techniques such as zoom-

ing, filtering, rotating, and more [13][24][25]. Such meth-

ods increase the interaction load, cause occlusion, and

clutter. In contrast, two-dimensional methods such as

PortVis [26] provide an occlusion-free method to iden-

tify major events in dynamic networks.

Other techniques like seeNet [27] use abstraction tech-

niques to identify and characterize major events in the

network flow data and the tool by Teoh et al. [28] fo-

cuses on merging and utilizing multiple visualization

views to explore complementary aspects of the data. Vi-

sual methods in other domains such as brain networks

employ linked visualization views [29,30] and flow-based

techniques [31,32] to better understand brain activity.

All of the mentioned systems do not satisfactorily fo-

cus on temporal aspects of network flows and fail to

create situational awareness of network states. Neto-

stat aims to automatically assess the topological effect

of flow changes to better mitigate critical network bot-

tlenecks. Further, graph-theoretical methods are used

to model community changes to summarize all infor-

mation flow details [13].

2.2 Social Network Analysis with Difference Graphs

Traditional dynamic graph visual analysis approaches

suffer from change-blindness, (a phenomenon that oc-

curs when we cannot recognize minute changes across

two similar images [33]); it is often the consequence

of overdrawing visual elements, therefore not convey-

ing topological change effectively. Social network tech-

niques such as difference graph methods solve this prob-

lem by only depicting the change between two-time

steps. Given two graph states, only changes (concern-

ing edges and nodes) are visualized [34]. The differ-

ence graph provides new insights into analyzing flow

changes.

To deal with problems of scalability in difference graphs,

Archambault et al. [35] used hierarchies to depict large

areas where the entire graph changes, just providing

general overview patterns. Subsequent work by Bourqui

and Jourdan [36] analyzed edges having similar path-

ways to focus on structural similarity. Further work by

Rufiange and McGuffin [37] used a hybrid method to

build small-multiples and animations, to determine lo-

cal topological changes between graphs.

Difference graphs alone, however, do not provide rea-

sons for graph changes between time steps. This missing

information can help fuel alerts and potentially network

threats. This limitation of the lack of contextual infor-

mation can be crucial for interpreting traffic patterns

and low-level topological change over time. In our work,

we go beyond traditional visual analytic methods by

studying the context changes between two given time

steps to best identify the change in centrality, commu-

nity, and difference graphs.

We develop novel methods to help provide a difference-

centrality metric [38] to define important changes as

dynamic points, along with similarity for real WAN net-

work data sets.

2.3 Understanding Network Flow Behavior

Software-defined networking (SDN) aims to provide flex-

ible solutions to build agile networks, using active mon-

itoring and informed decision-making [39]. Google [40]

used SDNs to optimize link usage by doing ‘what-if’

scenarios to schedule transfers. Google’s B4 [40] and

Microsoft’s SWAN (Software Driven WAN) [41] have

proposed manners in which routers can greedily se-

lect routing patterns for arriving flows globally, to in-

crease path utilization. However, these techniques re-

quire meticulously designed heuristics to calculate op-

timal routes and also do not distinguish between ar-

riving flow characteristics. Studying network measure-

ments can simultaneously detect, identify, and visual-

ize attacks for anomalous traffic in real-time by pas-

sively monitoring packet headers [4]. However, reliably

diagnosing flow-level behavioral patterns and how these

can be linked to failures, improve routing paths, and

develop better routing algorithms is still largely unex-

plored.

Understanding complex network behavior as a function

of time in dynamic graphs can have an impact on net-

work design and decision-making. We leverage social

cluster analysis techniques for network flow analysis.

The specific goals targeted by our approach are:

1. Flow pattern recognition in large wide-area

networks: Concerning time, transfer behavior can

reveal how much data is being transferred across

sites and how long connections last. This insight

provides a better understanding of network topol-

ogy behavior.

2. Linking time changes with flow patterns: Un-

derstanding overall network behavior through flow

changes between sites, over time. This is achieved by

visualizing topological differences between graphs.
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(a) Simple network mesh topology shown with traffic flows at times t = 0, 1 and 2. The thickness
of the edges represents the amount of traffic flowing between nodes.

(b) To identify temporal states in the network, a similarity matrix based on Equation 1 helps
identify communities for dominant communities.

(c) Difference graph between adjacent time steps, caused by addition or deletion of an edge.
The left half of the rhombus represents the community of the node for time step Gt and right
half for time step Gt+1. The sizes of the nodes depict the magnitude of change.

Fig. 1: Similarity and difference graph from a network flow topology. The graphs summarize topological behavior

over time and depict low-level topological patterns characterizing state change.
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3. Identifying similarity communities with tem-

poral network states: Network changes can be

viewed as continuous structural changes where sites

that constantly engage can be grouped to form com-

munities, e.g., by recognizing permanent flow com-

munication between certain sites. This analysis can

reveal normal and abnormal patterns, thereby sup-

porting the detection of potential security threats

to a WAN structure.

3 Netostat Methodology

The architecture 1 is based on a two-stage approach.

The first stage performs similarity analysis to iden-

tify communities through community detection algo-

rithms [42], as well as temporal states and day/night

patterns. The second stage performs difference analysis

and visualizes difference topologies across two timesteps

for further detailed topological analysis. Furthermore,

in order to find and explore the community detection

and similarity results, Netostat provides the ability to

interactively tweak and reiterate the metric and the

community detection results.

3.1 Mathematical Notation

Figure 1a shows a simple network mesh topology used

and flows simulated for three time steps t = 0, 1 and 2.

This data is modeled as a graph G = (V,E), consisting

of vertices V := {v1, . . . , vn} and edges E ⊆ V × V :=

{e1, . . . , em}. The edges may be weighted, i.e., a value

ew ∈ R may be attached to each e ∈ E for a fixed time

step.

3.2 Social Cluster Analysis

Sites that communicate frequently, can reliably be de-

tected as sub-networks using the Louvain algorithm [42].

This algorithm uses a maximized objective modular-

ity, measuring the quality of communities, where each

community has dense intra-modular connectivity and

sparse inter-modular connectivity. This metric is de-

fined as,

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δ(ci, cj) (1)

where Q is the modularity metric with values in [−1, 1],

m is number of links in the graph, Aij is the weight of

the edge between node i and j, ci and cj depict the

communities that nodes i and j belong to. The δ func-

tion is equal to 1 if the node communities i and j are

the same, with ki and kj depicting the node degrees of

i and j, respectively.

3.3 State Similarity Computation

To better characterize day or night patterns, transient

evening patterns, or weekly, daily patterns, we need

a metric that quantifies the amount of change. Neto-

stat characterizes this behavior by detecting topologi-

cal change between graphs and clustering similar time

steps into a temporal state.

Using the metric introduced by Koutra et al. [43], first,

we identify the similarity value across all pairs of time

steps. Second, we transform similarity values into an ad-

jacency matrix. Third, we use this matrix as an input to

a community detection algorithm, Louvain [42], which

determines a cluster of graphs that have similar topo-

logical behavior, i.e., day/night. Once the states are

detected, Netostat produces respective similarity and

differences graphs based on the dynamic graphs.

Mathematically, we define the metric between graphs

Gt and Gt+1 as, S(Gt, Gt+1) ∈ [0, 1], where a 1 rep-

resents two graphs being exactly the same with same

edge-weights, while a 0 represents two graphs being

completely dissimilar in its topology and edge-weight

(flows). To determine this value, we define a vector ~si
per node i, ~si = [si,1...si,n], where the influence scores

start from ith node and end at nth node. This vector can

then be stacked as an n × n vector-matrix S for every
node in the graph. The similarity metric [43] identifies

the flow changes in the dynamic graph as,

S = [sij ] = [I + ε2D − εA]−1 (2)

Here ε = 1
1+max(dii))

is a constant that captures the

influence between neighboring nodes, and D is a n× n
diagonal matrix, where dii =

∑
j ai,j is the node degree.

A is the adjacency matrix, and I is the identity matrix.

We compute graph distance as,

d = RootED(S1, S2) = 2

√√√√ n∑
i=1

n∑
j=1

(
√
s1,ij −

√
s2,ij)2

(3)

The final similarity value of two graphs is defined as,
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sim(G1, G2) =
1

1 + d
(4)

With the all-pairs similarity values (from Eq. 4) embed-

ded in an adjacency matrix, the detected time intervals

states, are then used to compute similarity graphs. The

reduced similarity graph (fig. 1b) provides a summary

of the topology prevalent during a particular state, e.g.,

night time. The nodes in similarity graphs possess the

community changes that happened during the state pe-

riod while the edges depict the mean edge weight.

3.4 Similarity Graph Computation

To better understand the major pivotal sites, evolution

patterns, and communities during temporal states, we

devise a methodology that can detect a graph, that pro-

vides a summary of a temporal state. For a given period,

the similarity graphs represent a simple abstraction of

the graph-level complexities within the time frame. The

visual representations ( [38]) of the similarity graph

depict summarized topological information, which in-

cludes the community, node membership, and edges.

We use the algorithm from [38] to construct and depict

the visual representation of the summarized graphs.

3.5 Difference Graph Computation

While the similarity graphs (as defined in [38]) depict

general, overall trends within the dynamic network, lower

level topological trends are hidden within the metric.
The lower level patterns, like the addition/deletion of

edges across time steps is important to depict how states

are detected. Difference graphs [38] can help depict such

topological patterns effectively. To best characterize change

across time steps within a dynamic graph, we use the

following criteria for change:

1. Is there a change: While comparing graphs, have

the edges been added or deleted?

2. The magnitude of change: Given a change, to

what effect have the edges been changed?

3. Community membership change: Have the com-

munity membership of the node changed across timestep?

Note, we assume our networks have stable topology

node configurations, with only flow changes recorded

as dynamic edges. To analyze the changes in differ-

ence graphs, we define the importance of edge-change

through a metric known as Magnitude of Edge-Change.

Furthermore, in our difference graph visualization, we

encode edge-thickness, with the importance/magnitude

of its change w.r.t to subsequent time steps.

3.6 Visualizing Change

For every difference graph, the topological change is

characterized by visualizing only the change happen-

ing across two timesteps. This allows us to find core

nodes that govern the entire network operation, po-

tentially being vulnerable to caching or load-balancing.

This metric is then provided to the visual topology ren-

derer to scale the nodes based on the magnitude of

change across two-time steps.

Magnitude of Edge-Change: To better identify critical

nodes and potential sites of failure within a network,

we need a mechanism to quantify the amount of change

across time steps in a difference graph.

To visualize a particular edge-change, Ci(tk, tk+1) be-

tween two time steps tk and tk+1 we define the metric

with edge-change Ci(tk, tk+1),

Ci(tk, tk+1) ∝ ‖(Ek − Ek+1, f(Ni,k)− f(Ni,k+1))‖ (5)

where Ei, Ni are the edge and nodes in time step k and

node id i. Equation 5 defines changes between two ad-

jacent timesteps tk and tk+1. Ek−Ek+1 is the edge-set

in difference graph and f(Nk) − f(Nk+1) is the differ-

ence in a flow movement measures in the graph, where

f(N) is a function describing the nodes centrality or

its betweenness centrality for timestep k, and a nodeid

l. Specifically, for e.g., the change between Ci(t1, t2) is

directly proportional to the edge set of (E1 − E2) and

the f(N1)−f(N2) where f(N1) and f(N2) are the cen-

trality of the node, N1 and N2. Timestep is defined as

k, where k is anything from 1..M , where M is the end

of the dataset.

Specifically, Equation 6 describes a measure of differ-

ence, difference centrality across two time steps tk,

tk+1 for nodes Ni,k and Ni,k+1. This measure represents

flow changes per node with time, providing information

about possible new sites/nodes being vulnerable to link

failures or needing additional caching support.

DC(t,Ni) ∝ ‖(
Nn∑
j=0

etki,j ∗ f(Ni)
tk)− (

Nn∑
j=0

etk+1
i,j ∗ f(Ni)

tk+1)‖

(6)
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Fig. 2: Flow routing patterns of central site, Washington (ESNet), between July 21 11:30am PDT - July 21 11:45am

PDT. Flow increases between NASH and WASH, causing a state change in NASH as the day progresses.The blue

dotted lines (left graph) indicate the reduction of packets reaching WASH; however, the sudden increase in packets

reaching NASH and CHIC results in the change of community, causing the change from light purple to blue color.

Fig. 3: Evolution of community membership in ES-

Net, with two major communities being formed stable

friendly and dynamically changing communities. The x-

axis represents time, and the y-axis represents the ES-

Net sites. Each cell in the matrix represents the commu-

nity membership for a given ESNet site at a particular

time point.

Two major visual encodings can be used for depict-

ing the underlying visual information in the difference

graph and similarity graph, including the following,

– Changes in community membership.

– Edge weight deviation.

– Addition or deletion of edges.

This approach was inspired by the encoding method

discussed in [38]. For similarity graphs we visualize ev-

ery node as a pie chart depicting the magnitude of dif-

ferent communities present for a certain period for a

site, while the edges depict the standard deviation of

the edge weight. Beyond a certain threshold for edge

weights, the edges become dotted blue lines.

For difference graphs, the change in community mem-

berships are represented by a rotated rhombus ( Fig-

ure 1c), where the left half depicts community mem-

bership of the previous time step and its right half de-

picts community membership for the current time step.

The dotted blue lines depict the deletion of an edge,

and solid red edges depict the addition of edges relative

from the previous to the current time step, Figure 2.

Further, the larger the size of the node, the higher is

the change in flow for that node across time, according

to Eq. 6.

4 Experimental WAN Analysis

We have applied Netostat to two real-world WAN data

sets to understand dynamic behavior.

4.1 Datasets

4.1.1 U.S. Research Network – ESnet

The Energy Science Network (ESnet), a Department of

Energy (DOE) research network providing high-bandwidth,

loss-less, provides reliable connectivity to scientists at

U.S. national laboratories, universities, and other re-

search institutions. ESnet monitors network connections,
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Fig. 4: Flow changes between 05:15pm - 05:30pm, July 22, and 05:30pm-05:45pm, July 22. Large node size indicates

large flow change. Dashed blue lines show reduction in network flow, and red lines represent addition of new flow.

One can see a core structure forming between IAR, LSVN, and NSO.

collecting statistics for bytes sent/received, and link

performance logs. One monitoring tool, ESxSNMP, col-

lects router-in and router-out bytes for every interface,

every 30 seconds. The tool records the packets trans-

ferred between sites at different times of the day. While

physical network topology is fixed, the virtual topology

of data movement changes dynamically, depending on

a site’s access to data.

To examine the evolution of communities over time, we

consider the traffic data collected for the three days

from July 26, 2017, 12:00 pm PDT, to July 29, 2017,

8:00 pm PDT for analysis, see Figure 3. For the dynamic

topology, we use traffic flow data recorded as SNMP for

two days collected for 15-minute intervals, from 21 July

2017, 1:00 pm PDT to 23 July 2017, 5:00 am PDT,

consisting of 80 time steps for 33 sites. For site abbre-

viations, we refer to https://my.es.net/sites/list.

To handle the size of the data in the temporal dimen-

sion, we use a threshold to model the data as a dynamic

graph. We use an undirected graph by averaging the bi-

directional links to the sites, see Figures 2 and 4.

4.1.2 European Research Network – GEANT

GEANT, a European data network for research and ed-

ucation, has a connecting node in each European coun-

try, transporting data between universities and labora-

tories. To evaluate the effectiveness of our visual anal-

ysis system, we decided to use the GEANT backbone

network [44]. The GEANT network includes 23 peer

nodes and 120 undirected links. We use 2004 traffic

data, sampled from the GEANT networks at 15-minute

intervals. From the 10,772 traffic matrices, we use the

most relevant 80-time steps for the analysis of our data

sets. We discuss our results for this network for the pe-

riod from June 04, 5:00 pm GMT to June 05, 8:00 am

GMT.

5 Result Analysis

5.1 Visualizing Topology Information

Studying ESNet data sheds light on the inner workings

of this vast U.S. network. The nodes, or sites, and edges

depict the communication patterns between the sites.

The difference graphs are shown in Figure 4 represent

changes across time points, 05:15 pm - 05:30 pm, July

22, and 05:30 pm-05:45 pm, July 22, respectively, show-

ing state-change from day to night patterns. The dashed

lines represent edges decreasing flow, while the solid or-

ange lines show an increased flow rate. The Louvain

community detection algorithm can identify group-like

patterns in a graph for a given time step showing friendly

and non-friendly sites in the network. Larger node sizes

indicate a larger change in overall topology in the node

of interest. Communities such as NSO, IAR, and LSVN

form their core community (dark blue) only consumed

by the orange community in the Northwest of the United

States. One sees that the communities forming are spa-

tially co-located with each other, implying that sites

close to each other often communicate due to proxim-

ity. For example, LIGO, PNWG, and BOIS form an

orange community. Another example is LBL, forming
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communities with CERN (in Europe) indicating distant

experiment communication during the day.

To explore friendly stable vs. dynamically changing sites,

we visualize community membership evolution by a heatmap,

see Figure 3. The figure shows community evolution de-

tected by the algorithm for SNMP data from July 26,

2017, 12.00 pm PDT, to July 29, 2017, 8.00 pm PDT ),

showing groups, stable friendly communities, and dy-

namically changing communities.

5.2 Detecting Major Patterns in U.S. Network

Major evolving ESnet flow patterns need to be stud-

ied for an efficient re-design of the network [45,46]. For

example, network engineers can optimize network links

and routing behavior to best cater to different kinds of

flows (large, small) over sites during different times.

Specifically, questions like, what sites are friendly and

often collaborate? how do flow connections vary over

time? do such communication patterns reveal common

patterns between network sites? what are potential sites

that may cause disruptions or are prone to a targeted

attack?

Netostat can identify dynamic communities forming and

recognizing temporal states in the recorded period. Us-

ing the approach in eq 1, 2, 3, 4, one can find two types

of dominant network states corresponding to commu-

nication behavior during day and night, relative to the

PDT timezone.

The similarity graphs and difference graphs, shown in
Figure 5B and C, depict consistent topological and com-

munity patterns for four periods, also shown in Fig-

ure 5A:

1. State 1 ranges from 1:00pm - 5:30pm, Jul 21.

2. State 2 lasts from 5:30pm Jul 21 - 5:00am Jul 22.

3. State 3 ranges from 5:00am - 5:00pm PDT Jul 22.

4. State 4 ranges from 5:00pm Jul 22 - 5:30am Jul 23.

The similarity graph depicting an individual state, state

2, (Figure 5B) represents consistent evening-night-time

operations in PDT time. During this period, three ma-

jor communities, green, orange, and purple are detected.

While, geographically closer sites like LIGO, and PNNL

form communities, geographically far distant sites like

BNL, NERSC, and NSO also form their communities,

indicating experiments and interactions occur all across

the network.

Site CERN forms communities with GA, LIGO, NREL

NSO, and ANL consistently although it is geographi-

cally located far away (in Europe). Further, the simi-

larity graph in Figure 5C, conveys the overall flow be-

havior during the day and also indicates possible experi-

ments/interactions running across time zones. As a net-

work administrator considering a potential re-design of

the network, one can take into account such frequently

interacting sites and their routing behavior to reserve

network resources and improve the underlying routing

policies governing the network.

Figure 6 shows two contrasting patterns, pattern A,

fig. 6, and pattern B, fig. 6 representing day and night

flow patterns for site SNLL respectively. During the

day, site SNLL plays a central dynamic role in trans-

ferring flow to a wide variety of geographic locations,

SNL, SNLA, and SRS. Further, NGA-SW transitions

from an orange to a dark-purple community, indicating

its frequent dynamic collaboration with SNLL, SNLA,

and SRS, suggesting a potential point of failure within

the network. Pattern B, in fig. 6, on the other hand,

depicts relative stability between selected sites, SNLL,

SNLA, and SRS, characterized by green squares.

In summary, visualizing the time-varying flow behav-

ior with Netostat makes it possible to determine stable

and unstable time-varying connectivity behavior. It is

possible to understand temporal data by automatically

identifying similarities and differences supporting intu-

itive pattern identification. The similarity graphs show

consistent friendly communication patterns over time,

while the difference graph shows the underlying low-

level flow changes causing the major state change. Such

patterns can further be statistically explored in detail

to construct alternative routing paths to better transfer

information across sites.

5.3 Analysis over Larger Periods of Time

For evaluation of system usability and determining lim-

itations, we perform analysis over larger time periods.

We analyze network data from June 22, 2017, 4:00am

to June 27, 2017, 6:00am for a period of about 203 time

steps with an interval of 30 minutes. We want to bet-

ter understand long-term patterns that are dominant

across network sites. We explore these questions: What

are the routing signatures for weekend and weekday

patterns? What are potential points of failure during a

state transition from weekday to weekend?

The metrics plot provides insight into the two major

states established by the method, i.e., weekend states

and weekday states. Three temporal states are deter-
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Fig. 5: Similarity and difference plots for ESNet flow. (A.) Plot of similarity metric showing four states, indicating

day/night patterns. (B.) Similarity visualization for period from 21 July, 5:30 pm, to 22 July, 5:00 am, detecting

six nodes dynamically changing community. (C.) Interaction patterns between CERN and other sites during day.
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Fig. 6: Similarity plots for ESNet network flow for SNLL. Overview of different states detected via corresponding

similarity topology. Nodes SNLL and SRS switch communities frequently during this period and are stable during

the night time interval.

mined, state 1 : June 22, 2017, 4:00am – June 24, 2017,

1:00am; state 2 : June 24, 2017, 1:00am – June 26, 2017,

2:00am; and state 3 : June 26, 2017, 2:00am – June 22,

2017, 6:00am. Fig.7B shows the topological differences

across the network during a weekend (top) and during

the transition phase from weekend to weekday (bot-

tom). A pattern can be seen clearly when comparing

the left and right difference graphs: The left graph is a

more sparse graph indicating less topological variation

during the weekday, while the transition phase differ-

ence graph, shown on the right, indicates the dynamic

routing nature of the transfer of packets across sites.

Specifically, the sites INL, IARC, NSO, and DOE-GTN

dynamically route and manage multiple paths, causing

changes of the communities they belong to during the

transition period phase. Different behavior is shown by

sites like GA, SLAC, and NERSC – not participating.

Red edges in the graph indicate traffic slowly build-

ing up in the network, potentially causing bottlenecks

around INL, PNNL, and PANTEX. Additional statis-

tical analysis would make it possible to further inves-

tigate the findings of our method in more quantitative

detail.

5.4 Flow Visualization in a European Network

We also performed a detailed analysis of flow patterns

in the GEANT data sets using Netostat. By primar-

ily identifying day, evening, and night patterns, one

wants to determine inherent changes in flow patterns

and find out whether these patterns support a better

understanding of potential network failure points. The

data used is a 24-hour open data set available online

with flow information. The time is GMT.

Netostat identifies dynamic communities forming three

major temporal states. Shown in Figure 8A are for fol-

lowing time periods:

– State 1: 5:04pm, June 4 - 12:19am, June 5, 2004.

State 1 represents evening;

– State 2: 12:19am, June 5 - 12:49am, June 5, 2004.

State 2 a transient state;

– State 3: 12:49am, June 5 - 8:03pm, June 5, 2004.

State 3 is night state.

Figure 8C shows similarity graphs. One can see the dif-

ferences between evening and night patterns. As a gen-

eral trend, the transient nodes 7, 8, 3, and 0 change

their community memberships often (pie circles). Com-

munication patterns during the night are quite sta-

ble when known sites and communities talk to each

other without changing their community memberships

(square glyphs).

The difference graph shown in Figure 8B shows the time

point when the network transitions from a transient

state to a night state. As a general trend, the visualiza-

tion shows an overall reduction in the number of links

in the graph. Few nodes, for example, 9, 8, 21, and 4,

and 3, change their community memberships. An ap-

parent difference is the size of node 11, where, despite

not having changed its community, the large size indi-

cates that it is the information hub of transfers during

this transition.
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Fig. 7: Metrics plots and difference topology of network flow in ESNeT network over a larger time window. A.)

Evolution of modularity metric for period June 22, 4.00am – June 27, 6.00am PDT. The method detects three

major states pertaining to weekend and weekday temporal states; B.) Difference graphs, during weekend state

(top) and state change from Sunday to Monday, weekend to weekday (bottom). Nodes IARC, NBO, SRS, OSTI

change their community memberships often, in relation to other nodes that remain stable throughout. During

weekday, the difference graphs have fewer connected nodes within them compared to the transition difference

depicting multiple changes, including changes in the sizes of packets being transferred across sites.
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Fig. 8: Similarity and difference topology of network flow in GEANT network. (A.) Evolution of modularity

metric for period June 04, 5.00pm - June 05, 8.00am GMT. (B.) Difference graphs, during state change from

evening to night (top) and graph indicating change within the night state (bottom). Nodes 9, 8 and 4 switch their

communities often when compared to other nodes that remain stable throughout. Node sizes in difference graphs

are determined through equations 5 and 6, depicting traffic magnitudes handled by the routers at the respective

sites (C.) Similarity graph showing evening and night states. During night, the similarity has less inter-connected

nodes communicating with each other. Each site is colored based on its community affiliation.
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The other difference snapshot depicted in Figure 8B

shows the relative stability of the network during the

middle of the night. The modularity metric depicted in

Figure 8A represents the relative change in modularity

during the transient state at 12:15 am.

A simple analysis of the data provides important in-

formation to network administrators, e.g. node 11, al-

though not changing community, being a hub during

state transition. Considering the similarity graphs, for

example, nodes 16, 1, and 11 are always engaged in

overall network operation, indicating that it might be

advisable to improve bandwidth links or deploy addi-

tional infrastructure to avoid network congestion.

A preliminary analysis provides sufficient insight for

a subsequent, more rigorous statistical analysis to de-

termine and ensure overall network robustness. The

growth of the GEANT network could, for example, in-

dicate the need for providing additional resources to

specific high-in-demand nodes.

5.5 Comparing Netostat with other techniques

We briefly compare our methodology with other exist-

ing methods used for graph visualization and analysis

methods for dynamic networks and explain the concep-

tual advances of our approach.

Traditionally, existing network analysis tools use a hy-

brid version of animations and small multiples to visu-

alize dynamic graph data. While a breadth of insights

can be gleaned with such methods, users often cannot

notice major topological differences between two adja-

cent graphs since recognizing changes is perceptually

challenging. The identification of such patterns is im-

portant to effectively detect the onset of major commu-

nity evolutionary or topological changes.

With techniques like small multiples, large changes with

similar graphs can be relatively hard to find due to

change blindness. Through animation, it may be even

harder to keep track of changes, both sudden or mi-

nuscule changes due to limitations of our short-term

memory. Our tool addresses these issues by explicitly

showing the exact differences across time steps and pro-

viding a summary version of the dynamic graph that

could not fit perceptually.

Further, Netostat supports the identification of stable

and constantly evolving sites; it makes possible the ex-

ploration of the relationship of evolving graph topology

and community membership that can be easily identi-

fied through the application of difference graphs over

time.

6 Conclusions and Future Work

Identification of potential failures and understanding

network evolution day and night is crucial to construct

robust operating networks. Computing and visualizing

these patterns over different periods helps inform, pre-

vent, and diagnose any network alerts that reach a net-

work administrator. For example, visual analysis ca-

pabilities used when diagnosing load-balancing issues,

e.g., traffic congestion at a particular link due to net-

work topology, improve the overall understanding and

operation of the network. Visualization tools help net-

work administrators understand the cause-and-effect re-

lationships of network problems occurring over time.

Netostat uses principles from social network analysis to

visualize flow communication patterns for time-varying

networks. Our approach extracts the major differences

in communication flows over time, identifying states

within networks, and visualizes important changes. When

applying Netostat to two R&E networks, it is possi-

ble to recognize day/night patterns helping network en-

gineers to quickly identify unexpected communication

patterns and provide visual insights into the operation

of the network.

Concerning potential future research, the similarity and

difference graphs can be employed as part of machine

learning algorithms to help identify new network states

that are unexpected and potential security threats. These

states can also be selected to identify new communica-

tion patterns that can train a machine learning model

to predict possible future bottlenecks. The bottlenecks

describe the links that are badly designed with less ca-

pacity that becomes heavily loaded due to the traffic

surges.
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