
Design and Implementation of Dynamic I/O Control Scheme for Large
Scale Distributed File Systems
Sunggon Kima,∗, Alex Simb, Kesheng Wub, Suren Bynab and Yongseok Sonc
aSeoul National University of Science and Technology
bLawrence Berkeley National Laboratory
cChung-Ang university

ART ICLE INFO
Keywords:
High-performance computing; Distributed
dynamic resourcemanagement; Autonomous
control;Parallel andDistributed File Sys-
tem; Cloud System

ABSTRACT
In this work, we have analyzed the input/output (I/O) activities of Cori, which is a high-performance
computing (HPC) system at the National Energy Research Scientific Computing Center (NERSC) at
Lawrence Berkeley National Laboratory. Our analysis results indicate that most users do not adjust
storage configurations but rather use the default settings. In addition, owing to the interference from
many applications running simultaneously, the performance varies based on the system status. To
configure file systems autonomously in complex environments, we developed DCA-IO, a dynamic
distributed file system configuration adjustment algorithm that utilizes the system log information to
adjust storage configurations automatically. Our scheme aims to improve the application performance
and avoid interference from other applications without user intervention. Moreover, DCA-IO uses the
existing system logs and does not require code modifications, an additional library, or user interven-
tion. To demonstrate the effectiveness of DCA-IO, we performed experiments using I/O kernels of
real applications in both an isolated small-sized Lustre environment and Cori. Our experimental re-
sults shows that our scheme can improve the performance of HPC applications by up to 263% with
the default Lustre configuration.

1. Introduction
High-performance computing (HPC) is beingwidely adopted

owing to the increasing demand for large-scale computa-
tion and big data [28, 36, 23]. HPC applications have many
different characteristics compared to traditional applications
because they utilize a large amount of computational power.
Moreover, HPC applications often produce a significantly
greater volume of data than traditional applications do [4, 19,
29]. Therefore, manyHPC applications perform checkpoint-
ing, which stores intermediate data to protect them from un-
expected power outages or scheduling. Because applica-
tions wait for the completion of I/O before performing fur-
ther computations, the performance of the application is strongly
related to the I/O performance. Thus, it is becoming increas-
ingly important to enhance the I/O performance to improve
the overall utilization of HPC systems.

Because the HPC environment storage architecture is in-
herently different from traditional architecture, careful con-
siderations must be made to efficiently exploit the I/O per-
formance. For example, instead of local file systems, such
as EXT4 [25] and XFS [35], parallel and distributed file sys-
tems, such as Lustre [30] and Ceph [38], are widely used in
many HPC environments to achieve high performance, relia-
bility, and scalability. Many systems provide various config-
uration options to allow users to specify the number of nodes
to place data (stripe count) and the size of the data chunk to
be placed in each node (stripe size) to parallelly utilize mul-
tiple nodes of distributed file systems. To fully exploit the

sunggonkim@seoultech.ac.kr (S. Kim); asim@lbl.gov (A. Sim);
kwu@lbl.gov (K. Wu); sbyna@lbl.gov (S. Byna); sysganda@cau.ac.kr (Y.
Son)

ORCID(s):

I/O performance of parallel and distributed file systems, it
is crucial to analyze the I/O behavior of the application and
adjust the configurations accordingly.

In addition, the parallel and distributed file system is
shared by many applications, and its performance is affected
by interference from other applications. As many users si-
multaneously access the file system, it is crucial to provide
stable performance when multiple applications simultane-
ously perform I/O operations. Thus, many parallel and dis-
tributed file systems allow users to control which storage
node is to be utilized (starting offset). To fully exploit the
file system, it is important to consider the storage nodes ac-
cessed by other applications and adjust the configurations to
avoid I/O contention on the nodes.

In previous studies, researchers have attempted to im-
prove the I/O performance of applications by understanding
their I/O behaviors and adjusting the distributed file system
configurations. Yu et al. [40] characterized the I/O patterns
from the applications and proposed optimal Lustre configu-
rations depending on the characteristics determined from the
experiment results. You et al. [39] proposed an auto-tuning
framework that models the application and runs the model in
a separate system with multiple configurations to determine
the optimal configuration. Lofstead et al. [20] measured the
extent of interference caused by multiple simultaneous ap-
plications and designed an adaptive algorithm that balances
the I/O workloads generated from HPC applications. Dorier
et al. [11] categorized strategies to avoid interference and de-
veloped a framework that alleviates I/O interference by dy-
namically selecting appropriate policies. Our study is in line
with these studies in finding the optimal configuration and
minimizing interference by adjusting the configurations.

In this article, we first present the result of analyzing

Kim et al.: Preprint submitted to Elsevier Page 1 of 14

Dynamic I/O Control Schemes

the I/O activities in Cori, which is an HPC environment,
at the National Energy Research Scientific Computing Cen-
ter (NERSC) at Lawrence Berkley National Laboratory. Al-
though many previous investigations [4, 15] have reported
that the use of the optimal configuration can significantly im-
prove the application performance, the result of our analysis
verifies that a vast majority of users use the default configu-
ration. In our previous work [17], we focused on the analysis
of file system configurations and their effects on the appli-
cation performance. This article further investigates the per-
formance variation when an identical configuration is used.
Based on the analysis, in a distributed system, limited stor-
age resource is shared by multiple applications. Thus, it is
important to consider the effects of interference between ap-
plications, and careful considerations are required to fully
exploit the file system.

To improve the I/O performance of applications and over-
all storage utilization, we developed DCA-IO, an algorithm
that dynamically configures the Lustre file system. When
a new application is submitted and no information on I/O
behavior on the submitted application is available, DCA-IO
uses statistical analyses of other applications that previously
ran on the HPC system to minimize the modeling and train-
ing overhead. By analyzing the history of applications in
the same environment, DCA-IO can adjust the configura-
tion without knowing the specific I/O behavior of the sub-
mitted application. After the application is executed and
the information is available, DCA-IO utilizes the informa-
tion from the previous executions and optimizes the con-
figurations using a set of rules. Finally, DCA-IO contin-
ues to improve the distributed file system configurations dy-
namically as the application recurs multiple times. In addi-
tion to the application-specific configuration schemes from
the state-of-art scheme [27], DCA-IO adjusts the configu-
ration to minimize interference between multiple applica-
tions. This can not only reduce interference but also improve
the overall I/O performance and efficiency in the large dis-
tributed systemwhere multiple applications with diverse I/O
characteristics are executed. Our experimental results with
real HPC applications demonstrate that the use of the pro-
posed algorithm can lead to improvements in the I/O perfor-
mance of the applications by up to 75% in an isolated envi-
ronment and 50% in Cori, and in the case of simultaneous
execution, the performance can be improved by up to 263%
compared with the default configuration.

The remainder of this article is organized as follows: Sec-
tion 2 describes the background and motivation of the study,
and Section 3 discusses the analysis results. Section 4 presents
the design and implementation of DCA-IO, and Section 5
shows the experimental results. Section 6 discusses related
works, and Section 7 concludes the article.

Thank you for your valuable comment. We agree that the
application name can be inconclusive to determine the I/O
behavior of an application. However, inspecting the input
data or the code can induce a large overhead. Since our goal
is to design a lightweight I/O control scheme, we used the
application name. To accommodate the comment, we added

MDT0 MDT1 OST0 OST1

…

…Client

MDS OSS

…

High Speed Network

Figure 1: Architecture of Lustre file system.

an explanation of why we used the application name in the
design section.

2. Background
2.1. Lustre File System

Lustre file system [30] is a parallel and distributed file
system used inmanyHPC environments includingCori. Fig-
ure 1 illustrates the overall architecture of Lustre file system,
which consists of two main servers.

• Metadata server (MDS) stores and provides the meta-
data of the file system such as the file names, permis-
sion information, and directories. Each MDS consists
of one or more metadata targets (MDTs) which are
disks used to store actual data.

• Object storage server (OSS) stores file data on one or
more object storage targets (OSTs). The maximum
throughput and maximum capacity of OSS are calcu-
ated using the sum of maximum throughput and max-
imum capacity of each OST, respectively.

When a client creates and writes a new file, the file can
be distributed over multiple OSSs with differently sized file
chunks, which can be configured using stripeCount and stripe-
Size parameters. These configurations are only affecting file
layout of the specific directory and does not affect other di-
rectory utilized by other applications. By adjusting stripeCount,
the client can improve the parallelism becausemultipleOSSs
can be used in parallel. By adjusting stripeSize, the data
from a particular process can be stored in a contiguous space.
The performance of applications can be improved by sev-
eral orders of magnitude with ideal stripeCount and stripe-
Size [39].

The files created by multiple clients are distributed over
OSSs. OSSs for storing data can be selected by configuring
startingOffset. By adjusting startingOffset, Lustre file sys-
tem writes the data consecutively from the starting OSS. In
the HPC environment, configuring startingOffset can mit-
igate the interference caused by multiple applications be-
cause assigning different sets of OSSs can isolate the per-
formance of the applications.

By default, Lustre file system selects OSSs and allocates
data objects to OSSs using two algorithms [21].

• Round-robin allocator evenly distributes the data among
OSSs when they have similar amounts of free space.

Kim et al.: Preprint submitted to Elsevier Page 2 of 14

Dynamic I/O Control Schemes

• Weighted allocator changes the OSS order by check-
ing the available capacities of OSSs.

The allocation methods are selected alternatively to bal-
ance the capacities of OSSs. This is done to load balance
multiple OSSs in the file system. However, these algorithms
do not necessarily deliver the best performance in all cases
because the applications have different configurations and
the algorithms are optimized for capacity management. To
improve the performance of the complex HPC file system, it
is important to analyze the system and understand the char-
acteristics of the applications.
2.2. Analyzing and Optimizing I/O Performance

in HPC Environment
To analyze the application behavior, many previous stud-

ies have proposed system wide tools for understanding ap-
plication behavior in the HPC environment [9, 31]. Regard-
ing I/O, Darshan I/O characterization tool, developed by Ar-
gonne National Laboratory is widely used in many HPC en-
vironments [8]. Darshan is widely used in complex HPC
systems as it is scalable to thousands of cores. In addition,
it is designed with full time deployment in mind as it is light
weight. Thus, Cori collects darshan logs for all the applica-
tions by default which allows system administrators to de-
tect anomaly in I/O performance after critical events such as
software and hardware upgrade.

When the application is compiled, Darshan inserts codes
that interceptMPI_Init() to initialize Darshan data structures
andMPI_Finalize() to terminate the Darshan process. When
the application runs, Darshan captures I/O related function
calls from the HPC applications on a per-file and per-process
basis in a light-weight manner. After the application termi-
nates, it aggregates the collected information and writes it in
a file format. Because Darshan has negligible overhead and
captures the complete record of the I/O function calls, it has
been used in many previous studies to understand I/O be-
havior and create an application-specific model [8, 34]. For
example, Patel et al [29] used darshan logs of large scale sys-
tem and analyzed access pattern in terms of file usage. While
there are other system resources such as network and mem-
ory usage, Cori currently does not support them as default
as they are complex to monitor and induce large overhead.
Thus, in this paper, we focus on the I/O performance in the
system.

3. Analysis
In this section, we explain the methodology used to col-

lect information from the existing Darshan logs of Cori and
present the analysis results.
3.1. Collecting Darshan Logs

To determine the I/O activities of the HPC applications
and Lustre file system configuration used by the user, we
have analyzed Darshan logs from Cori over twomonths (Oc-
tober to November 2017). In Cori, Darshan is configured as
the default I/O characterization tool, and Darshan logs are

exe: ./physics1 /mnt/lustre/test01.h5 80
#jobid: 21179
#nprocs: 1

#POSIX module data
<module> <rank> … <file name> …
 POSIX 0 … /mnt/lustre/test01.h5
total_POSIX_WRITES: 1341
total_POSIX_BYTES_WRITTEN: 13413453
total_POSIX_SIZE_WRITE_100_1K: 101
total_POSIX_SIZE_WRITE_1K_10K: 9933434
total_POSIX_SEQ_WRITES: 1341

#MPIIO module data
.
.
.

progName userID jobID numProc numOST stripeSize seqWrite (%) requestMore1M (%)

physics1 user1 21179 1 4 1048576 100 74.3

physics1 user5 21230 8 4 1048576 100 74.3

biology1 user3 24321 16 1 1048576 35.5 43.1

biology2 user3 26341 8 16 8388608 91.1 99.8

physics1 user2 29031 64 2 8388608 84.2 34.1

physics2 user4 30231 2 1 1048576 32.1 100

Darshan log files

darshan-parser

user1_physics1_id_21179_11-7.all

Extract Information

Integrated database
(SQLite)

Figure 2: Overview of the creation of an integrated database
from Darshan logs.

Table 1
Information extracted from Darshan logs.

Name Description
ProgName Name of the program
UserName Name of the user
RunTime Duration of the application
NumProcs Number of processes
StripeCount Number of OSTs used by the application
StripeSize Amount of data written to an OSS per

request
NumFile Number of files used by the application
SeqIOPct Percentage of sequential read/write re-

quests
IOLess1K Number of read/write requests less than

1K
IO1Kto100K Number of read/write requests less than

100K
IOReadRequest Number of read requests
IOWriteRequest Number of write requests
IOBytesTotal Total bytes read/written by the applica-

tion
IOTimeTotal Total read/write time used by the appli-

cation
IOThroughputTotalTotal read/write throughput of the appli-

cation

stored automatically after each application execution [33].
Because the logs are stored in a raw file format, logs must
undergo a few transformations, as illustrated in Figure 2.

Darshan logs first must be transformed into a human-
readable text format using the Darshan-parser utility [32].
After the transformation, the text file contains information,
such as the program name, arguments, number of processes,
and I/O activities for each I/O module (POSIX, MPIIO, and
STDIO). Because this information is in a particular file for-
mat, it can be difficult to find the overall tendency of the
applications.

To determine the overall I/O activities of the applica-
tions, we implemented a parser that extracts key information
from the parsed Darshan text files and builds an integrated

Kim et al.: Preprint submitted to Elsevier Page 3 of 14

Dynamic I/O Control Schemes

Table 2
Result of analyzing stripe count.

StripeCount Number of Executions Percentage
1 1,275,869 99.317%
2 39 0.003%
3-4 62 0.005%
5-8 269 0.021%
9-16 6,850 0.533%
17-32 443 0.034%
33-64 374 0.029%
64-128 450 0.035%
129-256 287 0.022%
Total 1284643 100%

database. For the database engine, we selected SQLite [14]
because it is lightweight, easy to use, and supports portabil-
ity. By creating an integrated database, users can perform
queries on various pieces of key information to determine
the overall tendency of applications in the context of the en-
tire HPC environment rather than for each application.

Table 1 lists the information extracted from Darshan log
and inserted into the integrated database. While other in-
formation can be directly retrieved from the Darshan log,
StripeCount (number of OSTs used by the application), IO-
TimeTotal (total I/O time), and IOThroughputTotal (aggre-
gated throughput of I/O modules) must be computed. We
used the following methods to compute that information.

• StripeCount: When Darshan collects I/O informa-
tion, it checks whether the application uses Lustre file
system and is compiled with the Lustre module en-
abled [33]. If the Lustre module is enabled, Darshan
records LUSTRE_OST_ID,which is theOST_ID used
in that specific I/O function call. While extracting the
information, we track the number of OSTs involved in
I/O during the application run and record the informa-
tion in the integrated database.

• IOTimeTotal and IOThroughputTotal: BecauseDar-
shan collects the I/O duration based on the function
call, many previous studies have used different approaches
when calculating the total I/O time of an application.
Wang et al. [37] calculated the I/O time by measuring
the critical section because when an application uses
the MPIIO module, many concurrent I/O processes
can perform the I/O functions in parallel; thus, aggre-
gating the duration of all I/O functions can be inaccu-
rate. In this study, we use the approach used by Luu
et al. [24], which measures the I/O time per process
and uses the longest I/O time of all the processes. Us-
ing IOTimeTotal, we calculated I/OThroughputTotal,
which is IOBytesTotal divided by IOTimeTotal.

3.2. Analysis of Darshan Logs
With the integrated database described in the previous

section, we analyzed Lustre file system configuration used
by users in the HPC environment. Tables 2 and 3 present the

Table 3
Result of analyzing stripe size.

StripeSize (Byte) Number of Executions Percentage
1,048,576 1,283,980 99.948%
4,194,304 1 0.000%
8,388,608 480 0.037%
16,777,216 162 0.013%
33,554,432 6 0.000%
50,331,648 4 0.000%
67,108,864 9 0.001%
100,663,296 1 0.000%

Total 1,284,643 100%

analysis results for stripe count and stripe size, respectively.
As presented in both tables, we discovered that most users do
not adjust Lustre file system configuration but instead use the
default configuration. Table 2 indicates that 99.317% of ex-
ecutions use the default stripe count, which is 1 OST, while
256 OSTs are available in Cori. Similar to stripe count, Ta-
ble 3 indicates that 99.948% of executions use the default
stripe size, which is 1,048,576 (1 Megabyte). This analysis
reveals that even in the HPC environment where users can
exploit significantly more OSTs than in traditional comput-
ing environments, users do not adjust Lustre file system con-
figuration. Thus, dynamic configuration control is necessary
to fully exploit the I/O capabilities of the HPC environment.

In addition, we also analyzed the number of unique ap-
plications among the 1,284,643 runs by querying the database
for distinct application names. The results indicate that only
1,163 unique applicationswere executed during a two-month
period. Because 1,284,643 executions occurred during that
period, it can be inferred that this small number of applica-
tions were executed multiple times. Thus, using the infor-
mation from previous executions, the performance of each
additional execution can improve the performance because
a high possibility that the application will run in the near
future.
3.3. Analysis of I/O Interference on Multiple

Applications
3.3.1. Cori

To analyze the I/O behaviors of the HPC environment
whenmultiple applications are running, we analyzed the data
from CORI. As a target application, we analyzed the IOR [6]
benchmark, which is a widely used HPC I/O benchmark. In
the system, the benchmark runs every day at the same time
to monitor any problems and analyze the file system.

Figure 3a shows the performance of the IOR benchmark
when multiple applications run simultaneously. The y-axis
represents the write throughput, whereas the x-axis repre-
sents the average write throughput of OSSs when the appli-
cation runs. To control the effect of different configurations,
the figure only depicts the executions with an identical user-
name, IOBytesTotal, SeqIOPct, and others. This suggests
that the application remains identical and only the file system
status changes. As shown in the figure, the write throughput
is different because the status of the file system is different
in each execution. The reason is that other applications also
perform I/O operations on the file system.

Kim et al.: Preprint submitted to Elsevier Page 4 of 14

Dynamic I/O Control Schemes

(a) Varying performance of IOR execu-
tion

(b) Heatmap of a high performing execution (c) Heatmap of a low performing execution
Figure 3: Performance of the IOR application in Cori.

0

400

800

1200

1 2 3 4 5 6

T
hr

ou
gh

pu
t

(M
B

/s
)

Different Runs

Figure 4: Performance of two FIO instances with a stripe count
of 2.

0

400

800

1200

1 2 3 4 5 6

T
hr

ou
gh

p
ut

 (
M

B
/s

)

Different Runs

StripeCount 1 StripeCount 2 StripeCount 4

Figure 5: Performance of two FIO instances with varying stripe
count.

To further analyze the effects of other applications, Fig-
ures 3b and 3c present the heatmap of OSSs when the I/O
performance of IOR is high and low, respectively. Each hor-
izontal line denotes an OSS. If the line is yellow, the OSS is
heavily utilized. As indicated in the figures, the OSS activity
is dominated by the I/O operations from the IOR. However,
when the performance is relatively low (Figure 3c), some
OSSs are used before the IOR is running. This is interfer-
ence from a prior application, which results in the degrada-
tion of the overall application performance.
3.3.2. Local Environment

To analyze the effect of interference in a more controlled
environment, we conducted another evaluation in a local en-
vironment. The environment had four OSSs, and each was
equippedwith two Samsung 850 pro solid-state drives (SSDs).
For the application, we used the FIO [16] benchmark, which

is a widely used I/O benchmark for a local environment.
Figure 4 shows the performance of the FIO benchmark

when two instances of FIO run simultaneously. The figure
presents the performance results of different executions to
demonstrate performance variations. Both FIO instances are
configured with stripe count of 2, utilizing two OSSs. As de-
picted in the figure, the performance of the application varies
significantly in different runs. In an optimal situation, each
instance takes a different pair of OSSs, and no overlapping
occurs. For example, the first instance of FIO utilizes OSSs
1 and 2, whereas the second instance of FIO utilizes OSSs 3
and 4. However, when two instances share one or two OSSs,
the performance is lower than 50% of that achieved in the
optimal situation because interference occurs when multiple
applications issue I/O operations to the same OSSs. Thus,
the analysis results indicate that the performance degrada-
tion is severe whenmultiple applications are executed simul-
taneously without considering interference.

To identify the effects of interference when it is unavoid-
able, we conducted another analysis with the FIO bench-
mark, as presented in Figure 5. In this case, the FIO instance
is configured with a stripe count of 4, and another FIO in-
stance is configured with stripe count of 1, 2, and 4. Thus,
all four OSSs are used continuously by the first FIO instance,
and the second FIO instance uses one, two, and four OSSs.
As shown in the figure, the performance is higher when inter-
ference occurs at all four OSSs, and the performance is lower
when the number of overlapped OSSs is lower. Because FIO
is an I/O intensive application, it is better to distribute the I/O
requests across multiple OSSs rather than force a few OSSs
to handle an overwhelming number of requests. However,
the performance of the application is significantly lower than
that of an isolated execution. This suggests that interference
from multiple applications can affect the overall I/O perfor-
mance in a shared parallel and distributed file system. Thus,
it is crucial to dynamically control the configuration of the
file system to reduce I/O interference.

4. Design and Implementation
In this section, we present the DCA-IO algorithm to con-

trol the Lustre file system configuration dynamically. DCA-

Kim et al.: Preprint submitted to Elsevier Page 5 of 14

Dynamic I/O Control Schemes

PROCEDURE 1 DCA-IO algorithm for initial execution.
1: New Application Request
2: /* check the number of processes */
3: currNumProcs = current number of processes
4: stripeCounts[]
5: stripeSizes[]
6: records[] = SELECT * FROM database WHERE numProcs == currNumProcs
7: for item in records
8: if record.stripeCount is Unique
9: stripeCounts.add(record.stripeCount)
10: if record.stripeSize is Unique
11: stripeSizes.add(record.stripeSize)
12:
13: stripeCount, stripesize = 0
14: for item in stripeCounts
15: tempThroughput = aveThroughputOfItem
16: if tempThroughput > stripeCount
17: stripeCount = item
18: for item in stripeSizes
19: tempThroughput = aveThroughputOfItem
20: if tempThroughput > stripeSize
21: stripeSize = item
22: lfs setstripe -c stripeCount -S stripeSize

1619.44 181.98 589.15 109.64

47355.228

112434.19

0

20000

40000

60000

80000

100000

120000

1 8 16 32 64 128
Stripe countA

ve
ra

ge
 I/

O
 th

ro
ug

hp
ut

(M
B

/s
)

Figure 6: Average I/O throughput per stripe count when the
number of processes is 1.

IO is divided into two parts: the application-specific config-
uration and interference optimization. As highlighted in the
analysis section, it is important to optimize the configura-
tion in terms of both application-specific behavior and inter-
ference to achieve optimal performance. The optimization
of the application-specific behavior is achieved by the initial
and recurring executions. In the initial execution, there is no
prior knowledge of the incoming application, and the system
must make a blind estimate without knowing the I/O behav-
ior of the application. In the recurring execution, entries in
the integrated database match the application name. Thus,
we can employ the Darshan log from previous executions
to optimize the configuration. While application name can
be inconclusive to determine the I/O characteristics of the
application, we use the I/O characteristics of previous exe-
cution with the identical name as inspecting input data or the
code can induce a large overhead. 1 The optimization of the
interference is comprised of single and multiple executions.
The single execution deals with a situation in which an ap-
plication is the only application that performs I/O operations
in a system, whereas multiple executions indicate that more
applications are already running and that interference may
occur.

1Note that application executions with identical names can have differ-
ent I/O behavior as the behavior can be impacted by input data, algorithms,
and more. However, DCA-IO assumes that executions will have similar I/O
behavior.

4.1. Application-specific Configuration
Adjustment

4.1.1. Initial Execution
In the case of the initial execution, there is no informa-

tion about the application because no Darshan log is avail-
able for the incoming application. Thus, it is impossible to
make an adjustment based on application behavior. Instead,
DCA-IO utilizes the number of processes because the user
already specifies the number of processes by requesting re-
sources. With the number of processes, DCA-IO uses ex-
isting Darshan logs of other applications in the same HPC
environment. Although it is not guaranteed that the existing
Darshan logs are related to the incoming application, DCA-
IO makes a statistical guess based on the existing Darshan
logs because they share the same hardware that is related to
application performance [4].

Procedure 1 presents a simplified algorithm for handling
a new application. When the application arrives, DCA-IO
first records the number of processes provided by the user
(line 3). Then, it uses the integrated database to select en-
tries that have the same number of processes as the incoming
application (line 6). Next, it extracts a unique stripe count
from the entries and calculates the average I/O throughput
per unique stripe count (lines 7-11). Finally, we set the stripe
count of the application as the stripe count of the highest av-
erage I/O throughput(lines 14-17). DCA-IO repeats an iden-
tical algorithm to adjust the stripe size (lines 18-21).

For example, when a process is requested by the new
incoming application, DCA-IO can refer to the entries that
used one process from the integrated database. Figure 6
presents the average I/O throughput per unique stripe count
from the integrated database. As illustrated in the figure,
the unique stripe counts according to the integrated database
are 1, 8, 16, 32, 64, and 128. Because the average I/O per-
formance is highest for stripe count of 128, the stripe count
will be set to 128. Thus, when no information on the in-
coming application exists, DCA-IO can make an educated
adjustment based on Darshan logs from other applications
that share identical hardware.
4.1.2. Recurring Execution

In the case of the recurring execution, Darshan logs with
identical application names exist, and the I/O behaviors of
the application can be utilized for the configuration adjust-
ment. DCA-IO optimizes the configuration when the I/O be-
havior is available in two phases: the rule-based and heuris-
tic phases.

Procedure 1 shows a simplified algorithm for handling
recurring execution. In the rule-based phase, DCA-IO opti-
mizes the configuration using the existing rules from many
previous studies [27, 10]. If the I/O behavior of the appli-
cation is file-per-process, where each file is used by a single
process, the number of processes that can access a single file
is one (lines 3-4). Thus, we first start with stripe count as 1
because using multiple stripe counts can increase the con-
tention between multiple processes and the communication
overhead. In the case of a single shared file, where multiple

Kim et al.: Preprint submitted to Elsevier Page 6 of 14

Dynamic I/O Control Schemes

PROCEDURE 2 DCA-IO algorithm for recurring execu-
tion.
1: Recurring Application Request
2: /* 2nd Execution - rule-based phase*/
3: if file-per-process
4: stripeCount = 1
5: if shared file
6: stripeCount = numIOProcs
7: stripeSize = 1M
8: lfs setstripe -c stripeCount -S stripeSize
9:
10: /* 3rd and more Executions - heuristic phase */
11: if IOthroughput > previousIOthroughput
12: stripeCount = previousStripeCount * 2
13: if stripeCount > maxAvailStripeCount
14: stripeCount = maxAvailStripeCount
15: else
16: stripeCount = previousStripeCount
17:
18: if stripeCount == previousStripeCount
19: if IOthroughput > previousIOthroughput
20: stripeSize = previousStripeSize * 2
21: else
22: stripeSize = previousStripeSize
23: lfs setstripe -c stripeCount -S stripeSize

processes can access shared files, we set stripe count as the
number of processes participating in I/O because multiple
processes can use a high stripe count (lines 5-6).

In both cases, DCA-IO sets the stripe size as 1M, which
is the smallest possible size and the default configuration in
Lustre file system for two reasons. First, Darshan does not
record the sizes of the application requests but the size in-
tervals to which the requests belong. Darshan classifies re-
quests according to the range of the request size and records
the number of requests that belong to each interval (e.g.,
1K to 100K). Without knowing the specific request sizes
of the application, using a large stripe size can create mis-
aligned stripes in a file, which can degrade performance sig-
nificantly [22, 18]. Second, Lustre suffers less from a small
stripe size than a large stripe size. According to previous
studies [22, 26], Lustre already aggregates small striped re-
quests until they match the stripe alignment that decreases
the overhead of using a small stripe size. Thus, rather than
starting from a large stripe size, DCA-IO sets the stripe size
as the minimum and gradually increases the size during the
heuristic phase.

In the heuristic phase, DCA-IO increases the stripe count
linearly until the performance decreases or the stripe count
reaches the maximum available number of OSTs in the sys-
tem (lines 11-16). The reasoning for this algorithm differs
for different access patterns. In the case of file-per-process,
the I/O performance of each file is bound to the maximum
performance of an OST because the stripe count is set to 1
during the rule-base phase. However, if the application gen-
erates a large amount of I/O rapidly, the maximum perfor-
mance of a single OST can be insufficient to handle the I/O
requests for a file. Thus, DCA-IO tests a larger stripe count
to determine whether a limited stripe count bounds the ap-
plication performance. In the case of shared-file, multiple
processes can access the same file concurrently. Thus, in-
creasing the stripe count beyond the number of processes
can mitigate the bottleneck.

In the case of stripe size, our proposed algorithm in-

PROCEDURE3DCA-IO algorithm for interference adjust-
ment.
1: stripeCount = Stripe Count from the previous procedure
2: stripeSize = Stripe Size from the previous procedure
3: startOffset, endOffset = 0
4: r = [] //Set of free OSSes
5: r.start = 0 //Start OSS
6: o //OSS with the lowest capacity
7:
8: /* 1st: Non-overlapping allocation */
9: iterate list of OSSs
10: if set of free OSSs r exists
11: startOffset = r.start
12: endOffset = startOffset + stripeCount
13: Update free flags for OSSs in r
14: lfs setstripe -c stripeCount -S stripeSize -i startOffset
15:
16: /* 2nd: Partial overlapping allocation */
17: iterate list of OSSs
18: if set of partially free OSSs r exists
19: startOffset = r.start
20: endOffset = startOffset + stripeCount
21: Update free flags for OSSs in r
22: lfs setstripe -c stripeCount -S stripeSize -i startOffset
23:
24: /* 3rd: Capacity based allocation */
25: iterate list of OSSs
26: find the OSS with the lowest capacity o
27: startOffset = index of o
28: endOffset = startOffset + stripeCount
29: lfs setstripe -c stripeCount -S stripeSize -i startOffset

creases the stripe size only if the stripe count is the same
as the previous run (lines 18-22). This isolates the effect of
the stripe size from the varying stripe counts. DCA-IO then
increases the stripe size until the performance decreases be-
cause the large stripe size can be beneficial to applications
that issue large-sized requests. Thus, by increasing both the
stripe count and stripe size, DCA-IO covers most of the con-
figuration spaces and dynamically improves the application
performance.
4.2. Interference Adjustment

When the existing Lustre file system allocates an OSS to
an application, the Lustre file system randomly chooses the
OSS as a starting OSS to handle the application requests. If
the application needs more than one OSS, Lustre file sys-
tem randomly chooses the starting OSS and then chooses
the following OSSs. For example, if there are four OSSs
in the system and the application needs three OSSes, Lustre
first randomly selects an OSS out of four OSSes as a start-
ing OSS. If the randomly chosen starting OSS is the second
OSS, the following OSSs are the third and fourth servers.

If a certain OSS is used intensively compared with other
OSSs, it can create both temporal and spatial imbalance among
OSSs [29]. When I/O requests from multiple applications
can be converged to a few OSSs, the performance of appli-
cations decreases due to the increased I/O time, resulting in
a temporal imbalance. When a single OSS can run out of
capacity and cannot to handle any new write requests, the
overall I/O parallelism of the system decreases, resulting in
spatial imbalance.

To solve the temporal and spatial imbalance, our pro-
posed scheme first searches for the OSSs that are free (tem-
poral imbalance). If all OSSs are being utilized by applica-
tions, our proposed scheme searches the OSSs with the low-

Kim et al.: Preprint submitted to Elsevier Page 7 of 14

Dynamic I/O Control Schemes

est capacity (spatial imbalance). Procedure 3 shows a sim-
plified algorithm for our proposed scheme. When an appli-
cation arrives, DCA-IO first determines the stripe count and
size using algorithms from Procedure 1 or Procedure 2 (lines
1-2). Then, with the optimal stripe count and size, DCA-
IO considers the interference and chooses one of three allo-
cation strategies: non-overlapping, partially overlapping, or
capacity-based allocations.

In the non-overlapping allocation, DCA-IO first attempts
to examine whether a set of free OSSs (r) can be assigned to
the application (line 7). DCA-IO iterates the list of OSSs to
obtain a consecutive set of OSSs large enough to accommo-
date the requested number of OSSs. If a set of free OSSs
meets the conditions, we retrieve the OSS range and calcu-
late the end offset by adding the stripe count of the applica-
tion and the starting offset of the free OSSs (lines 8-9). Then,
DCA-IO marks free flags of selected OSSs as not free (line
10). Finally, the proposed scheme sets the stripe count, size,
and starting offset for the application (line 11). Thus, the
proposed scheme can choose a set of OSSs that are not used
by any application, and the I/O request from the application
is not interfered by other applications. If no such range is
found, DCA-IO proceeds to the second phase, which is par-
tial overlapping.

If DCA-IO cannot find a set of OSSs that are free, it at-
tempts to find a set of partially free OSSs and distributes
the I/O requests to OSSs. To this end, DCA-IO iterates the
list of OSSs and identifies a set of OSSs that has the largest
number of free OSSs (lines 14-15). This strategy minimizes
interference from other applications by reducing the number
of shared OSSs. With the found set of partially free OSSs,
similar to the case of non-overlapping allocation, DCA-IO
updates the free flag of the selected OSSs (line 18) and sets
the stripe count, size, and starting offset (line 19).

If no free OSSs are available because all OSSs in the sys-
tem is used by other applications, DCA-IO performs capacity-
based allocation which is an allocation policy to balance the
capacity of the OSSs. To balance out the capacities among
the OSSs, it checks the remaining capacities of the OSSs
and chooses the OSS with the lowest capacity (lines 22-23).
Similar to other phases, DCA-IO sets the stripe count, size,
and starting offset (line 26). In summary, DCA-IO first at-
tempts to identify a set of completely isolated free OSSs
(non-overlapping allocation). If the set does not exist, it at-
tempts to identify a set of OSSs with the highest number of
free OSSs (partial overlapping allocation). Finally, if all the
OSSes are used by other applications, it attempts to use the
OSSs with the lowest capacity, balancing out the capacity
among OSSs for future applications (capacity-based alloca-
tion). Thus, DCA-IO can dynamically adjust the configura-
tion based on the isolated application performance and re-
duce the performance interference caused by other applica-
tions.

Table 4
Comparison between TAPP-IO and DCA-IO.

TAPP-IO [27] DCA-IO
File-based ✓ ✓

Rule-based ✓ ✓

Dynamic ✓

Interference ✓

Capacity-aware ✓

5. Evaluation
5.1. Single Application
5.1.1. Local Environment

For the evaluation, we used a six node Lustre setup hav-
ing Intel i7-4790 (3.6 GHz) having four physical cores, eight
cores with hyper-threading, and 8 GB of memory. We used
one node for the client server, one node for the MDS, and
four nodes for the OSSs. We used a Samsung 850 pro SSD
for storage. Each node had two SSDs, one for the operating
system and another for Lustre file system. We used two In-
tel 2P X520 10G network adapters per node. Because two
10 G network adapters can support a bandwidth of up to 2.5
GB, the I/O performance from the client was bottlenecked
by the storage devices and not the network. We compared
the performance of the Lustre default parameters, TAPP-IO
(state of art storage allocation scheme) [27]), and DCA-IO.
Table 4 shows the comparison between TAPP-IO and DCA-
IO. As shown in the table, similar to DCA-IO, TAPP-IO is
a rule-based scheme that determines stripe count and stripe
size based on file access type (file-per-process and shared
file). In contrast, DCA-IO supports dynamic adjustment that
finds stripe count and stipe size through a heuristic phase. In
addition, it also considers interference between multiple ap-
plications and capacity-aware data placement. We report the
experimental results were averaged over five runs for default,
TAPP-IO, and DCA-IO.

For themicrobenchmark, we ran the FIO benchmark [16]
performing sequential and random writes. The FIO bench-
mark creates a separate file for each process and uses the
POSIX I/O module. We configured the FIO benchmark to
issue 8 GB write operations using one to eight threads with
a 1 MB request size and buffered I/O.

In the case of sequential writes, as indicated in Figure 7,
DCA-IO improves the performance by up to 75% compared
with both the default Lustre configuration and TAPP-IO. The
performances achieved by the default Lustre configuration
and TAPP-IO is comparable because TAPP-IO uses the de-
fault configuration in the case of the file-per-process. The
performance improvement is greater when the number of
processes is smaller because both the default Lustre configu-
ration and TAPP-IO set the stripe count to 1 (i.e., 1 OSS). Be-
cause FIO issues a large number of I/O requests, the I/O per-
formance is bottlenecked by the maximum I/O performance
of the singleOSS. Thus, by increasing the stripe count, DCA-
IO can improve the performance beyond the maximum per-
formance of a single OSS. In the case of a large number of

Kim et al.: Preprint submitted to Elsevier Page 8 of 14

Dynamic I/O Control Schemes

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7

Default TAPP-IO DCA-IO
T

h
ro

u
gh

p
ut

 (
M

B
/s

)

Different Runs

FIO - Sequential Write with 1 Process

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7

Default TAPP-IO DCA-IO

T
h

ro
u

gh
p

ut
 (

M
B

/s
)

Different Runs

FIO - Sequential Write with 2 Process

0

500

1000

1500

2000

2500

1 2 3 4 5

Default TAPP-IO DCA-IO

T
hr

ou
gh

pu
t

(M
B

/s
)

Different Runs

FIO - Sequential Write with 4 Process

0

500

1000

1500

2000

2500

1 2 3 4

Default TAPP-IO DCA-IO

T
hr

ou
gh

pu
t

(M
B

/s
)

Different Runs

FIO - Sequential Write with 8 Process

Figure 7: FIO sequential write performance.

0

300

600

900

1200

1500

1 2 3 4 5 6 7

Default TAPP-IO DCA-IO

T
hr

ou
gh

p
ut

 (
M

B
/s

)

Different Runs

FIO - Random Write with 1 Process

0
300
600
900

1200
1500
1800

1 2 3 4 5 6 7

Default TAPP-IO DCA-IO
T

hr
ou

gh
p

ut
 (

M
B

/s
)

Different Runs

FIO - Random Write with 2 Process

0

500

1000

1500

2000

2500

1 2 3 4

Default TAPP-IO DCA-IO

T
hr

ou
gh

pu
t

(M
B

/s
)

Different Runs

FIO - Random Write with 4 Process

0

500

1000

1500

2000

2500

1 2 3

Default TAPP-IO DCA-IO

T
hr

ou
gh

p
ut

 (
M

B
/s

)

Different Runs

FIO - Random Write with 8 Process

Figure 8: FIO random write performance.

processes, all four OSSs were used even with a stripe count
of 1 because each process creates a file allocated to different
OSSs. Thus, the performance of FIO reaches the maximum
performance of all OSSs using both the default Lustre con-
figuration and TAPP-IO.

In the case of random writes, as indicated in Figure 8,
DCA-IO improves the performance by 56% compared with
both the default Lustre configuration and TAPP-IO. Similar
to sequential writes, the performance improvement is more
evident at a lower number of processes and the reason is the
same. However, because the performance for random writes
is inherently inferior to that for sequential writes, the per-
formance improvement is smaller in the former than in the
latter case.

For the macrobenchmark, we used Parallel I/O Kernel
(PIOK) [7] developed by NERSC. PIOK is a collection of
I/O kernels from three HPC applications: VPIC, GCRM,
and VORPAL. Thus, VPCI-IO, GCRM-IO, and VORPAL-
IO do not perform computation tasks but only issue I/O op-
erations for synthetic data structures. PIOK is implemented
to utilize both the HDF5 file format [12] and the H5Part data
interface [2]. We configured each benchmark to use collec-
tive I/Os where each process calls collective I/O functions to
aggregate multiple I/O requests into collective I/O requests.

In the case of VPIC-IO, as shown in Figure 9, DCA-IO
improves the performance by up to 70% and 45%, respec-
tively, compared with the default Lustre configuration and
TAPP-IO. Similar to the result from the FIO benchmark, the
performance gain from a smaller number of processes re-
sults from the increased number of stripe counts. Because
TAPP-IO uses the number of processes as the stripe count,
the performance at a low number of processes is related to
the limited number of OSSs. For a high number of processes,
the performance of DCA-IO is higher than that of TAPP-IO
owing to the stripe alignment. Because DCA-IO gradually
increases the stripe size from 1M, it can find the optimal
stripe size without causing stripe misalignment. Note that
in the case of the second run in the one, two, and four pro-

cesses, the performance of DCA-IO decreases from the first
run. Because DCA-IO uses rule-based configuration adjust-
ment, the adjusted configurations cannot be optimal, com-
pared to the adjusted configurations from the initial execu-
tion. However, the performance becomes comparable to or
exceeds that of the first run due to the second heuristic phase
of DCA-IO.

In the cases of GCRM-IO and VORPAL-IO, as shown
in Figures 10 and 11, DCA-IO improves performance by up
to 58% and 52% compared with the default Lustre configu-
ration, and by up to 48% and 51% compared with TAPP-IO,
respectively. Similar to VPIC-IO, the performance of DCA-
IO is significantly better than that of TAPP-IO due to the
effect of the stripe count. In addition, owing to the stripe
misalignment, the performance of TAPP-IO is lower than
that of DCA-IO.
5.1.2. Cori

To verify the effectiveness of DCA-IO in a complex and
large environment, we conducted the experiment in Cori.
For the evaluation, we used 1, 4, 16, and 64 computation
nodes fromCori. Each compute nodewas equippedwith two
16-core Intel Haswell CPUs (2.3 GHz) and 128 GB of mem-
ory. For storage, the Lustre file system of Cori had 6 MDSs
and 256 OSTs. Both the compute and Lustre nodes were
connected with Infiniband. For a benchmark, we only used
VPIC-IO from PIOK [7] because the other two workloads
exhibited similar I/O behaviors. To evaluate our scheme
with diverse application behavior, we used both independent
and collective I/O modes. The experimental results are the
average values of five runs. In addition, the average I/O traf-
fic at the time of the experiment was less than 5 percent of
the maximum bandwidth of Cori system.

In the case of VPIC-IO in Cori, as shown in Figures 12
and 13, DCA-IO improves performance by up to 37% and
50% in independent I/O and collective I/O, respectively, com-
pared with TAPP-IO. Compared to the results from a small
Lustre setup, the performance improvement on Cori is less
for two main reasons. First, because the experiments in Cori

Kim et al.: Preprint submitted to Elsevier Page 9 of 14

Dynamic I/O Control Schemes

0

400

800

1200

1600

2000

1 2 3 4 5 6 7 8

Default TAPP-IO DCA-IO
T

h
ro

u
gh

p
ut

 (
M

B
/s

)

Different Runs

VPIC-IO with 1 Process

0

400

800

1200

1600

2000

1 2 3 4 5 6 7

Default TAPP-IO DCA-IO

T
hr

ou
gh

p
ut

 (
M

B
/s

)

Different Runs

VPIC-IO with 2 Process

0
400
800

1200
1600
2000
2400

1 2 3 4 5 6 7

Default TAPP-IO DCA-IO

T
h

ro
ug

hp
ut

 (
M

B
/s

)

Different Runs

VPIC-IO with 4 Process

0

400

800

1200

1600

2000

1 2 3 4

Default TAPP-IO DCA-IO

T
hr

ou
gh

p
ut

 (
M

B
/s

)

Different Runs

VPIC-IO with 8 Process

Figure 9: VPIC-IO performance.

0

400

800

1200

1 2 3 4 5

Default TAPP-IO DCA-IO

T
h

ro
u

gh
p

ut
 (

M
B

/s
)

Different Runs

GCRM-IO with 1 Process

0

400

800

1200

1600

1 2 3 4 5 6 7

Default TAPP-IO DCA-IO
T

hr
ou

gh
pu

t
(M

B
/s

)

Different Runs

GCRM-IO with 2 Process

0

400

800

1200

1600

1 2 3 4 5

Default TAPP-IO DCA-IO

T
h

ro
u

gh
p

ut
 (

M
B

/s
)

Different Runs

GCRM-IO with 4 Process

0

400

800

1200

1 2 3 4 5 6

Default TAPP-IO DCA-IO

T
hr

ou
gh

pu
t

(M
B

/s
)

Different Runs

GCRM-IO with 8 Process

Figure 10: GCRM-IO performance.

already have a high number of processes, TAPP-IO, which
sets the stripe count to the number of processes, already uti-
lizes a sufficient number of OSSs. Second, because many
users share the same HPC environment, there can be many
interferences from the I/O activities of other users. Owing to
the other users, our application cannot utilize the full band-
width of the network. Because the benefits from DCA-IO
aremore evident when the I/O performance of applications is
better than the maximum performance of the used OSSs, the
potential performance improvement can be overshadowed
by various resource contentions in a complex HPC environ-
ment. However, DCA-IO can improve the performance of
different I/O behaviors such as independent and collective
I/O modes. Thus, we have verified that DCA-IO could be
beneficial in small isolated environments as well as in large
production scale environments.
5.2. Multiple Applications

To evaluate DCA-IOwhenmultiple applications are run-
ning simultaneously, we performed an evaluation using the
aforementioned FIO [16], VPIC-IO,GCRM-IO, andVORPAL-
IO benchmarks from PIOK [7]. We configured each appli-
cation to run with four processes because four processes ex-
hibit the best performance. To evaluate our scheme in vari-
ous performance interference scenarios, we disabled DCA-
IO for FIO and manually set the stripe count of FIO to 1,
2, and 4 and we enabled DCA-IO for VPIC-IO, GCRM-IO,
and VORPAL-IO. Thus, we created scenarios where an I/O-

intensive application (FIO) with various stripe counts runs
in the system, and another application (VPIC-IO, GCRM-
IO, or VORPAL-IO) is submitted to the system. We com-
pared the performance of the PIOK benchmark using the de-
fault Lustre configuration, DCA-IO without interference op-
timization, and DCA-IO with interference optimization (i.e.,
fully optimized DCA-IO). All experimental results are the
average values of five runs.

Figure 14a presents the performance of theVPIC-IO bench-
mark from the PIOK when the VPIC-IO and FIO bench-
marks run simultaneously. As shown in the figure, the DCA-
IOwith interference optimization performs similarly toDCA-
IO without interference optimization and improves perfor-
mance by up to 263% compared with the default configura-
tion. The performance is similar in both versions of DCA-IO
because the benefit of using all four OSSs is greater than
using a small number of OSSs and avoiding interference.
Thus, both versions of DCA-IO set the stripe count of VPIC-
IO as 4, utilizing all OSSs in the system. In both versions
of DCA-IO, the performance of VPIC-IO is best when the
stripe count of FIO is 1. This suggests that the performance
is best when the fewest OSSs are shared between two ap-
plications. In contrast, when a default configuration is used,
both FIO and VPIC-IO use a single OSS, and the application
performance is bounded by the maximum performance of a
single OSS.

Figures 14b and 14c present the performance of GCRM-
IO and VORPAL-IO when FIO is running. In the case of

0

300

600

900

1200

1 2 3 4 5 6 7 8 9

Default TAPP-IO DCA-IO

T
h

ro
u

gh
p

ut
 (

M
B

/s
)

Different Runs

VORPAL-IO with 1 Process

0

300

600

900

1200

1 2 3 4 5 6

Default TAPP-IO DCA-IO

T
hr

ou
gh

p
ut

 (
M

B
/s

)

Different Runs

VORPAL-IO with 2 Process

0

300

600

900

1200

1 2 3 4 5

Default TAPP-IO DCA-IO

T
h

ro
u

gh
p

ut
 (

M
B

/s
)

Different Runs

VORPAL-IO with 4 Process

0

200

400

600

1 2 3 4

Default TAPP-IO DCA-IO

T
hr

ou
gh

p
ut

 (
M

B
/s

)

Different Runs

VORPAL-IO with 8 Process

Figure 11: VORPAL-IO performance.

Kim et al.: Preprint submitted to Elsevier Page 10 of 14

Dynamic I/O Control Schemes

0
5000

10000
15000
20000
25000
30000

32 128 512 2048

TAPPIO DCA-IO

T
h

ro
u

gh
p

ut
 (

M
B

/s
)

Number of Processes

VORPAL-IO with Independent IO

Figure 12: VPIC-IO performance in Cori using independent-
I/O.

0

5000

10000

15000

20000

25000

32 128 512 2048

TAPPIO DCA-IO

T
hr

ou
gh

p
ut

 (
M

B
/s

)

Number of Processes

VORPAL-IO with Collective IO

Figure 13: VPIC-IO performance in Cori using collective-I/O.

GCRM-IO,DCA-IOwith interference optimization improves
performance by up to 241% and 31%, compared with the
default Lustre configuration and DCA-IO without interfer-
ence optimization, respectively. For VORPAL-IO, DCA-IO
with interference optimization improves performance by up
to 252% and 53% compared with the default Lustre config-
uration and DCA-IO without interference optimization, re-
spectively. In contrast to VPIC-IO, for both GCRM-IO and
VORPAL-IO, DCA-IO with interference optimization per-
forms better than DCA-IO without interference optimiza-
tion. This is because DCA-IO without interference opti-
mization uses all fourOSSs for bothGCRM-IO andVORPAL-
IO, while DCA-IOwith interference optimization uses stripe
count of 2. Because the performance gain from increasing
the stripe count in both applications is smaller than that of
VPIC-IO, it is more beneficial to reduce the number of stripe
count and utilize the OSSes that are not used by another ap-
plication (FIO). However, when the stripe count of FIO is
4 and interference is unavoidable, the performance of both
versions of DCA-IO remains identical. Thus, the evaluation
results indicate that when multiple applications run simulta-
neously in the system, DCA-IO with interference optimiza-
tion can improve their performance by reducing the interfer-
ence from other applications by choosing free OSSs.

6. Related Work
In this section, we present previous studies and com-

pare them to DCA-IO to show how DCA-IO differs from
the previous studies. There have been many approaches to

improving the I/O performance of applications in distributed
computing systems with complex storage architecture. Pre-
vious works [40, 39, 5] proposed testing-based adjustment
schemes that attempt to find the optimal configuration through
performance modeling. In addition, other works [13, 3] pro-
posed history-based adjustment schemes that find the opti-
mal configuration based on the history of applications. An-
other work [27] proposed a rule-based adjustment scheme
that adjusts the configuration based on the rules such as the
number of files. Finally, several works [20, 11] alleviated
performance interference between applications by improv-
ing communication.
6.1. Testing-based Adjustment

Several studies have been conducted on the improvement
of application performance bymodeling the I/O behaviors of
applications. Yu et al. [40] classified applications into a few
categories based on their I/O behaviors. Then, they found
the optimal configuration setting for each distinct I/O behav-
ior by performing extensive testing. Finally, they used the
optimal configuration from the testing for each I/O behavior
category. You et al. [39] proposed a mathematical model
based on the queuing theory. Then, they performed experi-
ments for each model in a separate environment to find the
optimal configuration. H5Evolve [5] utilized a genetic algo-
rithm to search for the best configuration. It simplifies mul-
tiple configurations into a simplified and computable space.
Then, it uses the genetic algorithm to find the best configu-
ration from the configuration space. Our study is similar to
these studies in terms of investigating the I/O behaviors of
applications and optimizing the performance based on I/O
behaviors. However, DCA-IO does not require testing on
various configurations prior to the application run.
6.2. History-based Adjustment

Several studies have been conducted on improving the
I/O performance of applications by utilizing the previous
history of applications. Gainaru et al. [13] stored the I/O
behaviors and used the history of each application during
scheduling to minimize the interference between applica-
tions. Behzad et al. [3] extracted I/O patterns from appli-
cations and found optimal configurations for each pattern.
Then, they stored the optimal configuration for each pattern
in a database. Our study is similar to these investigations
in terms of optimizing the configurations based on the pre-
vious executions. However, DCA-IO can improve perfor-
mance when no information on the I/O behavior is available,
by using the existing system logs in the same HPC environ-
ment.
6.3. Rule-based Adjustment

Studies have been conducted on the selection of config-
urations based on a set of rules. TAPP-IO [27] is the most
closely related to our algorithm in that the Lustre file sys-
tem settings are optimized. Researchers [27] proposed a set
of rules based on the number of files and processes. They
evaluated their rule-based algorithm in a large HPC envi-
ronment and verified that a rule-based configuration adjust-

Kim et al.: Preprint submitted to Elsevier Page 11 of 14

Dynamic I/O Control Schemes

0

400

800

1200

1 2 4

T
h

ro
u

gh
p

u
t

(M
B

/s
)

FIO Stripe Count

Default DCA-IO w/o Interference Optimization DCA-IO with Interference Optimization

0

400

800

1200

1600

1 2 4

T
h

ro
u

gh
p

u
t

(M
B

/s
)

FIO Stripe Count

VPIC-IO with Interference

Default DCA-IO w/o Interference Optimization DCA-IO

(a) VPIC-IO

0

400

800

1200

1 2 4

T
h

ro
u

gh
p

ut
 (

M
B

/s
)

FIO Stripe Count

GCRM-IO with Interference

Default DCA-IO w/o Interference Optimization DCA-IO

(b) GCRM-IO

0

400

800

1200

1 2 4

T
hr

ou
gh

p
ut

 (
M

B
/s

)

FIO Stripe Count

VORPAL-IO with Interference
Default DCA-IO w/o Interference Optimization DCA-IO

(c) VORPAL-IO
Figure 14: VPIC-IO, GCRM-IO, and VORPAL-IO performance when running simultaneously with FIO.

ment scheme could improve performance in many complex
HPC environments. Our study is similar to this research
in terms of optimizing the configurations based on the set
of rules. However, DCA-IO dynamically improves perfor-
mance based on the previous runs because the optimal rules
may vary according to the I/O behavior of the application.
6.4. Alleviating Performance Interference

Several studies have been conducted on the mitigation
of I/O performance interference in the HPC environment.
Lofstead et al. [20] analyzed an HPC system and presented
the negative effects of simultaneous application execution
on shared resources in the system. Then, to alleviate the
I/O contention on a shared file system, they proposed an al-
gorithm that enables applications to implement the I/O re-
quest with minimum interference through communication
between applications. Dorier et al. [11] analyzed the per-
formance interference in the I/O stack layer and designed a
framework consisting of strategies for alleviating the influ-
ence of I/O interference. The framework uses MPI routines
for communication between applications running in parallel.
Our study is similar to these investigations in terms of the
characterization of multiple cases of I/O performance inter-
ference and the alleviation of interference. However, DCA-
IOminimizes the performance degradation by autonomously
and dynamically adjusting the file system configurations by
using various system logs in the HPC system.

7. Conclusion
In this paper, we proposed a dynamic distributed file sys-

tem configuration adjustment scheme called DCA-IO to im-
prove the I/O performance of applications and mitigate I/O
performance interference in the HPC environment. To this
end, we first analyzed the I/O behaviors of applications exe-
cuted in Cori. The analysis results indicate that only a lim-
ited number of programs were executed extensively and that
most of the executions used the default Lustre file system
configuration. To improve the I/O performance of the ap-
plications by adjusting the Lustre file system configuration,
DCA-IO uses existing system logs from the HPC environ-
ment and gradually improves performance using the rules
and history of the program executions. Furthermore, DCA-
IO reduces the contention for shared storage resources by dy-

namically adjusting the allocation policy. Finally, we evalu-
ated DCA-IO using the FIO and PIOK benchmarks on small-
and large-scale HPC environments using the Lustre file sys-
tem. Our evaluation indicates that the use of DCA-IO for
an independent application can improve the performance by
up to 75% and 50% in small- and large-scale HPC environ-
ments, respectively. For the execution of simultaneous ap-
plications, the evaluation indicates that DCA-IO can improve
performance by up to 263% and 53% compared with the de-
fault Lustre configuration and DCA-IO without interference
optimization, respectively. For the future work, we plan to
improve the performance heuristic phase of DCA-IO by in-
troducing well-known optimization algorithms [1].

8. Declaration
Data Availability Raw data were generated at NERSC.

Derived data supporting the findings of this study are avail-
able from the corresponding author on request.

Funding This work was supported by the National Re-
search Foundation of Korea (NRF) grant funded by the Ko-
rean government (MSIT) (No. 2021R1C1C1010861). This
work was supported in part by the Korea Institute for Ad-
vancement of Technology (KIAT) grant funded by Korea
government (MOTIE) (P0012724, The Competency Devel-
opment Program for Industry Specialist). This work was
supported by the Office of Advanced Scientific Computing
Research, Office of Science, of the U.S. Department of En-
ergy under Contract No. DE-AC02-05CH11231. This re-
search used resources of the National Energy Research Sci-
entific Computing Center. This study was financially sup-
ported by Seoul National University of Science and Tech-
nology.

Ethical approval Ethical approval was not required for
this research.

Informed consent All the authors listed have approved
the manuscript for publication.

Author contributions SunggonKim contributed the pa-
per through conceptualization, methodology, software, and
writing. Alex Sim, KeshengWu, and SurenByna contributed
the paper through conceptualization, discussion, and super-
vision. Yongseok Son contributed the paper through con-
ceptualization, discussion, writing, and supervision (Corre-
sponding Author: Yongseok Son).

Kim et al.: Preprint submitted to Elsevier Page 12 of 14

Dynamic I/O Control Schemes

References
[1] Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A.A., Al-Qaness,

M.A., Gandomi, A.H., 2021. Aquila optimizer: a novelmeta-heuristic
optimization algorithm. Computers & Industrial Engineering 157,
107250.

[2] Adelmann, A., Gsell, A., Oswald, B., Schietinger, T., Bethel, W.,
Shalf, J., Siegerist, C., Stockinger, K., 2007. Progress on h5part: a
portable high performance parallel data interface for electromagnetics
simulations, in: 2007 IEEE Particle Accelerator Conference (PAC),
IEEE. pp. 3396–3398.

[3] Behzad, B., Byna, S., Snir, M., et al., 2015a. Pattern-driven parallel
i/o tuning, in: Proceedings of the 10th Parallel Data Storage Work-
shop, ACM. pp. 43–48.

[4] Behzad, B., Byna, S., Wild, S.M., Snir, M., et al., 2015b. Dynamic
model-driven parallel i/o performance tuning, in: Cluster Computing
(CLUSTER), 2015 IEEE International Conference on, IEEE. pp. 184–
193.

[5] Behzad, B., Luu, H.V.T., Huchette, J., Byna, S., Aydt, R., Koziol, Q.,
Snir, M., et al., 2013. Taming parallel i/o complexitywith auto-tuning,
in: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ACM. p. 68.

[6] Benchmark, I., 2020. https://asc. llnl. gov/sequoia/benchmarks/ior
summary v1. 0. pdf. Accessed January 5.

[7] Byna, S., Howison, M., 2015. Parallel i/o kernel (piok) suite.
[8] Carns, P., Harms, K., Allcock, W., Bacon, C., Lang, S., Latham, R.,

Ross, R., 2011. Understanding and improving computational science
storage access through continuous characterization. ACM Transac-
tions on Storage (TOS) 7, 8.

[9] Chan, A., Gropp, W., Lusk, E., 2008. An efficient format for nearly
constant-time access to arbitrary time intervals in large trace files. Sci-
entific Programming 16, 155–165.

[10] for Computational Sciences, T.N.I., . I/o and lustre us-
age. URL: https://www.nics.tennessee.edu/computing-resources/

file-systems/io-lustre-tips.
[11] Dorier, M., Antoniu, G., Ross, R., Kimpe, D., Ibrahim, S., 2014.

Calciom: Mitigating i/o interference in hpc systems through cross-
application coordination, in: 2014 IEEE 28th International Parallel
and Distributed Processing Symposium, IEEE. pp. 155–164.

[12] Folk, M., Cheng, A., Yates, K., 1999. Hdf5: A file format and i/o
library for high performance computing applications, in: Proceedings
of supercomputing, pp. 5–33.

[13] Gainaru, A., Aupy, G., Benoit, A., Cappello, F., Robert, Y., Snir, M.,
2015. Scheduling the i/o of hpc applications under congestion, in:
Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE
International, IEEE. pp. 1013–1022.

[14] Hipp, D.R., 2000. Sqlite. URL: https://www.sqlite.org/index.html.
[15] Howison, M., 2010. Tuning hdf5 for lustre file systems .
[16] J.Axboe, 1998. Fiobenchmark. http://freecode.com/projects/fio.
[17] Kim, S., Sim, A., Wu, K., Byna, S., Wang, T., Son, Y., Eom, H., 2019.

Dca-io: A dynamic i/o control scheme for parallel and distributed file
systems., in: CCGRID, pp. 351–360.

[18] Liao, W.k., Ching, A., Coloma, K., Choudhary, A., Ward, L., 2007.
An implementation and evaluation of client-side file caching for mpi-
io, in: Parallel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International, IEEE. pp. 1–10.

[19] Lockwood, G.K., Snyder, S., Wang, T., Byna, S., Carns, P., Wright,
N.J., 2018. A year in the life of a parallel file system, in: SC18: Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, IEEE. pp. 931–943.

[20] Lofstead, J., Zheng, F., Liu, Q., Klasky, S., Oldfield, R., Kordenbrock,
T., Schwan, K., Wolf, M., 2010. Managing variability in the io per-
formance of petascale storage systems, in: SC’10: Proceedings of
the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE. pp. 1–12.

[21] Lustre, a. Lustre* software release 2.x - operations manual .
[22] Lustre, A., b. Lustre technical white paper .
[23] Luu, H., Behzad, B., Aydt, R., Winslett, M., 2013. A multi-level

approach for understanding i/o activity in hpc applications, in: 2013

IEEE International Conference on Cluster Computing (CLUSTER),
IEEE. pp. 1–5.

[24] Luu, H., Winslett, M., Gropp, W., Ross, R., Carns, P., Harms, K.,
Prabhat, M., Byna, S., Yao, Y., 2015. A multiplatform study of i/o be-
havior on petascale supercomputers, in: Proceedings of the 24th Inter-
national Symposium on High-Performance Parallel and Distributed
Computing, ACM. pp. 33–44.

[25] Mathur, A., Cao, M., Bhattacharya, S., Dilger, A., Tomas, A., Vivier,
L., 2007. The new ext4 filesystem: current status and future plans, in:
Proceedings of the Linux symposium, pp. 21–33.

[26] Minich, M., Di, W., Shipman, G.M., Canon, S.O.S., 2008. The lustre
center of excellence at ornl .

[27] Neuwirth, S., Wang, F., Oral, S., Bruening, U., 2017. Automatic and
transparent resource contention mitigation for improving large-scale
parallel file system performance, in: Parallel and Distributed Systems
(ICPADS), 2017 IEEE 23rd International Conference on, IEEE. pp.
604–613.

[28] Odajima, T., Kodama, Y., Tsuji, M., Matsuda, M., Maruyama, Y.,
Sato, M., 2020. Preliminary performance evaluation of the fujitsu
a64fx using hpc applications, in: 2020 IEEE International Conference
on Cluster Computing (CLUSTER), IEEE. pp. 523–530.

[29] Patel, T., Byna, S., Lockwood, G.K., Wright, N.J., Carns, P., Ross,
R., Tiwari, D., 2020. Uncovering access, reuse, and sharing charac-
teristics of {I/O-Intensive} files on {Large-Scale} production {HPC}
systems, in: 18th USENIX Conference on File and Storage Technolo-
gies (FAST 20), pp. 91–101.

[30] Schwan, P., et al., 2003. Lustre: Building a file system for 1000-node
clusters, in: Proceedings of the 2003 Linux symposium, pp. 380–386.

[31] Shende, S.S., Malony, A.D., 2006. The tau parallel performance sys-
tem. The International Journal of High Performance Computing Ap-
plications 20, 287–311.

[32] Snyder, S., Carns, P., Harms, K., Latham, R., Ross, R., 2016a. Per-
formance evaluation of Darshan 3.0. 0 on the Cray XC30. Technical
Report. Argonne National Lab.(ANL), Argonne, IL (United States).

[33] Snyder, S., Carns, P., Harms, K., Ross, R., Lockwood, G.K., Wright,
N.J., 2016b. Modular hpc i/o characterization with darshan, in:
Extreme-Scale Programming Tools (ESPT), Workshop on, IEEE. pp.
9–17.

[34] Snyder, S., Carns, P., Latham, R., Mubarak, M., Ross, R., Carothers,
C., Behzad, B., Luu, H.V.T., Byna, S., et al., 2015. Techniques for
modeling large-scale hpc i/o workloads, in: Proceedings of the 6th In-
ternational Workshop on Performance Modeling, Benchmarking, and
Simulation of High Performance Computing Systems, ACM. p. 5.

[35] Sweeney, A., Doucette, D., Hu, W., Anderson, C., Nishimoto, M.,
Peck, G., 1996. Scalability in the xfs file system., in: USENIXAnnual
Technical Conference.

[36] Tang, H., Byna, S., Tessier, F., Wang, T., Dong, B., Mu, J., Koziol,
Q., Soumagne, J., Vishwanath, V., Liu, J., et al., 2018. Toward scal-
able and asynchronous object-centric data management for hpc, in:
2018 18th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID), IEEE. pp. 113–122.

[37] Wang, T., Snyder, S., Lockwood, G., Carns, P., Wright, N., Byna, S.,
2018. Iominer: Large-scale analytics framework for gaining knowl-
edge from i/o logs, in: 2018 IEEE International Conference on Cluster
Computing (CLUSTER), IEEE. pp. 466–476.

[38] Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D., Maltzahn, C.,
2006. Ceph: A scalable, high-performance distributed file system,
in: Proceedings of the 7th symposium on Operating systems design
and implementation, USENIX Association. pp. 307–320.

[39] You, H., Liu, Q., Li, Z., Moore, S., 2011. The design of an auto-tuning
i/o framework on cray xt5 system, in: CrayUser Groupmeeting (CUG
2011).

[40] Yu, W., Vetter, J.S., Oral, H.S., 2008. Performance characterization
and optimization of parallel i/o on the cray xt, in: Parallel and Dis-
tributed Processing, 2008. IPDPS 2008. IEEE International Sympo-
sium on, IEEE. pp. 1–11.

Kim et al.: Preprint submitted to Elsevier Page 13 of 14

https://www.nics.tennessee.edu/computing-resources/file-systems/io-lustre-tips
https://www.nics.tennessee.edu/computing-resources/file-systems/io-lustre-tips
https://www.sqlite.org/index.html

Dynamic I/O Control Schemes

Sunggon Kim is an assistant professor in the de-
partment of Computer Science at Seoul National
University of Science and Technology (Seoul-
Tech) since 2022. He received his B.S. degree in
Computer Science from University of Wisconsin-
Madison, Madison, USA, and Ph.D. degree from
Seoul National University in 2015 and 2021, re-
spectively. He was an intern at Lawrence Berke-
ley National Laboratory, California, USA, in 2018,
2019 and 2020. His research interests are file sys-
tems, cloud computing, distributed systems, and
operating systems.

Alex Sim is currently a Senior Computing Engi-
neer at Lawrence Berkeley National Laboratory.
He authored and co-authored over 300 technical
publications, and released a few software packages
under open source license. His current research
and development activities include data model-
ing, data analysis methods, learning models, dis-
tributed resource management, and high perfor-
mance data systems. He is a senior member of
IEEE.

Kesheng Wu is a Senior Scientist at Lawrence
Berkeley National Laboratory. He works exten-
sively on data management, data analysis, and
scientific computing topics. He is the developer
of a number of widely used algorithms including
FastBit bitmap indexes for querying large scien-
tific datasets, Thick-Restart Lanczos (TRLan) al-
gorithm for solving eigenvalue problems, and IDE-
ALEM for statistical data reduction and feature ex-
traction.

Suren Byna received his Ph.D. degree in 2006 in
Computer Science from Illinois Institute of Tech-
nology, Chicago. He is a Staff Scientist in the Sci-
entific Data Management (SDM) Group in CRD at
Lawrence Berkeley National Laboratory (LBNL).
He works on optimizing parallel I/O and on de-
veloping systems for managing scientific data. He
is the PI of the ECP funded ExaIO and ExaHDF5
projects, and various projects on managing scien-
tific data.

Yongseok Son received his B.S. degree from Ajou
University in 2010, and his M.S. and Ph.D. de-
grees from Seoul National University in 2012 and
2018, respectively. He was a postdoctoral re-
search associate at University of Illinois at Urbana-
Champaign. Currently, he is an assistant professor
in Department of Computer Science and Engineer-
ing, Chung-Ang University. His research interests
are operating, distributed, and database systems.

Kim et al.: Preprint submitted to Elsevier Page 14 of 14

