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Abstract
In recent times, energy related issues have become challenging with the increasing size of data centers. Energy related

issues problems are becoming more and more serious with the growing size of data centers. Green cloud computing (GCC)

becomes a recent computing platform which aimed to handle energy utilization in cloud data centers. Load balancing is

generally employed to optimize resource usage, throughput, and delay. Aiming at the reduction of energy utilization at the

data centers of GCC, this paper designs an energy efficient resource scheduling using Cultural emperor penguin optimizer

(CEPO) algorithm, called EERS-CEPO in GCC environment. The proposed model is aimed to distribute work load

amongst several data centers or other resources and thereby avoiding overload of individual resources. The CEPO

algorithm is designed based on the fusion of cultural algorithm (CA) and emperor penguin optimizer (EPO), which boosts

the exploitation capabilities of EPO algorithm using the CA, shows the novelty of the work. The EERS-CEPO algorithm

has derived a fitness function to optimally schedule the resources in data centers, minimize the operational and mainte-

nance cost of the GCC, and thereby decrease the energy utilization and heat generation. To ensure the improvised

performance of the EERS-CEPO algorithm, a wide range of experiments is performed and the experimental outcomes

highlighted the better performance over the recent state of art techniques.
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1 Introduction

Cloud computing (CC), a sub-region of ICT, is the research

topic on the environment. There are views and arguments

against and for this technology. Excepting the interests

shown by the provider of cloud type services and products

[1, 2], there is significant pressure from the government

organization for reducing negative effects on the environ-

ments. The growth of Green Cloud Computing (GCC) is

highly associated with the development of green datacen-

tres since the data centers are the essence of the CC

environment. As [3] the power expended by the datacentres

in 2010 was 1.3% of the overall consumptions. The study

reported by GeSI [4], i.e., deliberated ‘‘one of the well-
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recognized and most comprehensive snapshots of the

Internet power demands around the world’’, evaluates a rise

in the share of overall carbon dioxide (CO2) emissions

from ICT from 1.3% of global emission in 2002 to 2.3% in

2020. Using power utilization and CC environment, a set of

authors at Lawrence Berkeley National Laboratory and

North-western University proposed a modelling equipment

named the Cloud Energy and Emissions Research Model

(CLEER). Such server’s farm creates the cloud. The result

estimates that the productivity software and Customer

Relationship Management software, primary energy foot-

print of email could be minimized as 87% when each

business user in the US moved to CC platform [5]. Also

when the model doesn’t consider each variable, it could

demonstrate beneficial as a result energetic efficacy in the

datacentres that belong to Internet Company. It can guar-

antee a rise in energetic transparency and notify consumers

for enabling them to select a better offer. The advantages of

CC environment are very important for environmental

protection when datacentres are based on green computing

principles. Figure 1 depicts the task scheduling (TS) pro-

cess in GCC.

Datacentre consumes around 1.3% of the overall global

electrical energy supplies, i.e., anticipated to rise up to 8%

in 2020 [6, 7]. Hence, CO2 significantly increases that

directly impacts the environment. Unfortunately, huge

amount of electricity is exhausted by the server at the time

of lower task [8]. The Quality of Service (QoS) constraints

play a significant role among users and mobile cloud ser-

vice provider. Hence, the major problem is to minimalize

energy utilization of mobile cloud datacentres when ful-

filling QoS requirement [9]. The hardware virtualization

technologies transform conventional hardware into a novel

model. Such technologies consolidate tasks, named virtual

machine (VM) consolidation, and exploit lower power

hardware state. One of the present researches has mini-

malized the total power consumptions via 2 commonly

employed methods like dynamic server provisioning and

VM consolidation. Dynamic server provisioning method

reduces energy utilization by decreasing the computation

resource at the time of lower tasks [10]. These reductions

mean turning the redundant server to sleep mode while the

task demands decrease. Likewise, while data storage

demand and processing increase, this server is reactivate

based on the requirement. The servers share its resource

amongst many efficiently isolated environments named

VM with the help of hypervisor technique.

Resource utilization in cloud is based on the sequence

and type of resources and tasks. Workflow technology is

employed for handling data-intensive applications,

increasing complex data, analysis, and simulations. Also,

this technology is employed for scheduling computation

tasks on allocated resources, for managing dependencies

between tasks and stage datasets to and out of implemen-

tation site. This workflow is applied for modelling com-

putation in various fields. Several TS algorithms are

presented in this study, i.e., mainly categorized to Level-

by-level scheduling, list scheduling algorithm, duplication

based scheduling, batch scheduling, batch dependency

scheduling technique, dependency scheduling, hybrid

algorithm and Genetic Algorithm (GA) based scheduling

technique. List scheduling algorithms create a list of tasks

when accounting task dependencies. The task in the lists is

treated for their existence in the task list. The efficacy of

these algorithms is relatively better compared to other

classifications of techniques. Level-by-level scheduling

algorithm considers task of single level in task graph thus

the task deliberated are independent of one another.

This paper presents an energy efficient resource

scheduling using Cultural emperor penguin optimizer

(CEPO) algorithm, called EERS-CEPO in GCC environ-

ment. The CEPO algorithm incorporates the cultural

algorithm (CA) into emperor penguin optimizer (EPO) in

order to boost the exploitation capabilities of EPO algo-

rithm. The EERS-CEPO algorithm has derived a fitness

function for optimal resource scheduling in data centers,

minimize the operational and maintenance cost of the

GCC, and thereby decreases the energy utilization and heat

generation. To ensure the improvised performance of the

EERS-CEPO algorithm, a wide range of experiments is

performed.

2 Literature review

Zong [11] integrates GA and ACO algorithms for propos-

ing a dynamic fusion TS approach. Thus decreasing the

power utilization of computing centres and CC datacentres.

The experimental result shows that the presented method

could considerably decrease the time and overall power

utilization of CC systems. Jena [12] focus on TSCSA

method for optimizing processing and energy time. The

results attained using TSCSA technique were inspired by a

public domain source cloud environment (CloudSim).

Lastly, the outcomes are related to the present scheduling

algorithm and establish that the presented method offers an

optimum balance result for many objectives.

Thaman and Singh [13] proposed a strong hybrid plan-

ning approach, RHEFT method to bind tasks for VM. The

distribution of tasks to VM is depending upon a new task

matching approach named Interior Scheduling. Yuan et al.

[14] presented an STSRO approach for minimizing the

overall cost of their providers by cost-efficiently schedul-

ing each incoming task of heterogeneous application for

meeting task’ delay-bound limitations. STSRO approach

exploits spatial diversity in DGCDC. In every time slot, the
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cost reduction problems for DGCDC are created as a

constraint optimization one and resolved by the presented

SBA approach.

Ranjan et al. [15] proposed a GCTA method on the basis

of enhanced BPSO algorithm. The major contributions of

this study are to avoid matrix operation with the help of

pipelined amounts for VMs and re-determining the velocity

and position of particles. Experimental results show that

the presented method has lesser implementation time, and

decreases resource utilization consequently. Yuan et al.

[16] consider the trade-offs among energy cost minimiza-

tion and profit maximization for the GCDC provider when

encountering the delay constraint of each task. The present

TS method fails to take the advantage of spatial variation in

various aspects for example amount of electrical energy

and accessibility of renewable power production at geo-

graphic distributed GCDC locations. Consequently, it can

be fail for performing each task of heterogeneous appli-

cation within their delay bound in a lower power cost and

higher revenue manner. In this study, a multi-objective

optimization algorithm tackles the disadvantage of the

present method is presented.

Mishra et al. [17] examined the power utilization in CC

environments depending on variety of services and attained

the provision for promoting GCC. This would assist to

retain total power consumption of the scheme. Task

distribution in the CC environments is a familiar problem

and using these problems, could enable GCC. Also, they

have presented an adaptive task allocation method for the

heterogeneous CC environments. The study employed

presented method for minimizing the makespan of the

cloud scheme and reduces the power utilization. Yuan et al.

[18] adapt a G/G/1 queueing scheme for analyzing the

efficiency of the server in DGC. Depending on it, a single

objective constrained optimization problems are solved and

formulated by a presented SBA approach finding SBA

method could minimalize the power costs of DGC provi-

ders by optimally assigning task of heterogeneous appli-

cations amongst many DGCs, and specify the operating

speed of every server and the amount of powered-on ser-

vers in every GC when severely meet the response time

limit of task of each application.

Abualigah and Diabat [19] projected a new hybrid

antlion optimization approach using elite based differential

evolution to solve multiobjective TS challenges in CC

environment. The antlion optimization approach has been

improved with the help of elite-based differential evolution

as a local search approach for improving its exploitation

capability and prevent from getting trapped in local opti-

mal. In Shu et al. [20], robust agile response TS opti-

mization algorithms are presented based on the peak

energy utilization of datacentres and the time span of TS.

Fig. 1 Task scheduling process

in GCC
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Also, agile response optimization technique is adapted.

From the perception of task failure rate, the presented

method could be employed for investigating the robust

agile response optimization method, request a timeout for

avoiding network congestions, and probability density

function of the task request queue overflow.

Peng et al. [21] presented an effective real time deter-

ministic scheduling (RTDS) model. Primarily, the SSDT

can be mathematically formulated as a multi-way flow

scheduling issue. Next, the RTDS designed scheduling

request pre-processing (SRP) and greedy based multi-

channel time slot allocation (GMT) to schedule in an

optimal way. Yang et al. [22] presented a smart trust cloud

management approach, which includes a trust cloud

updating scheme. The experimental outcome demonstrated

that the presented model can proficiently resolve the trust

uncertainty problem and enhance the detection rate of the

malicious devices. Wang et al. [23] presented a delay

aware secured non-orthogonal multiple access (NOMA)

transmission model with high altitude platform (HAP) and

low altitude platform (LAP) collaborated to steadily offer

delay sensitive healthcare services. An efficient AP-LAP

secure transmission model has been presented for offering

NOMA communication services for many hotspots. With

the restricted energy as well as spectrum, privacy infor-

mation delay can be reduced.

Ding et al. [24] developed a generative adversarial

network for image restoration among distinct kinds of

deprivation. The presented model presented an effective

model with an inverse and a reverse module for addressing

extra attributes among the image styles. With secondary

data, the restoration can be highly accurate. Besides, a loss

function can be developed for the stabilization of adver-

sarial training with improved training performance. Tan

et al. [25] proposed a blockchain enabled security as well

as privacy protection model with traceable and direct

revocation for COVID-19 healthcare data. Here, the

blockchain is employed for uniform identity authentication

and every public key, revocation list, and so on are saved

on a blockchain. The system manager server has the

responsibility of generate system parameters and published

the private key for COVID-19 healthcare professionals.

3 Problem formulation

LB is a widely employed approach to maximize through-

put, optimize resource utilization, ensure fault-tolerant

configuration, and reduce latency. In GCC infrastructure,

LB is an approach applied for spreading workloads

amongst numerous datacenters or other resource nodes,

thus no individual resource is over-loaded. For better

describing the scheme of the LB, dynamic, power

utilization optimization methods could be provided in the

following. Datacenters are usually made up of many

resources sites shared in distinct geographical places in

GCC. Actually, every subtask ti i ¼ 1; 2; . . .;mð Þ could

attain a resource site Rj for meeting the fundamental exe-

cution condition, where n signifies the amount of resources

for meeting the subtask ti. The Poisson distributions are

appropriate to describe the amount of arbitrary actions

arising within a unit time (or space). Hence, the dynamic

procedure of TS and RA in CC infrastructure could be

deliberated as a Poisson distribution.

Definition 1 Consider that GCC method

GCloud ¼ D; T;P;Gð Þ, D ¼ D1;D2;Ddf g is a set of d

cloud server datacenters, T represents the correspondence

matrix among computing node and random task, Tij sig-

nifies the task ti is performed on node j. Pi denotes the

power of node i while it can be idle, and Gi means the peak

power of node [26].

Definition 2 Consider that the network bandwidth matrix

of all datacenters is B in GCC, bij represents the broadcast

bandwidth of every node in the datacenter.

B ¼
b11 b12 � � � b1d
� � � �
�
bd1

�
bd2

� �
� bdd

2
64

3
75 ð1Þ

For minimizing the power utilization in the cost con-

strained energy optimization, is for estimating the cost of

power utilization in the procedure of the accomplishment

of the CC.

Definition 3 Consider that Qi signifies the amount of

instruction of tasksti, li denotes the usage rate of node i; f i
indicates the frequency of node i, the runtime of task ti on

node i is Qi=V
i
j. The energy of server perform the task ti

could be expressed by

Ei
j ¼ k� ui � ðQi=V

i
jÞ
bi�1 � ef i

bi ¼ 1þ 1

ai
� 2

ai 2 ð0; 1�

8>><
>>:

ð2Þ

where, i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; ni.
Reducing the power utilization of computing nodes

could be understood by decreasing the percentage of idle

nodes X. The power utilization of GCC environment is

provided below

E ¼
Xm

i¼1

Xn

j¼1
k� ui � ðQi=V

i
jÞ
bi�1 � ef i ð3Þ

With the rapid growth of CC, the server scale of cloud

datacenter is continually increasing each year that causes

enormous energy utilization. Moreover, unreasonable

scheduling policy leads to power waste, make the data-

center functioning cost constantly expanding.
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4 The proposed resource scheduling
technique

EPO is a new optimized technique projected by Dhiman

and Kumar in 2018 [27] that is simulated as budding per-

formance of emperor penguins. The hybrid technique is

called CEPO was presented for solving the real numbers

optimized issues that are with the use of cultural technique.

An important idea of CEPO is for obtaining problem

solving technique in the budding performance of emperor

penguins and create utilize of data for guiding the devel-

opment of emperor penguins population from returned.

Assume that CEPO has been planned to common minimal

optimized issue:

min f xið Þ; ð4Þ

where xi ¼ xi1; xi2; . . .; xiDð Þ refers the place of ith emperor

penguin from D dimension search

space,xmin
j \xij\xmax

j ; j ¼ 1; 2; :::;Dð Þ. f ðÞ represents the

objective functions, and f xið Þ indicates the objective value

of placexi. x
min
j and xmax

j implies the lower as well as upper

boundary of the place of emperor penguin from the jth

dimensional.

A detailed space of emperor penguins’ population in tth

generation determined as provided by st and Nt
j, in which st

refers the situational knowledge modules. Nt
j refers the

normative knowledge that signifies the value space data to

all parameters from jth dimensional and in tth generation.

Nt
j stands for I, L, U. Itj ¼ ½ltj; utj�, where Itj demonstrates the

interval of normative knowledge from jth dimensional. The

lower boundary ltj and upper boundary u
t
j are adjusted based

on value range of variables provided as this issue. Ltj

implies the objective value of lower boundary l jj of jth

parameter, and Ut
j implies the objective value of upper

boundary utj of jth parameter. The acceptance function has

been utilized for selecting the emperor penguin is directly

controls the present confidence space. Figure 2 illustrates

the process involved in CEPO technique.

The situational knowledge st is upgraded as update

function:

stþ1 ¼ xtþ1
best; if f xtþ1

best

� �
\ f stð Þ;

st; else;

�
ð5Þ

where xtþ1
best implies the optimum place of emperor penguin

population space from t þ 1ð Þth generation. Considered

that, for the qth cultural individuals, an arbitrary variable

hq lies in the range of 0 and 1 has formed [28]. The qth

cultural individuals affect the lower boundary of normative

knowledge from jth dimensional if hq\0:5 has been ful-

filled. The normative knowledge Nt
j is upgraded by update

function:

ltþ1
j ¼ xtþ1

qj ; if xtþ1
qj � ltj or f xtþ1

q

� �
\Ltj;

ltj; else;

(
ð6Þ

Ltþ1
j ¼ f xtþ1

q

� �
; if xtþ1

qj � ltj or f xtþ1
q

� �
\Ltj;

Ltj; else:

(

The qth cultural differences affect the upper boundary of

normative knowledge from jth dimensional if hq � 0:5 is

fulfilled:

utþ1
j ¼ xtþ1

qj ; ifxtþ1
qj � utjorf xtþ1

q

� �
\Ut

j;

utj; else;

(
ð7Þ

Utþ1
j ¼ f xtþ1

q

� �
; ifxtþ1

qj � utjorf xtþ1
q

� �
\Ut

j;

Ut
j; else:

(

The situational and normative knowledge is utilized for

guiding emperor penguin population development by

control functions. In CEPO algorithm, a selective operator

b has been created for selecting one of two approaches for

controlling the of development emperor penguin

populations:

b ¼ Maxiteration � t

Maxiteration
; ð8Þ

where Maxiteration refers the maximal number of iterations.

Considered that for ith emperor penguins, an arbitrary

variable ki that lies from the range of 0 and 1 has been

created. An initial method is for updating the place of

emperor penguin with altering the search size and way of

difference with confidence space that is executed if fulfilled

ki � b. The place of emperor penguin from jth dimensional

is upgraded as:

xtþ1
ij ¼

xtij þ size Itj

� �
� N 0; 1ð Þ

���
���; ifxtij\stj;

xtij � size Itj

� �
� N 0; 1ð Þ

���
���; ifxtij [ stj;

xtij þ g � size Itj

� �
� N 0; 1ð Þ; else;

8>>><
>>>:

ð9Þ

where Nð0; 1Þ implies the arbitrary number exposing to

typical normal distribution. size Itj

� �
represents the length

of adaptable interval of jth parameter from confidence

Fig. 2 Process involved in CEPO algorithm
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space from tth generation. g fixed to be in the range of 0.01

and 0.61. Another manner is a series of steps from EPO

that are huddle boundary generation, temperature profile on

the huddle calculating, the distance computation amongst

emperor penguin, and the place upgrade of emperor pen-

guin that is implemented if the achieved ki [ b: The par-

ticular steps are demonstrated as:

T 0 ¼ T � t �Maxiteration

Maxiteration
; ð10Þ

T ¼ 0; ifR� 0:5;
1; ifR\0:5;

�

where T 0 implies the temperature profile about the huddle,

T refers the time to determine optimum solution, and R

indicates the arbitrary variable that lies from the range of 0

and 1:

Dt
ep ¼ Sep Atð Þ � xtbest � Bt � xti; ð11Þ

where Dt
ep stands for the distance amongst emperor pen-

guin as well as optimum solution, xtbest refers the present

optimum solution initiate in emperor penguins population

space from tth generation, Sep implies the social force of

emperor penguins which is responsible for convergence

nearby the optimum solution, At and Bt are utilized for

avoiding the collision amongst adjoining emperor penguin,

and Bt indicates the arbitrary variable that lies from range

of 0 and 1. At is calculated as:

At ¼ ðM � ðT 0 þ Pt
gridðAccuracyÞÞ � randðÞÞ � T 0;

Pt
grid Accuracyð Þ ¼ xtbest � xti

�� ��; ð12Þ

where M refers the effort parameter that hold the gap

amongst emperor penguin to collision avoidance and Pt
grid

(Accuracy) determines the absolute variance with relating

the variance amongst emperor penguin. Sep Atð Þ in Eq. (28)

was calculated as:

Sep Atð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e � e�t=q � e�t

p
; ð13Þ

where e demonstrated the base of natural logarithm. e and q
are 2 influence parameters to optimum exploration as well

as exploitation that is in the range of [1.5, 2] and [2, 3].

Eventually, the place of emperor penguins is upgraded as:

xtþ1
i ¼ xtbest � At � Dt

ep: ð14Þ

The EERS-CEPO algorithm is derived to reduce energy

usage via optimal allocation of resources in GCC. Power

utilization of the resource utilization and computing devi-

ces have a stronger relationship with the power wattage

equation as follows.

P ¼ E=T ð15Þ
E ¼ P � T ð16Þ

In which the Power is estimated using P, number of

times calculated using T, and energy estimated by E. The

difference among energy and power is very important

because decrease in energy consumption doesn’t end in

time to cut the expended power [29]. For storing the

number of energy expended by the cloud resource is

determined using the green cloud environment. The cloud

resource has several classifications of servers, nodes, net-

work topology, process units, storage facility, and power

contribution unit the taken as full energy consumption at

the cloud environment could be provided below

ECR ¼ ENþ ENETþ ESþ ESDþ EOE ð17Þ

EN-Energy Consume from node, ECR-Cloud Resources

energy, ES-Energy consumes from the server, EN-Energy

Consume form network, EO-Energy consumes ES-Energy

consumes from storage device, from another electrical

equipment’s. The overall energy exploitations of physical

resources include 2 components as EVMand Estatic. The

Estatic is the secured energy of a server despite working

VM or not and EVM is the dynamic energy i.e., determined

by VM working on it. Assume that there are nVM

Etotphy ¼ Estaticþ
X

Evm ¼ Estaticþ
Xn

i
Evmi ð18Þ

EVMi could be further rotten keen on the power utiliza-

tion of devices like memory, IO, and CPU represented as

VMI, Ecpu, EIO VMI, Emem VMI. The EIO VMI consists

of the general power cost of each device which involves I/

O Operations like network data transfer and disk. The

power utilization of VMI is

Evmi ¼ Ecpu
vmi þ Emem

vmi þ EIO
vmi ð19Þ

The task of cloud assets such as disk storage, network

interface, and CPU builds depiction on shift node on= off to

decrease the common power utilization. The cloud net-

works switch units of measurements using dynamism

reconfigured for changing the action of the server when

needed. The power utilization is decreased by shifting

inactive to energy saving modes (hibernation, sleep).

5 Performance validation

For examining the improved efficacy of the EERS-CEPO

technique, a sample GCC environment is considered with

6physcial machines (PMs) and every machine holds eight

CPUs with the capacity power of 10,000 MIPS. The EERS-

CEPO technique is simulated using CloudSim tool with job

dispatcher, resource planner, cloud, and VM instances.
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Table 1 and Fig. 3 demonstrate the response time analysis

of the EERS-CEPO technique with existing techniques

under distinct tasks. The results portrayed that the EERS-

CEPO technique has accomplished effective outcomes

with least response time under all tasks. For instance, with

50 tasks, the EERS-CEPO technique has offered a reduced

response time of 236 ms whereas the CCS, ICSA, and

CSRSA techniques have obtained a raised response time of

249 ms, 241 ms, and 287 ms respectively. Similarly, with

200 tasks, the EERS-CEPO technique has provided a lower

response time of 597 ms whereas the CCS, ICSA, and

CSRSA techniques have attained a higher response time of

969 ms, 807 ms, and 1031 ms respectively.

Meanwhile, with 400 tasks, the EERS-CEPO technique

has achieved a decreased response time of 12646 ms

whereas the CCS, ICSA, and CSRSA techniques have

resulted in an increased response time of 1713 ms,

1558 ms, and 1457 ms respectively. Furthermore, with 600

tasks, the EERS-CEPO technique has exhibited a minimum

response time of 1860 ms whereas the CCS, ICSA, and

CSRSA techniques have demonstrated a maximum

response time of 2604 ms, 2287 ms, and 2124 ms

respectively.

Table 2 and Fig. 4 illustrate the response time analysis

of the EERS-CEPO approach with recent methods under

different iterations. The outcomes showcased that the

EERS-CEPO approach has accomplished effective results

with least response time under all iterations. For instance,

with 25 iterations, the EERS-CEPO manner has accessible

a reduced response time of 1867 ms whereas the CCS,

ICSA, and CSRSA techniques have obtained a raised

response time of 2503 ms, 2564 ms, and 2121 ms corre-

spondingly. In line with, 75 iterations, the EERS-CEPO

manner has provided a lesser response time of 1236 ms

whereas the CCS, ICSA, and CSRSA algorithms have

attained a superior response time of 1979 ms, 2025 ms, and

1419 ms respectively. Meanwhile, with 175 iterations, the

EERS-CEPO method has reached a minimum response

time of 641 ms whereas the CCS, ICSA, and CSRSA

manners have resulted in an improved response time of

962 ms, 839 ms, and 753 ms respectively. Eventually, with

250 iterations, the EERS-CEPO technique has outper-

formed a minimal response time of 654 ms whereas the

CCS, ICSA, and CSRSA techniques have portrayed an

increased response time of 845 ms, 824 ms, and 789 ms

correspondingly.

Table 3 and Fig. 5 illustrate the execution time analysis

of the EERS-CEPO method with state-of-art techniques

under distinct tasks. The results portrayed that the EERS-

CEPO manner has accomplished effective outcomes with

least execution time under all tasks. For sample, with 50Table 1 Response time analysis of EERS-CEPO technique

Response time (ms)

Number of tasks CCS ICSA CSRSA EERS-CEPO

50 249 241 287 236

100 466 357 520 264

150 745 628 915 458

200 969 807 1031 597

250 1147 977 1117 799

300 1341 1155 1194 977

350 1535 1364 1310 1101

400 1713 1558 1457 1264

450 1930 1736 1651 1403

500 2139 1938 1767 1543

550 2380 2178 1992 1744

600 2604 2287 2124 1860

Fig. 3 Response time analysis of EERS-CEPO model with different

tasks

Table 2 Response time analysis of EERS-CEPO technique

Response time (ms)

Number of iterations CCS ICSA CSRSA EERS-CEPO

25 2503 2564 2121 1867

50 2198 2187 1816 1608

75 1979 2025 1419 1236

100 1653 1608 1104 951

125 1384 1323 763 672

150 1094 911 773 651

175 962 839 753 641

200 860 829 758 638

225 834 829 768 656

250 845 824 789 654
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tasks, the EERS-CEPO technique has offered a decreased

execution time of 1515 ms whereas the CCS, ICSA, and

CSRSA techniques have reached an increased execution

time of 2064 ms, 1782 ms, and 2001 ms correspondingly.

Also, with 200 tasks, the EERS-CEPO technique has given

a lower execution time of 3287 ms whereas the CCS,

ICSA, and CSRSA systems have attained a higher execu-

tion time of 3851 ms, 3678 ms, and 3537 ms respectively.

In the meantime, with 400 tasks, the EERS-CEPO method

has reached a decreased execution time of 4415 ms

whereas the CCS, ICSA, and CSRSA techniques have

resulted in an increased execution time of 5277 ms,

5105 ms, and 5011 ms respectively. Furthermore, with 600

tasks, the EERS-CEPO technique has displayed a mini-

mum execution time of 5403 ms whereas the CCS, ICSA,

and CSRSA methodologies have outperformed a higher

execution time of 6547 ms, 6328 ms, and 5936 ms

correspondingly.

Table 4 and Fig. 6 depicts the energy consumption

analysis of the EERS-CEPO technique with recent algo-

rithms under different t cycle. The results portrayed that the

EERS-CEPO technique has accomplished effective out-

comes with least energy consumption under all cycles. For

instance, with 1 cycle, the EERS-CEPO technique has

offered a decreased energy consumption of 1.76 KWh

whereas the CCS, ICSA, and CSRSA manners have

attained an increased energy consumption of 2.32 KWh,

2.21 KWh, and 1.92 KWh correspondingly. Likewise, with

3 cycles, the EERS-CEPO manner has given a lesser

energy consumption of 1.79 KWh whereas the CCS, ICSA,

and CSRSA algorithms have attained a higher energy

consumption of 2.51 KWh, 2.58 KWh, and 1.95 KWh

correspondingly. Followed by, with 5 cycles, the EERS-

CEPO technique has gained a minimal energy consumption

of 1.59 KWh whereas the CCS, ICSA, and CSRSA

approaches have resulted in improved energy consumption

Fig. 4 Response time analysis of EERS-CEPO model with different

iterations

Table 3 Execution time analysis of EERS-CEPO technique

Execution time (ms)

Number of tasks CCS ICSA CSRSA EERS-CEPO

50 2064 1782 2001 1515

100 2628 2377 2801 2205

150 3255 3114 3067 2738

200 3851 3678 3537 3287

250 4274 4305 3867 3631

300 4650 4870 4400 3929

350 4901 4885 4650 4180

400 5277 5105 5011 4415

450 5607 5403 5168 4682

500 5826 5654 5418 4964

550 6124 5967 5622 5121

600 6547 6328 5936 5403

Fig. 5 Execution time analysis of EERS-CEPO model with different

tasks

Table 4 Energy consumption analysis of EERS-CEPO technique

Energy consumption (KWh)

Scheduling cycle CCS ICSA CSRSA EERS-CEPO

1 2.32 2.21 1.92 1.76

2 1.94 2.00 1.75 1.62

3 2.51 2.58 1.95 1.79

4 2.23 2.16 2.25 1.97

5 1.88 1.90 1.74 1.59

6 2.67 2.78 2.51 2.32

7 1.89 1.88 1.82 1.69

8 2.91 2.74 2.58 2.45
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of 1.88 KWh, 1.90 KWh, and 1.74 KWh respectively.

Eventually, with 8 cycles, the EERS-CEPO technique has

exhibited a minimum energy consumption of 2.45 KWh

whereas the CCS, ICSA, and CSRSA techniques have

outperformed a superior energy consumption of 2.91 KWh,

2.74 KWh, and 2.58 KWh correspondingly.

Table 5 and Fig. 7 showcases the average energy con-

sumption (AEC) analysis of the EERS-CEPO manner with

existing approaches under varying tasks. The results

showcased that the EERS-CEPO technique has accom-

plished effective outcomes with least AEC under all tasks.

For instance, with 50 tasks, the EERS-CEPO manner has

presented a minimum AEC of 1.53 kJ whereas the CCS,

ICSA, and CSRSA techniques have achieved a maximum

AEC of 2.04 kJ, 1.85 kJ, and 1.85 kJ respectively. Simi-

larly, with 200 tasks, the EERS-CEPO technique has pro-

vided a lower AEC of 2.89 kJ whereas the CCS, ICSA, and

CSRSA approaches have attained a higher AEC of 3.61 kJ,

3.42 kJ, and 3.22 kJ respectively. Meanwhile, with 400

tasks, the EERS-CEPO system has reached a lower AEC of

5.08 kJ whereas the CCS, ICSA, and CSRSA techniques

have resulted in an increased AEC of 6.93 kJ, 6.65 kJ, and

5.59 kJ correspondingly. Also, with 600 tasks, the EERS-

CEPO manner has exhibited a minimum AEC of 7.69 kJ

whereas the CCS, ICSA, and CSRSA algorithms have

demonstrated a maximum AEC of 9.88 kJ, 9.49 kJ, and

8.57 kJ respectively.

Table 6 and Fig. 8 portray the average executive power

(AEP) analysis of the EERS-CEPO method with existing

techniques under distinct tasks. The results portrayed that

the EERS-CEPO technique has accomplished effective

outcomes with least AEP under all tasks. For instance, with

50 tasks, the EERS-CEPO technique has offered a reduced

AEP of 1231 W whereas the CCS, ICSA, and CSRSA

techniques have obtained a raised AEP of 1553 W,

1400 W, and 1676 W respectively.

Similarly, with 200 tasks, the EERS-CEPO technique

has provided a lower AEP of 1998 W whereas the CCS,

ICSA, and CSRSA techniques have obtained an increased

AEP of 2366 W, 2244 W, and 2213 W respectively. At the

same time, with 400 tasks, the EERS-CEPO manner has

reached a lower AEP of 3348 W whereas the CCS, ICSA,

and CSRSA algorithms have resulted in an increased AEP

of 3916 W, 3839 W, and 3655 W respectively.

Finally, with 600 tasks, the EERS-CEPO methodology

has exhibited a minimal AEP of 4376 W whereas the CCS,

ICSA, and CSRSA methods have demonstrated a maximal

AEP of 6170 W, 5787 W, and 4729 W respectively. The

simulation results demonstrated that the EERS-CEPO

Fig. 6 Energy consumption analysis of EERS-CEPO model

Table 5 Average energy consumption analysis of EERS-CEPO

technique

Average energy consumption (kJ)

Number of tasks CCS ICSA CSRSA EERS-CEPO

50 2.04 1.85 1.85 1.53

100 2.55 2.45 2.39 1.95

150 3.03 2.94 2.75 2.45

200 3.61 3.42 3.22 2.89

250 4.23 4.09 3.82 3.49

300 4.92 4.74 4.44 4.07

350 5.89 5.75 5.02 4.65

400 6.93 6.65 5.59 5.08

450 7.88 7.46 6.31 5.80

500 8.73 8.41 6.95 6.54

550 8.91 8.68 7.88 7.07

600 9.88 9.49 8.57 7.69

Fig. 7 AEC analysis of EERS-CEPO model with different tasks
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technique has resulted in increased performance over the

recent state of art schedulers in the GCC environment. The

improved performance is due to the hybridization of EPO

algorithm with CA.

6 Conclusion

This study has designed a new EERS-CEPO algorithm to

reduce the energy utilization at the data centers of GCC.

The proposed model has effectually allotted the load

between distinct data centers or other resources and thereby

avoiding overload of individual resources. The CEPO

algorithm is designed by the integration of the EPO algo-

rithm with the CA. The EERS-CEPO algorithm has derived

a fitness function to optimally schedule the resources in

data centers, thereby minimize the operational cost, energy

utilization, heat generation, and maintenance cost of the

GCC. An extensive simulation analysis is carried out to

ensure the betterment of the EERS-CEPO algorithm. The

simulation results demonstrated that the EERS-CEPO

technique has resulted in increased performance over the

recent state of art schedulers in the GCC environment. In

future, VM migration techniques and fault tolerant

approaches can be designed to maximize the efficiency of

the GCC.
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