Skip to main content
Log in

A mixed sine cosine butterfly optimization algorithm for global optimization and its application

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

This paper proposes a hybrid sine cosine butterfly optimization algorithm (m-SCBOA), in which a modified butterfly optimization algorithm is combined with sine cosine algorithm to achieve superior exploratory and exploitative search capabilities. The newly suggested m-SCBOA algorithm has been tested on 39 benchmark functions and compared with seven state-of-the-art algorithms. Moreover, it is tested with the CEC 2017 test suite, and the results are compared with seven more algorithms. Experimental results have demonstrated superior results of the proposed algorithm in nearly 75% of occasions on average whereas, similar results in nearly 20% of cases. Simulation results and convergence graphs show the supremacy of the m-SCBOA over the compared algorithms. The Friedman rank test validates that the m-SCBOA is statistically the best among the experiments. Additionally, four real-world engineering design problems and a priori multi-objective problem called parameter optimization of Al–4.5% Cu–TiC metal matrix composite are solved and the outcomes are compared to a wide range of algorithms. The results of these case studies establish the merits of m-SCBOA in solving challenging, real-world problems with unknown global optima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this paper.

Code availability

The codes associated with this study are available upon reasonable request.

Consent for publication

The authors give their consent for the publication of the article once it is accepted.

References

  1. Arora, S., Singh, S.: Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput. 23, 715–734 (2019)

    Article  Google Scholar 

  2. Arora, S., Anand, P.: Binary butterfly optimization approaches for feature selection. Expert Syst. Appl. 116, 147–160 (2019)

    Article  Google Scholar 

  3. Lei, W., Yang, C.: A hybrid intelligent predicting model for exploring household CO2 emissions mitigation strategies derived from butterfly optimization algorithm. Sci. Total Environ. 727, 138572 (2020)

    Article  Google Scholar 

  4. Yuan, Z., Wang, W., Wang, H., Hossein, K.: Improved butterfly optimization algorithm for CCHP driven by PEMFC. Appl. Therm. Eng. 173, 114766 (2020)

    Article  Google Scholar 

  5. Sharma, S., Saha, A.K.: m-MBOA: a novel butterfly optimization algorithm enhanced with mutualism scheme. Soft Comput. 24, 4809–4827 (2020)

    Article  Google Scholar 

  6. Lee, S.T., Zarita, Z., Pauline, O.: Wavelet neural networks based solutions for elliptic partial differential equations with improved butterfly optimization algorithm training. Appl. Soft Comput. 95, 106518 (2020)

    Article  Google Scholar 

  7. Fan, Y., Shao, J., Sun, G., Shao, X.: A self-adaption butterfly optimization algorithm for numerical optimization problems. IEEE Access 8, 88026–88041 (2020)

    Article  Google Scholar 

  8. Kun, H., Hao, J., Chen, G.J., Ze, P.: A modified butterfly optimization algorithm: an adaptive algorithm for global optimization and the support vector machine. Expert Syst. 38, 12642 (2020)

    Google Scholar 

  9. Guo, Y., Liu, X., Chen, L.: Improved butterfly optimization algorithm based on guiding weight and population restart. J. Exp. Theor. Artif. Intell. 33, 127–145 (2021)

    Article  Google Scholar 

  10. Ali, M., Mahsa, M.: Enhanced butterfly optimization algorithm with a new fuzzy regulator strategy and virtual butterfly concept. Knowl. Based Syst. 228, 107291 (2021)

    Article  Google Scholar 

  11. Long, W., Jiao, J., Liang, X., Wu, T., Xu, M., Cai, S.: Pinhole-imaging-based learning butterfly optimization algorithm for global optimization and feature selection. Appl. Soft Comput. 103, 107146 (2021)

    Article  Google Scholar 

  12. Sharma, T.K.: Enhanced butterfly optimization algorithm for reliability optimization problems. J. Ambient Intell. Humaniz. Comput. 12, 7595–7619 (2021)

    Article  Google Scholar 

  13. Long, W., Wu, T., Xu, M., Tang, M., Cai, S.: Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm. Energy J. 229, 120750 (2021)

    Article  Google Scholar 

  14. Sadeghian, Z., Akbari, E., Nematzadeh, H.: A hybrid feature selection method based on information theory and binary butterfly optimization algorithm. Eng. Appl. Artif. Intell. 97, 104079 (2021)

    Article  Google Scholar 

  15. Sharma, S., Saha, A.K.: BOSCA—a hybrid butterfly optimization algorithm modified with sine cosine algorithm. In: Progress in Advanced Computing and Intelligent Engineering (pp. 360–372) (2021)

  16. Dubey, A.K.: Optimized hybrid learning for multi-disease prediction enabled by lion with butterfly optimization algorithm. Sådhanå 46, 63 (2021)

    MathSciNet  Google Scholar 

  17. Sharma, S., Saha, A.K., Lohar, G.: Optimization of weight and cost of cantilever retaining wall by a hybrid metaheuristic algorithm. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01294-x

    Article  Google Scholar 

  18. Hosseinzadeh, M., Masdari, M., Rahmani, A.M., Mohammadi, M., Aldalwie, A.H.M., Majeed, M.K., KarimSarkhel, H.T.: Improved butterfly optimization algorithm for data placement and scheduling in edge computing environments. J. Grid Comput. 19, 14 (2021)

    Article  Google Scholar 

  19. Sharma, S., Chakraborty, S., Saha, A.K., Nama, S., Sahoo, S.: mLBOA: a modified butterfly optimization algorithm with Lagrange interpolation for global optimization. J. Bionic Eng. (2022). https://doi.org/10.1007/s42235-022-00175-3

    Article  Google Scholar 

  20. Long, W., Xu, M., Jiao, J., Wu, T., Tang, M., Cai, S.: A velocity-based butterfly optimization algorithm for high-dimensional optimization and feature selection. Expert Syst. Appl. 201, 117217 (2022)

    Article  Google Scholar 

  21. Li, Y., Yu, X., Liu, J.: Enhanced butterfly optimization algorithm for large-scale optimization problems. J. Bionic Eng. 19, 554–570 (2022)

    Article  Google Scholar 

  22. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 96, 120–133 (2016)

    Article  Google Scholar 

  23. Guo, W., Wang, Y., Zhao, F., Dai, F.: Riesz fractional derivative Elite-guided sine cosine algorithm. Appl. Soft Comput. 81, 105481 (2019)

    Article  Google Scholar 

  24. Gupta, S., Deep, K.: Improved sine cosine algorithm with crossover scheme for global optimization. Knowl. Based Syst. 165, 374–406 (2019)

    Article  Google Scholar 

  25. Long, W., Wu, T., Liang, X., Xu, S.: Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Expert Syst. Appl. 123, 108–126 (2019)

    Article  Google Scholar 

  26. Belazzoug, M., Touahria, M., Nouioua, F., Brahimi, M.: An improved sine cosine algorithm to select features for text categorization. J. King Saud Univ. Comput. Inf. Sci. 32(4), 454–464 (2020)

  27. Gupta, S., Deep, K., Mirjalili, S., Kim, J.H.: A modified Sine Cosine Algorithm with novel transition parameter and mutation operator for global optimization. Expert Syst. Appl. 154, 113395 (2020)

    Article  Google Scholar 

  28. Chen, H., Wang, M., Zhao, X.: A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems. Appl. Math. Comput. 369, 124872 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Gupta, S.: Enhanced sine cosine algorithm with crossover: a comparative study and empirical analysis. Expert Syst. Appl. 198, 116856 (2022)

    Article  Google Scholar 

  30. Patel, C.D., Tailor, T.K.: Multi-agent based sine–cosine algorithm for optimal integration of DERs with consideration of existing OLTC in distribution networks. Appl. Soft Comput. 117, 108387 (2022)

    Article  Google Scholar 

  31. Feng, Z.K., Duan, J.F., Niu, W.J., Jiang, Z.Q., Liu, Y.: Enhanced sine cosine algorithm using opposition learning, adaptive evolution and neighborhood search strategies for multivariable parameter optimization problems. Appl. Soft Comput. 119, 108562 (2022)

    Article  Google Scholar 

  32. Storn, R., Price, K.: Differential Evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95—International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

  34. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  35. Rao, R.V.: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. 7, 19–34 (2016)

    Google Scholar 

  36. Civicioglu, P.: Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 219(15), 8121–8144 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  MATH  Google Scholar 

  38. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  39. Wang, G.G., Deb, S., Gao, X.Z., Coelho, L.D.S.: A new metaheuristic optimization algorithm motivated by elephant herding behavior. Int. J. Bio-inspired Comput. 8(6), 394–409 (2016)

    Article  Google Scholar 

  40. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lai, X., Li, C., Zhang, N.: A multi-objective artificial sheep algorithm. Neural Comput. Appl. 31, 4049–4083 (2019)

    Article  Google Scholar 

  42. Fatma, A.H., Essam, H.H., Mai, S.M., Al-Atabany, W., Mirjalili, S.: Henry gas solubility optimization: a novel physics-based algorithm. Future Gener. Comput. Syst. 110, 646–667 (2019)

    Google Scholar 

  43. Wang, Z., Luo, Q., Zhou, Y.: Hybrid metaheuristic algorithm using butterfly and flower pollination based on mutualism mechanism for global optimization problems. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01025-8

    Article  Google Scholar 

  44. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris Hawks optimization: algorithm and applications. Future Gener. Comput. Syst. 97, 849–872 (2019)

    Article  Google Scholar 

  45. Rao, R.V., Vimal, J.S., Vakharia, D.P.: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011)

    Article  Google Scholar 

  46. Eskandar, H., Sadollah, A., Bahreininejad, A., Hamdi, M.: Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 110–111, 151–166 (2012)

    Article  Google Scholar 

  47. Savsani, P., Vimal, S.: Passing vehicle search (PVS): a novel metaheuristic algorithm. Appl. Math. Model. 40, 3951–3978 (2016)

    Article  Google Scholar 

  48. Chakraborty, S., Saha, A.K., Chakraborty, R., Saha, M., Nama, S.: HSWOA: an ensemble of hunger games search and whale optimization algorithm for global optimization. Int. J. Intell. Syst. (2021). https://doi.org/10.1002/int.22617

    Article  Google Scholar 

  49. Chakraborty, S., Sharma, S., Saha, A. K., & Chakraborty, S. (2021). SHADE–WOA: A metaheuristic algorithm for global optimization. Applied Soft Computing, 113, 107866.

    Article  Google Scholar 

  50. Mezura-Montes, E., Velázquez-Reyes, J., Coello, C.A.C.: Modified differential evolution for constrained optimization. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 25–32. IEEE (2006)

  51. Ezugwu, A.E., Agushaka, J.O., Abualigah, L., Mirjalili, S., Gandomi, A.H.: Prairie dog optimization algorithm. Neural Comput. Appl. (2022). https://doi.org/10.1007/s00521-022-07530-9

    Article  Google Scholar 

  52. Chakraborty, S., Saha, A.K., Sharma, S., Chakraborty, R., Debnath, S.: A hybrid whale optimization algorithm for global optimization. J. Ambient Intell. Humaniz. Comput. (2021). https://doi.org/10.1007/s12652-021-03304-8

    Article  Google Scholar 

  53. Chakraborty, S., Sharma, S., Saha, A.K., Saha, A.: A novel improved whale optimization algorithm to solve numerical optimization and real-world applications. Artif. Intell. Rev. (2022). https://doi.org/10.1007/s10462-021-10114-z

    Article  Google Scholar 

  54. Wang, Y., Cai, Z., Zhou, Y., Fan, Z.: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique. Struct. Multidiscip. Optim. 37, 395–413 (2009)

    Article  Google Scholar 

  55. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)

    Article  Google Scholar 

  57. Sadollah, A., Eskandar, H., Bahreininejad, A., Kim, J.H.: Water cycle algorithm with evaporation rate for solving constrained and unconstrained optimization problems. Appl. Soft Comput. 30, 58–71 (2015)

    Article  Google Scholar 

  58. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  59. Ali, S., Ardeshir, B., Hadi, E., Mohd, H.: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 13(5), 2592–2612 (2013)

    Article  Google Scholar 

  60. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Article  Google Scholar 

  61. Chakraborty, S., Nama, S., Saha, A.K.: An improved symbiotic organisms search algorithm for higher dimensional optimization problems. Knowl. Based Syst. 236, 107779 (2021)

    Article  Google Scholar 

  62. Cheng, M.-Y., Prayogo, D.: Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput. Struct. 139, 98–112 (2014)

    Article  Google Scholar 

  63. Gandomi, A.H., Yang, X.-S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29, 17–35 (2013)

    Article  Google Scholar 

  64. Chickermane, H., Gea, H.: Structural optimization using a new local approximation method. Int. J. Numer. Math. Eng. 39, 829–846 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  65. Saremi, S., Mirjalili, S., Lewis, A.: Grasshopper Optimisation Algorithm: theory and application. Adv. Eng. Softw. 105, 30–47 (2017)

    Article  Google Scholar 

  66. Sharma, S., Saha, A.K., Majumder, A., Nama, S.: MPBOA—a novel hybrid butterfly optimization algorithm with symbiosis organisms search for global optimization and image segmentation. Multimed. Tools Appl. 80, 12035–12076 (2021)

    Article  Google Scholar 

  67. Chakraborty, S., Saha, A.K., Sharma, S., Mirjalili, S., Chakraborty, R.: A novel enhanced whale optimization algorithm for global optimization. Comput. Ind. Eng. 153, 107086 (2020)

    Article  Google Scholar 

  68. Das, B., Roy, S., Rai, R.N., Saha, S.C.: Multi-objective optimization of in situ process parameters in preparation of Al–4.5% Cu/TiC MMC using a grey relation based teaching learning-based optimization algorithm. Proc. Inst. Mech. Eng. E 232(4), 393–407 (2018)

    Article  Google Scholar 

  69. Saaty, T.L.: The Analytical Hierarchy Process. McGraw Hill, New York (1980)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are extremely thankful to the editor and the reviewers for their valuable suggestions and comments, which helped improve the manuscript.

Funding

N/A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apu Kumar Saha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest associated with this study.

Ethical approval

N/A.

Informed consent

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Appendix

Thirty-nine classical benchmark functions used in this experiment (Fmin: Global minima, C: Convex, U: Unimodal, M: Multimodal, S: Separable, N: Non-separable, D: Dimension, Nc: Non convex, d: Differentiable, C: Continuous).

F_No

Function

Dimension

[Range]

F_min

Characteristics

 

Ackley

30

[− 32.768, 32.768]

0

M, N, C, d

 

Cross in tray

2

[− 10, 10]

 − 2.06261

M, Nc, Nd, N

 

Drop Wave

2

[− 5.12, 5.12]

 − 1

U, Nc

 

Gramacy & Lee

1

[0.5, 2]

 − 0.869011134989500

M, C, Nc

 

Griewank

30

[− 600, 600]

0

M, C, N, Nc

 

Langerman

2

[0, 10]

 

M, N

 

Levy

30

[− 10, 10]

0

M, S

 

Rastrigin

30

[− 5.12, 5.12]

0

M, S

 

Schaffer2

2

[− 100, 100]

0

M, N

 

Shubert

2

[− 10, 10]

 − 186.7309

M, S

 

Bohachevsky1

2

[− 100, 100]

0

M, S

 

Bohachevsky2

2

[− 100, 100]

0

M, N

 

Perm 0, d, Beta

30

[− 30, 30]

0

M, N

 

Rotated Hyper-Ellipsoid

30

[− 65.536, 65.536]

 

U

 

Sphere

30

[− 5.12, 5.12]

0

U, S

 

Modified sphere

30

[− 5.12, 5.12]

0

U, S

 

Sum of Different Powers

30

[− 1, 1]

0

U

 

Booth

2

[− 10, 10]

0

M, S

 

MATYAS

2

[− 10, 10]

0

U, N

 

Power Sum

4

[0, 4]

0

M, N

 

Three-Hump Camel

2

[− 5, 5]

0

M, N

 

Dixon-Price

30

[− 10, 10]

 

U, N

 

Rosenbrock

30

[− 5, 10]

0

U, N

 

Modified Rosenbrock

4

[− 5, 10]

0

U, N

 

De Jong5

2

[− 65.536, 65.536]

 

M

 

Easom

2

[− 100, 100]

 − 1

M, S

 

Michalewicz

10

[0, \(\pi\)]

 − 0.966015

M, S

 

Beale

2

[− 4.5, 4.5]

0

U, N

 

Colville

4

[− 10, 10]

0

U, N

 

Goldstein-Price

2

[− 2, 2]

3

M, N

 

Rescaled Goldstein-Price

2

[− 2, 2]

3

M, N

 

Hartmann 3

3

[0, 1]

 − 3.862782

M, N

 

Hartmann 4

4

[0, 1]

 

M, N

 

Hartmann 6

6

[0, 1]

 − 3.32236

M, N

 

RescaledHartmann 6

3

[0, 1]

 − 3.32237

M, N

 

Powell

30

[− 4, 5]

0

U, N

 

Schwefel 1.2

20

[− 100, 100]

0

U, N

 

Schwefel 2.21

30

[− 10, 10]

0

U, S

 

Schwefel2.22

30

[− 10, 10]

0

U, N

B Appendix

2.1 B.1 Multi-plate disc clutch brake problem

$$Minimize f\left(y\right)=\pi \left({y}_{2}^{2}-{y}_{1}^{2}\right){y}_{3}({y}_{5}+1)\rho$$

Subject to \({c}_{1}\left(y\right)={y}_{2}-{y}_{1}-\Delta R\ge 0\)

$${c}_{2}\left(y\right)={l}_{max}-({y}_{5}+1)({y}_{3}+\delta )\ge 0,$$
$${c}_{3}\left(y\right)={P}_{max}-{P}_{rz}\ge 0,$$
$${c}_{4}\left(y\right)={P}_{mx}{v}_{sr max}-{P}_{rz}{v}_{sr}\ge 0,$$
$${c}_{5}\left(y\right)={v}_{sr max}-{v}_{sr}\ge 0,$$
$${c}_{6}\left(y\right)={T}_{max}-T\ge 0,$$
$${c}_{7}\left(y\right)={M}_{h}-s{M}_{s}\ge 0,$$
$${c}_{8}\left(y\right)=T\ge 0,$$

where \({M}_{h}=\frac{2}{3}\mu {y}_{4}{y}_{5}\frac{{y}_{2}^{3}-{y}_{1}^{3}}{{y}_{2}^{2}-{y}_{1}^{2}}\)

$$w=\frac{\pi n}{30} \mathrm{rad}/\mathrm{s},$$
$$A=\pi ({y}_{2}^{2}-{y}_{1}^{2}){\mathrm{ mm}}^{2},$$
$${p}_{rz}=\frac{{y}_{4}}{A} \mathrm{N}/{\mathrm{mm}}^{2},$$
$${v}_{sr}=\frac{{\pi R}_{sr}n}{30} \mathrm{mm}/\mathrm{s},$$
$${R}_{sr}=\frac{2}{3}\frac{{y}_{2}^{3}-{y}_{1}^{3}}{{y}_{2}^{2}-{y}_{1}^{2}} \mathrm{mm},$$
$$T=\frac{{I}_{z}\pi n}{30\left({M}_{h}+{M}_{f}\right)} \mathrm{mm},$$
$$\Delta R=20 \mathrm{mm} {L}_{max}=30 \mathrm{mm}, \mu =0.6,$$
$${T}_{max}=15 \mathrm{s}, s= 1.5, {M}_{s}=40 \mathrm{Nm},{P}_{max}=1 \mathrm{MPa}, \rho =0.0000078\frac{\mathrm{kg}}{{\mathrm{mm}}^{3}},$$
$${v}_{sr max}=10 \frac{\mathrm{m}}{\mathrm{s}} , \delta =0.5 \mathrm{mm}, s=1.5 n=250 \mathrm{rpm}, {I}_{z}=55 \mathrm{kg} {\mathrm{m}}^{2}, {M}_{s}=40 \mathrm{Nm}, {M}_{f}=3 \mathrm{Nm},$$
$$60\le {y}_{1}\le 80, 90\le {y}_{2}\le 110, 1\le {y}_{3}\le 3,$$
$$60\le {y}_{4}\le 80, 90\le {y}_{5}\le 110, i=1, 2, 3, 4, 5.$$

2.2 B.2 Speed reducer problem

$$Minimize f\left(y\right)=0.785{y}_{1}{y}_{2}^{3}\left(3.333{y}_{3}^{2}+14.9334{y}_{3}-42.0934\right),$$
$${c}_{1}\left(y\right)=\frac{27}{{y}_{1}{y}_{2}^{2}{y}_{3}}-1\le 0,$$
$${c}_{2}\left(y\right)=\frac{397.5}{{y}_{1}{y}_{3}^{2}{y}_{2}}-1\le 0,$$
$${c}_{3}\left(y\right)=\frac{1.93{y}_{4}^{3}}{{y}_{1}{y}_{6}^{4}{y}_{3}}-1\le 0,$$
$${c}_{4}\left(y\right)=\frac{1.93{y}_{4}^{3}}{{y}_{1}{y}_{7}^{4}{y}_{3}}-1\le 0,$$
$${c}_{5}\left(y\right)=\frac{1}{110{y}_{6}^{3}}\sqrt{{\left(\frac{745{y}_{4}}{{y}_{2}{y}_{3}}\right)}^{2}+16.9*{10}^{6}}-1\le 0,$$
$${c}_{6}\left(y\right)=\frac{1}{85{y}_{7}^{3}}\sqrt{{\left(\frac{745{y}_{4}}{{y}_{2}{y}_{3}}\right)}^{2}+157.5*{10}^{6}}-1\le 0.$$

2.3 B.3 Car side impact design problem

$$Minimize f\left(u\right)=1.98+4.90 u\left(1\right)+6.67 u\left(2\right)+6.98 u\left(3\right)+4.01 u\left(4\right)+1.78 u\left(5\right)+2.73 u\left(7\right),$$

Subject to

$${c}_{1}\left(u\right)=1.16-0.3717 u\left(2\right) u\left(4\right)-0.00931 u\left(2\right) u\left(10\right)-0.484 u\left(3\right) u\left(9\right)+0.01343 u\left(6\right) u\left(10\right)\le 1,$$
$${c}_{2}\left(u\right)=0.261-0.0159 u\left(1\right) u\left(2\right)-0.188 u\left(1\right) u\left(8\right)-0.019 u\left(2\right) u\left(7\right)+0.0144 u\left(3\right) u\left(5\right) + 0.0008757 u\left(5\right) u\left(10\right)+0.080405 u\left(6\right) u\left(9\right)+0.00139 u\left(8\right)u\left(11\right)+ 0.00001575 u\left(10\right) u\left(11\right)\le 0.32,$$
$${c}_{3}\left(u\right)=0.214+0.00817 u\left(5\right)-0.131 u\left(1\right) u\left(8\right)-0.0704 u\left(1\right) u\left(9\right)+0.03099 u\left(2\right)u\left(6\right) -0.018 u\left(2\right) u\left(7\right)+0.0208 u\left(3\right) y\left(8\right)+0.121u\left(3\right) u\left(9\right)-0.00364 u\left(5\right) u\left(6\right)+ 0.0007715 u\left(5\right) u\left(10\right)-0.0005354 u\left(6\right) u\left(10\right)+0.00121 u\left(8\right) u\left(11\right)\le 0.32,$$
$${c}_{4}\left(u\right)=0.074-0.061 u\left(2\right)-0.163 u\left(3\right) u\left(8\right)+0.001232 u\left(3\right) u\left(10\right)-0.166 u\left(7\right)u\left(9\right) +0.227u{\left(2\right)}^{2} \le 0.32,$$
$${c}_{5}\left(u\right)=28.98+3.818 u\left(3\right)-4.2u\left(1\right) u\left(2\right)+0.0207u\left(5\right) u\left(10\right)+6.63u\left(6\right) u\left(9\right)-7.7 u\left(7\right) u\left(8\right)+0.32 u\left(9\right) u\left(10\right)\le 32,$$
$${c}_{6}\left(u\right)=33.86+2.95 u\left(3\right)+0.1792 u\left(10\right)-5.05 u\left(1\right) u\left(2\right)-11.0 u\left(2\right) u\left(8\right)- 0.0215 u\left(5\right) u\left(10\right)-9.98 u\left(7\right) u\left(8\right)+22.0 u\left(8\right) u\left(9\right)\le 32,$$
$${c}_{7}\left(u\right)=46.36-9.9 u\left(2\right)-12.9 u\left(1\right) u\left(8\right)+0.1107 u\left(3\right) u\left(10\right)\le 32,$$
$${c}_{8}\left(u\right)=4.72-0.5 u\left(4\right)-0.19 u\left(2\right) u\left(3\right)-0.0122 u\left(4\right) u\left(10\right)+0.009325 u\left(6\right) u\left(10\right) +0.000191 u{\left(11\right)}^{2}\le 4,$$
$${c}_{9}\left(u\right)=10.58-0.674 u\left(1\right) u\left(2\right)-1.95 u\left(2\right) u\left(8\right)+0.02054 u\left(3\right) u\left(10\right)-0.0198 u\left(4\right) u\left(10\right)+0.028 u\left(6\right) u\left(10\right)\le 9.9,$$
$${c}_{10}\left(u\right)=16.45-0.489 u\left(3\right) u\left(7\right)-0.843 u\left(5\right) u\left(6\right)+0.0432 u\left(9\right) u\left(10\right)-0.0556 u\left(9\right) u\left(11\right)-0.000786 u{\left(11\right)}^{2}\le 15.7,$$

where \(0.5\le u\left(1\right)-u\left(7\right)\le 1.5\)

$$u\left(8\right), u\left(9\right)\in \left(0.192, 0.345\right),$$
$$-30\le u\left(10\right),u\left(11\right)\le 30.$$

2.4 B.4 Cantilever beam design problem

$$Minimize f\left(y\right)=0.6224({y}_{1}+{y}_{2}+{y}_{3}+{y}_{4}+{y}_{5}$$

Subject to \(c\left(y\right)=\frac{61}{{y}_{1}^{3}}+\frac{37}{{y}_{2}^{3}}+\frac{19}{{y}_{3}^{3}}+\frac{7}{{y}_{4}^{3}}+\frac{1}{{y}_{5}^{3}}\le 1\)

Variables range 0.01 ≤ \({y}_{1}to {y}_{5}\le 100\)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Saha, A.K., Roy, S. et al. A mixed sine cosine butterfly optimization algorithm for global optimization and its application. Cluster Comput 25, 4573–4600 (2022). https://doi.org/10.1007/s10586-022-03649-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03649-5

Keywords

Navigation