Skip to main content

Advertisement

Log in

Energy efficient offloading mechanism using particle swarm optimization in 5G enabled edge nodes

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Today’s world naturally depends on wireless devices for the daily necessities like communication, smart car driving, smart medical check up, smart housing security, etc. These applications create huge amount of data to be processed across the edge and cloud devices. Mobile or wireless devices can efficiently handle the input data with practical limitations on computing capacity. These limitations are otherwise difficult to handle and could be overcame by using mobile edge computing technology. When computing tasks depend upon edge devices to store and process data, it tends to offload in available edge nodes. Advanced smart applications use 5G networks to process the data in edge nodes with central units or distributed cloud units. Our research problem is focused on 5G data offloading by saving the energy over time. It mainly works on selecting appropriate edge nodes with minimum cost and energy for 5G data offloading process. Balancing the load at every edge node became a crucial task in advanced 5G networks. High-class networks have more density which tends to increase the energy consumption appropriately. In our proposed work, energy efficient offloading is done with mobile edge computing (MEC), macro base stations, small base stations to compute the data with less energy. The process of selecting minimum energy devices in edge network is done using particle swarm optimization (PSO) algorithm. This proposed offloading scheme helps to process data in 5G networks very effectively. The workload energy of the 5G network at IoT and MEC is preserved by using the multi-level offloading mechanism. Further complexity of the system is optimized with energy optimization algorithm called PSO to reduce the execution time and energy. Results have shown that for the set of 500 tasks, mobile edge server consumes 11 J, while the core cloud consumes 15 J of energy per task execution. Mobile edge computing consumes less energy than cloud and mobile devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu, H., Zhang, Z., Guan, C., Wolter, K., Xu, M.: Collaborate edge and cloud computing with distributed deep learning for smart city internet of things. IEEE Internet Things J. 7(9), 8099–8110 (2020). https://doi.org/10.1109/JIOT.2020.2996784

    Article  Google Scholar 

  2. Xiao, M.B., Shroff, N.B., Chong, E.K.P.: A utility-based power-control scheme in wireless cellular systems. IEEE/ACM Trans. Netw. 11, 210–221 (2003)

    Article  Google Scholar 

  3. Hao, Y., Chen, M., Hu, L., Hossain, M.S., Ghoneim, A.: Energy efficient task caching and offloading for mobile edge computing. IEEE Access 6, 11365–11373 (2018)

    Article  Google Scholar 

  4. Xue, J., Wang, Z., Zhang, Y., Wang, L.: Task allocation optimization scheme based on queuing theory for mobile edge computing in 5G heterogeneous networks. Hindawi Mob. Inf. Syst. 2020, 12 (2020). https://doi.org/10.1155/2020/1501403

    Article  Google Scholar 

  5. Eberhart, R., Kennedy, J.: Particle swarm optimization. Proc. IEEE Int. Conf. Neural Netw. 4, 1942–1948 (1995)

    Article  Google Scholar 

  6. Sharkawy, R., Ibrahim, K., Salama, M.M.A., Bartnikas, R.: Particle swarm optimization feature selection for the classification of conducting particles in transformer oil. IEEE Trans. Dielectr. Electr. Insul. 18(6), 1897–1907 (2011)

    Article  Google Scholar 

  7. Jiang, J., Zhang, X., Li, S.: A task offloading method with edge for 5G-envisioned cyber-physical-social systems. Hindawi Secur. Commun. Netw. 2020, 9 (2020). https://doi.org/10.1155/2020/8867094

    Article  Google Scholar 

  8. Zhang, Y., Wang, K., He, Q., Chen, F., Deng, S., Zheng, Z., Yang, Y.: Covering-based web service quality prediction via neighborhood-aware matrix factorization. IEEE Trans. Serv. Comput. (2019). https://doi.org/10.1109/TSC.2019.2891517

    Article  Google Scholar 

  9. Chen, M., Hao, Y.: Task offloading for mobile edge computing in software defined ultra-dense network. IEEE J. Sel. Areas Commun. 36(3), 587–597 (2018)

    Article  MathSciNet  Google Scholar 

  10. Huang, J., Zhang, C., Zhang, J.: A multi-queue approach of energy efficient task scheduling for sensor hubs. Chin. J. Electron. 29, 242 (2020)

    Article  Google Scholar 

  11. Zhou, Y., Fadlullah, Z.M., Mao, B., Kato, N.: A deep-learning-based radio resource assignment technique for 5G ultra dense networks. IEEE Netw. 32(6), 28–34 (2018)

    Article  Google Scholar 

  12. Z. Liu, X. Chen, Y. Chen, and Z. Li, Deep reinforcement learning based dynamic resource allocation in 5G ultra-dense networks. In: Proceedings of IEEE International Conference on Smart Internet of Things (SmartIoT), Tianjin, China, Aug 2019. pp. 168–174

  13. L. Liu, Y. Zhou, L. Tian, B. Sun, and J. Shi, Interference aware CoMPfor macrocell-based heterogeneous ultra dense cellular networks. In Proceedings of IEEE International Conference on Communications (ICC), Kansas City, MO, USA. May 2018, pp. 1–6.

  14. N. Sapountzis, T. Spyropoulos, N. Nikaein, and U. Salim, Joint optimization of user association and dynamic TDD for ultra-dense networks. In: Proceedings of IEEE Conference on Computer Communications (INFOCOM), Honolulu, HI, USA. Apr. 2018. pp. 2681–2689.

  15. Qiu, T., Li, B., Qu, W., Ahmed, E., Wang, X.: TOSG: a topology optimization scheme with global small world for industrial heterogeneous internet of things. IEEE Trans. Ind. Inform. 15(6), 3174–3184 (2019)

    Article  Google Scholar 

  16. Zhang, Y., Cui, G., Deng, S., Chen, F., Wang, Y., He, Q.: Efficient query of quality correlation for service composition. IEEE Trans. Serv. Comput. (2021). https://doi.org/10.1109/TSC.2018.2830773

    Article  Google Scholar 

  17. Wang, Y., Liu, H., Zheng, W., Xia, Y., Li, Y., Chen, P., Guo, K., Xie, H.: Multi-objective workflow scheduling with deep-q-network-based multi-agent reinforcement learning. IEEE Access 7, 39974–39982 (2019)

    Article  Google Scholar 

  18. Qiu, T., Liu, J., Si, W., Wu, D.O.: Robustness optimization scheme with multi-population co-evolution for scale-free wireless sensor networks. IEEE/ACM Trans. Netw. 27(3), 1028–1042 (2019)

    Article  Google Scholar 

  19. You, C., Huang, K., Chae, H., Kim, B.-H.: Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Trans. Wirel. Commun. 16(3), 1397–1411 (2017)

    Article  Google Scholar 

  20. Yang, L., Zhang, H., Li, M., Guo, J., Ji, H.: Mobile edge computing empowered energy efficient task offloading in 5G. IEEE Trans. Veh. Technol. 67(7), 6398–6409 (2018)

    Article  Google Scholar 

  21. Sun, H., Zhou, F., Hu, R.Q.: Joint offloading and computation energy efficiency maximization in a mobile edge computing system. IEEE Trans. Veh. Technol. 68(3), 3052–3056 (2019)

    Google Scholar 

  22. S. Xu, R. Li, and Q. Yang, Improved genetic algorithm based intelligent resource allocation in 5G Ultra Dense networks. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, Apr. 2018, pp. 1–6.

  23. Liu, L., Zhou, Y., Garcia, V., Tian, L., Shi, J.L.: Load aware joint CoMP clustering and inter-cell resource scheduling in heterogeneous ultradense cellular networks. IEEE Trans. Veh. Technol. 67(3), 2741–2755 (2018)

    Article  Google Scholar 

  24. H. Zhang, M. Min, L. Xiao, S. Liu, P. Cheng, and M. Peng, Reinforcement learning-based interference control for ultra-dense small cells. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, UAE, Dec. 2018. pp. 1–6.

  25. Raja, G., Ganapathisubramaniyan, A., Anbalagan, S., Baskaran, S.B.M., Raja, K., Bashir, A.K.: Intelligent reward based data offloading in next generation vehicular networks. IEEE Internet Things J. 7, 3747 (2020)

    Article  Google Scholar 

  26. B. Gu, Z. Zhou, S. Mumtaz, V. Frascolla, and A. K. Bashir. Context-aware task offloading for multi-access edge computing: matching with externalities. In: IEEE Globecom. 2018.

  27. Morgan, G., Srivastava, G., Muthu, B.A., Baskar, S., Shakeel, P.M., Hsu, C.H., Bashir, A.K., Kumar, P.M.: A response-aware traffic offloading scheme using regression machine learning for user-centric large-scale internet of things. IEEE Internet Things J. 8(5), 3360–3368 (2021)

    Article  Google Scholar 

  28. Mao, Y., Zhang, J., Chen, Z., Letaief, K.B.: Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE J. Sel. Areas Commun. 34(12), 3590–3605 (2016)

    Article  Google Scholar 

  29. Guo, H., Liu, J., Zhang, J.: Computation offloading for multi-accessmobile edge computing in ultra-dense networks. IEEE Commun. Mag. 56(8), 14–19 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nebojsa Bacanin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacanin, N., Antonijevic, M., Bezdan, T. et al. Energy efficient offloading mechanism using particle swarm optimization in 5G enabled edge nodes. Cluster Comput 26, 587–598 (2023). https://doi.org/10.1007/s10586-022-03609-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03609-z

Keywords

Navigation