Skip to main content

Advertisement

Log in

Edge resource slicing approaches for latency optimization in AI-edge orchestration

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Edge service computing is an emerging paradigm for computing, storage, and communication services to optimize edge framework latency and cost based on mobile edge computing (MEC) devices. The devices are battery-enabled and have limited communication and computation resources. X consolidation is a major issue in distributed heterogeneous MEC orchestrations, where X represents the task scheduling/device selection/channel selection/offloading strategy. The network entities need to enhance network performance under uncertain circumstances for such orchestrations. Haphazard X consolidation leads to abnormal resource and energy usage, quality of service (QoS) and latency of the edge framework. However, this study concentrates on analysing the impact of reinforcement learning-based edge resource consolidation models. The models are classified according to functionality, including device resource management, service request allocation, device selection, and offloading types. Finally, the article discusses and highlights some unresolved challenges for further study on MEC orchestration to enhance offloading strategy and resource management, as well as device and channel selection efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data is obtained from kaggle website https://www.kaggle.com/.

References

  1. Cisco. Cisco global cloud index: Forecast and methodology. White paper (2019)

  2. Ghafari, R., Hassani Kabutarkhani, F., Mansouri, N.: Task scheduling algorithms for energy optimization in cloud environment: a comprehensive review. Clust. Comput. 25, 1–59 (2022)

    Article  Google Scholar 

  3. Ajitha, K.M., Chenthalir Indra, N.: Fisher linear discriminant and discrete global swarm based task scheduling in cloud environment. Clust. Comput. 25, 1–16 (2022)

    Article  Google Scholar 

  4. Khelifi, H., Luo, S., Nour, B., Sellami, A., Moungla, H., Ahmed, S.H., Guizani, M.: Bringing deep learning at the edge of information-centric internet of things. IEEE Commun. Lett. 23(1), 52–55 (2018)

    Article  Google Scholar 

  5. Chhabra, A., Singh, G., Kahlon, K.S.: Multi-criteria HPC task scheduling on IAAS cloud infrastructures using meta-heuristics. Clust. Comput. 24(2), 885–918 (2021)

    Article  Google Scholar 

  6. Huang, X., Lin, Y., Zhang, Z., Guo, X., Shubin, S.: A gradient-based optimization approach for task scheduling problem in cloud computing. Clust. Comput. 25, 1–17 (2022)

    Article  Google Scholar 

  7. Peng, Z., Cui, D., Zuo, J., Li, Q., Bo, X., Lin, W.: Random task scheduling scheme based on reinforcement learning in cloud computing. Clust. Comput. 18(4), 1595–1607 (2015)

    Article  Google Scholar 

  8. Ai, Y., Peng, M., Zhang, K.: Edge computing technologies for internet of things: a primer. Digit. Commun. Netw. 4(2), 77–86 (2018)

    Article  Google Scholar 

  9. Shi, W., Cao, J., Zhang, Q., Li, Y., Lanyu, X.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)

    Article  Google Scholar 

  10. Pan, J., McElhannon, J.: Future edge cloud and edge computing for internet of things applications. IEEE Internet Things J. 5(1), 439–449 (2017)

    Article  Google Scholar 

  11. Chang Liu, Yu., Cao, Y.L., Chen, G., Vokkarane, V., Yunsheng, M., Chen, S., Hou, P.: A new deep learning-based food recognition system for dietary assessment on an edge computing service infrastructure. IEEE Trans. Serv. Comput. 11(2), 249–261 (2017)

    Google Scholar 

  12. Lyu, X., Tian, H., Jiang, L., Vinel, A., Maharjan, S., Gjessing, S., Zhang, Y.: Selective offloading in mobile edge computing for the green internet of things. IEEE Netw. 32(1), 54–60 (2018)

    Article  Google Scholar 

  13. Yousefpour, A., Ishigaki, G., Gour, R., Jue, J.P.: On reducing IoT service delay via fog offloading. IEEE Internet Things J. 5(2), 998–1010 (2018)

    Article  Google Scholar 

  14. Bilal, K., Khalid, O., Erbad, A., Khan, S.U.: Potentials, trends, and prospects in edge technologies: Fog, cloudlet, mobile edge, and micro data centers. Comput. Netw. 130, 94–120 (2018)

    Article  Google Scholar 

  15. Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., Wang, W.: A survey on mobile edge networks: convergence of computing, caching and communications. IEEE Access 5, 6757–6779 (2017)

    Article  Google Scholar 

  16. Kim, H.-W., Yi, G., Park, J.H., Jeong, Y.-S.: Adaptive resource management using many-core processing for fault tolerance based on cyber-physical cloud systems. Future Gener. Comput. Syst. 105, 884–893 (2020)

    Article  Google Scholar 

  17. Nain, Z., Musaddiq, A., Qadri, Y. A., Kim, S. W.: History-aware adaptive route update scheme for low-power and lossy networks. In 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1830–1834 (2021)

  18. Nain, Z., Musaddiq, A., Qadri, Y.A., Nauman, A., Afzal, M.K., Kim, S.W.: Riata: a reinforcement learning-based intelligent routing update scheme for future generation IoT networks. IEEE Access 9, 81161–81172 (2021)

    Article  Google Scholar 

  19. Mohammadi, M., Al-Fuqaha, A., Sorour, S., Guizani, M.: Deep learning for IoT big data and streaming analytics: a survey. IEEE Commun. Surv. Tutor. 20(4), 2923–2960 (2018)

    Article  Google Scholar 

  20. Ni, L., Zhang, J., Jiang, C., Yan, C., Kan, Yu.: Resource allocation strategy in fog computing based on priced timed petri nets. IEEE Internet Things J. 4(5), 1216–1228 (2017)

    Article  Google Scholar 

  21. Wang, J., Libing, W., Choo, K.-K.R., He, D.: Blockchain-based anonymous authentication with key management for smart grid edge computing infrastructure. IEEE Trans. Ind. Inf. 16(3), 1984–1992 (2020)

    Article  Google Scholar 

  22. Franklin Alex Joseph, A., Govindaraju, C.: Channel selection using glow swarm optimization and its application in line of sight secure communication. Clust. Comput. 22(5), 10801–10808 (2019)

    Article  Google Scholar 

  23. Rukmani, K.V., Nagarajan, N.: Enhanced channel allocation scheme for cross layer management in wireless network based on interference management. Clust. Comput. 22(4), 9825–9835 (2019)

    Article  Google Scholar 

  24. Ahmad, T., Ali, S., Shah, S.B.H., Khan, I.U., Hassan, M.A., Ullah, S.I.: Joint mode selection and user association in d2d enabled multitier C-RAN. Clust. Comput. 25, 1–13 (2022)

    Article  Google Scholar 

  25. Yu, X., Zhang, T., Yang, D., Liu, Y., Tao, M.: Joint resource and trajectory optimization for security in UAV-assisted MEC systems. IEEE Trans. Commun. 69(1), 573–588 (2021)

    Article  Google Scholar 

  26. Lei, Y., Zeng, L., Li, Y.-X., Wang, M.-X., Qin, H.: A lightweight authentication protocol for UAV networks based on security and computational resource optimization. IEEE Access 9, 53769–53785 (2021)

    Article  Google Scholar 

  27. Zhang, W.-Z., Elgendy, I.A., Hammad, M., Iliyasu, A.M., Xiaojiang, D., Guizani, M., Abd El-Latif, A.A.: Secure and optimized load balancing for multitier IoT and edge-cloud computing systems. IEEE Internet Things J. 8(10), 8119–8132 (2021)

    Article  Google Scholar 

  28. Li, Y., Ma, J., Miao, Y., Liu, L., Liu, X., Choo, K.-K.R.: Secure and verifiable multikey image search in cloud-assisted edge computing. IEEE Trans. Ind. Inf. 17(8), 5348–5359 (2021)

    Article  Google Scholar 

  29. Zhang, C., Lei, X., Yuan, Y., Song, L.: A learning approach to link adaptation based on multi-entities Bayesian network. Clust. Comput. 22(4), 8463–8473 (2019)

    Article  Google Scholar 

  30. Wang, C., Zhang, Y., Chen, X., Liang, K., Wang, Z.: SDN-based handover authentication scheme for mobile edge computing in cyber-physical systems. IEEE Internet Things J. 6(5), 8692–8701 (2019)

    Article  Google Scholar 

  31. Wang, S., Ye, D., Huang, X., Rong, Yu., Wang, Y., Zhang, Y.: Consortium blockchain for secure resource sharing in vehicular edge computing: a contract-based approach. IEEE Trans. Netw. Sci. Eng. 8(2), 1189–1201 (2021)

    Article  MathSciNet  Google Scholar 

  32. Zhaofeng, M., Xiaochang, W., Jain, D.K., Khan, H., Hongmin, G., Zhen, W.: A blockchain-based trusted data management scheme in edge computing. IEEE Trans. Ind. Inf. 16(3), 2013–2021 (2020)

    Article  Google Scholar 

  33. Deng, R., Rongxing, L., Lai, C., Luan, T.H., Liang, H.: Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. IEEE Internet Things J. 3(6), 1171–1181 (2016)

    Google Scholar 

  34. Kiani, A., Ansari, N.: Toward hierarchical mobile edge computing: an auction-based profit maximization approach. IEEE Internet Things J. 4(6), 2082–2091 (2017)

    Article  Google Scholar 

  35. Li, J., Jin, J., Yuan, D., Zhang, H.: Virtual fog: a virtualization enabled fog computing framework for internet of things. IEEE Internet Things J. 5(1), 121–131 (2017)

    Article  Google Scholar 

  36. Mekala, M.S., Dhiman, G., Srivastava, G., Nain, Z., Zhang, H., Viriyasitavat, W., Varma, G.P.: A DRL-based service offloading approach using DAG for edge computational orchestration. IEEE Trans. Comput. Soc. Syst. (2022). https://doi.org/10.1109/TCSS.2022.3161627

    Article  Google Scholar 

  37. Ren, J., Guo, Y., Zhang, D., Liu, Q., Zhang, Y.: Distributed and efficient object detection in edge computing: challenges and solutions. IEEE Netw. 32(6), 137–143 (2018)

    Article  Google Scholar 

  38. You, C., Zeng, Y., Zhang, R., Huang, K.: Asynchronous mobile-edge computation offloading: energy-efficient resource management. IEEE Trans. Wirel. Commun. 17(11), 7590–7605 (2018)

    Article  Google Scholar 

  39. Munoz, O., Pascual-Iserte, A., Vidal, J.: Optimization of radio and computational resources for energy efficiency in latency-constrained application offloading. IEEE Trans. Veh. Technol. 64(10), 4738–4755 (2014)

    Article  Google Scholar 

  40. Ren, J., Guanding, Yu., Cai, Y., He, Y.: Latency optimization for resource allocation in mobile-edge computation offloading. IEEE Trans. Wirel. Commun. 17(8), 5506–5519 (2018)

    Article  Google Scholar 

  41. Yuan, Q., Zhou, H., Li, J., Liu, Z., Yang, F., Shen, X.S.: Toward efficient content delivery for automated driving services: an edge computing solution. IEEE Netw. 32(1), 80–86 (2018)

    Article  Google Scholar 

  42. Zhang, W., Zhang, Z., Zeadally, S., Chao, H.-C., Leung, V.C.M.: MASM: a multiple-algorithm service model for energy-delay optimization in edge artificial intelligence. IEEE Trans. Ind. Inf. 15(7), 4216–4224 (2019)

    Article  Google Scholar 

  43. Mach, P., Becvar, Z.: Cloud-aware power control for real-time application offloading in mobile edge computing. Trans. Emerg. Telecommun. Technol. 27(5), 648–661 (2016)

    Article  Google Scholar 

  44. Mengwei, X., Qian, F., Zhu, M., Huang, F., Pushp, S., Liu, X.: Deepwear: adaptive local offloading for on-wearable deep learning. IEEE Trans. Mob. Comput. 19(2), 314–330 (2019)

    Google Scholar 

  45. He, J., Wei, J., Chen, K., Tang, Z., Zhou, Y., Zhang, Y.: Multitier fog computing with large-scale IoT data analytics for smart cities. IEEE Internet Things J. 5(2), 677–686 (2017)

    Article  Google Scholar 

  46. Mehdi Sookhak, F., Richard, Yu., He, Y., Talebian, H., Safa, N.S., Zhao, N., Khan, M.K., Kumar, N.: Fog vehicular computing: augmentation of fog computing using vehicular cloud computing. IEEE Veh. Technol. Mag. 12(3), 55–64 (2017)

    Article  Google Scholar 

  47. Li, C., Xue, Y., Wang, J., Zhang, W., Li, T.: Edge-oriented computing paradigms: a survey on architecture design and system management. ACM Comput. Surv. (CSUR) 51(2), 1–34 (2018)

    Article  Google Scholar 

  48. Oteafy, S.M.A., Hassanein, H.S.: Iot in the fog: a roadmap for data-centric iot development. IEEE Commun. Mag. 56(3), 157–163 (2018)

    Article  Google Scholar 

  49. Tao, M., Ota, K., Dong, M.: Foud: Integrating fog and cloud for 5g-enabled v2g networks. IEEE Netw. 31(2), 8–13 (2017)

    Article  Google Scholar 

  50. Liang, K., Zhao, L., Chu, X., Chen, H.-H.: An integrated architecture for software defined and virtualized radio access networks with fog computing. IEEE Netw. 31(1), 80–87 (2017)

    Article  Google Scholar 

  51. Li, H., Ota, K., Dong, M.: Learning iot in edge: deep learning for the internet of things with edge computing. IEEE Netw. 32(1), 96–101 (2018)

    Article  Google Scholar 

  52. Wei, A.Y.B.: Follow me fog: toward seamless handover timing schemes in a fog computing environment. IEEE Commun. Mag. 55(11), 72–78 (2017)

    Article  Google Scholar 

  53. Morabito, R., Farris, I., Iera, A., Taleb, T.: Evaluating performance of containerized IoT services for clustered devices at the network edge. IEEE Internet Things J. 4(4), 1019–1030 (2017)

    Article  Google Scholar 

  54. Lin, G., Zeng, D., Guo, S., Barnawi, A., Xiang, Y.: Cost efficient resource management in fog computing supported medical cyber-physical system. IEEE Trans. Emerg. Top. Comput. 5(1), 108–119 (2015)

    Google Scholar 

  55. Chen, M., Hao, Y.: Task offloading for mobile edge computing in software defined ultra-dense network. IEEE J. Sel. Areas Commun. 36(3), 587–597 (2018)

    Article  MathSciNet  Google Scholar 

  56. Li, L., Ota, K., Dong, M.: Deepnfv: a lightweight framework for intelligent edge network functions virtualization. IEEE Netw. 33(1), 136–141 (2018)

    Article  Google Scholar 

  57. Chien, H.-T., Lin, Y.-D., Lai, C.-L., Wang, C.-T.: End-to-end slicing as a service with computing and communication resource allocation for multi-tenant 5G systems. IEEE Wirel. Commun. 26(5), 104–112 (2019)

    Article  Google Scholar 

  58. Wang, S., Tuor, T., Salonidis, T., Leung, K.K., Makaya, C., He, T., Chan, K.: Adaptive federated learning in resource constrained edge computing systems. IEEE J. Sel. Areas Commun. 37(6), 1205–1221 (2019)

    Article  Google Scholar 

  59. Chen, T., Giannakis, G.B.: Bandit convex optimization for scalable and dynamic IoT management. IEEE Internet Things J. 6(1), 1276–1286 (2018)

    Article  Google Scholar 

  60. Zhang, K., Zhu, Y., Leng, S., He, Y., Maharjan, S., Zhang, Y.: Deep learning empowered task offloading for mobile edge computing in urban informatics. IEEE Internet Things J. 6(5), 7635–7647 (2019)

    Article  Google Scholar 

  61. Chen, X., Zhang, H., Celimuge, W., Mao, S., Ji, Y., Bennis, M.: Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning. IEEE Internet Things J. 6(3), 4005–4018 (2018)

    Article  Google Scholar 

  62. Min, M., Xiao, L., Chen, Y., Cheng, P., Di, W., Zhuang, W.: Learning-based computation offloading for IoT devices with energy harvesting. IEEE Trans. Veh. Technol. 68(2), 1930–1941 (2019)

    Article  Google Scholar 

  63. Zhang, Q., Lin, M., Yang, L.T., Chen, Z., Khan, S.U., Li, P.: A double deep q-learning model for energy-efficient edge scheduling. IEEE Trans. Serv. Comput. 12(5), 739–749 (2018)

    Article  Google Scholar 

  64. Sun, Y., Peng, M., Mao, S.: Deep reinforcement learning-based mode selection and resource management for green fog radio access networks. IEEE Internet Things J. 6(2), 1960–1971 (2018)

    Article  Google Scholar 

  65. Yifei Wei, F., Richard, Yu., Song, M., Han, Z.: Joint optimization of caching, computing, and radio resources for fog-enabled iot using natural actor-critic deep reinforcement learning. IEEE Internet Things J. 6(2), 2061–2073 (2018)

    Google Scholar 

  66. Farris, I., Girau, R., Militano, L., Nitti, M., Atzori, L., Iera, A., Morabito, G.: Social virtual objects in the edge cloud. IEEE Cloud Comput. 2(6), 20–28 (2015)

    Article  Google Scholar 

  67. Fadlullah, Z.M., Tang, F., Mao, B., Kato, N., Akashi, O., Inoue, T., Mizutani, K.: State-of-the-art deep learning: evolving machine intelligence toward tomorrow’s intelligent network traffic control systems. IEEE Commun. Surv.Tutor. 19(4), 2432–2455 (2017)

    Article  Google Scholar 

  68. Li, D., Yuan, D., Li, Y., Junjie, S., Kuan, Y.-C., Liu, C.-C., Chang, M.-C.F.: A reconfigurable streaming deep convolutional neural network accelerator for internet of things. IEEE Trans. Circ. Syst. I Regul. Pap. 65(1), 198–208 (2017)

    Google Scholar 

  69. Wang, F., Gong, W., Liu, J.: On spatial diversity in wifi-based human activity recognition: a deep learning-based approach. IEEE Internet Things J. 6(2), 2035–2047 (2018)

    Article  Google Scholar 

  70. Ye, H., Li, G.Y., Juang, B.-H.F.: Deep reinforcement learning based resource allocation for v2v communications. IEEE Trans. Veh. Technol. 68(4), 3163–3173 (2019)

    Article  Google Scholar 

  71. Xu, Y., Li, L., Soong, B.-H., Li, C.: Fuzzy q-learning based vertical handoff control for vehicular heterogeneous wireless network. In 2014 IEEE International Conference on Communications (ICC), pp. 5653–5658. IEEE (2014)

  72. Banabilah, S., Aloqaily, M., Alsayed, E., Malik, N., Jararweh, Y.: Federated learning review: fundamentals, enabling technologies, and future applications. Inf. Process. Manag. 59(6), 103061 (2022)

    Article  Google Scholar 

  73. Makani, S., Pittala, R., Alsayed, E., Aloqaily, M., Jararweh, Y.: A survey of blockchain applications in sustainable and smart cities. Clust. Comput. 25, 1–22 (2022)

    Article  Google Scholar 

  74. Berdik, D., Otoum, S., Schmidt, N., Porter, D., Jararweh, Y.: A survey on blockchain for information systems management and security. Inf. Process. Manag. 58(1), 102397 (2021)

    Article  Google Scholar 

  75. Al Ridhawi, I., Aloqaily, M., Karray, F.: Intelligent blockchain-enabled communication and services: solutions for moving internet of things devices. IEEE Robot. Autom. Mag. 29, 10–20 (2022)

    Article  Google Scholar 

  76. Zhu, W., Zheng, X., Huang, F., Ruan, Z., Cui, J.: DTSW: a data transmission scheme based on weighted security partition model in industrial internet of things environment. Adv. Mech. Eng. 11(4), 1687814019837113 (2019)

    Article  Google Scholar 

  77. Liang, W., Tang, M., Long, J., Peng, X., Jianlong, X., Li, K.-C.: A secure fabric blockchain-based data transmission technique for industrial internet-of-things. IEEE Trans. Ind. Inf. 15(6), 3582–3592 (2019)

    Article  Google Scholar 

  78. Wang, B., Zhong, S.M., Dong, X.C.: On the novel chaotic secure communication scheme design. Commun. Nonlinear Sci. Numer. Simul. 39, 108–117 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  79. Vaseghi, B., Pourmina, M.A., Mobayen, S.: Secure communication in wireless sensor networks based on chaos synchronization using adaptive sliding mode control. Nonlinear Dyn. 89(3), 1689–1704 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  80. Wang, W., Jia, X., Luo, X., Kurths, J., Yuan, M.: Fixed-time synchronization control of memristive mam neural networks with mixed delays and application in chaotic secure communication. Chaos Solitons Fract. 126, 85–96 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  81. Wang, Z., Huang, X., Zhao, Z.: Synchronization of nonidentical chaotic fractional-order systems with different orders of fractional derivatives. Nonlinear Dyn. 69(3), 999–1007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  82. Cai, Z., Li, X., Ruiz, R.: Resource provisioning for task-batch based workflows with deadlines in public clouds. IEEE Trans. Cloud Comput. 7(3), 814–826 (2017)

    Article  Google Scholar 

  83. Mekala, M.S., Viswanathan, P.: Energy-efficient virtual machine selection based on resource ranking and utilization factor approach in cloud computing for iot. Comput. Electr. Eng. 73, 227–244 (2019)

    Article  Google Scholar 

  84. Xia, W., Quek, T.Q.S., Zhang, J., Jin, S., Zhu, H.: Programmable hierarchical C-RAN: from task scheduling to resource allocation. IEEE Trans. Wirel. Commun. 18(3), 2003–2016 (2019)

    Article  Google Scholar 

  85. Li, C., Tang, J., Tang, H., Luo, Y.: Collaborative cache allocation and task scheduling for data-intensive applications in edge computing environment. Future Gener. Comput. Syst. 95, 249–264 (2019)

    Article  Google Scholar 

  86. Stavrinides, G.L., Karatza, H.D.: An energy-efficient, GOS-aware and cost-effective scheduling approach for real-time workflow applications in cloud computing systems utilizing dvfs and approximate computations. Future Gener. Comput. Syst. 96, 216–226 (2019)

    Article  Google Scholar 

  87. Hassan, H.A., Salem, S.A., Saad, E.M.: A smart energy and reliability aware scheduling algorithm for workflow execution in DVFS-enabled cloud environment. Future Gener. Comput. Syst. 112, 431–448 (2020)

    Article  Google Scholar 

  88. Meng, J., Tan, H., Li, X.-Y., Han, Z., Li, B.: Online deadline-aware task dispatching and scheduling in edge computing. IEEE Trans. Parallel Distrib. Syst. 31(6), 1270–1286 (2019)

    Article  Google Scholar 

  89. Sahni, J., Vidyarthi, D.P.: A cost-effective deadline-constrained dynamic scheduling algorithm for scientific workflows in a cloud environment. IEEE Trans. Cloud Comput. 6(1), 2–18 (2015)

    Article  Google Scholar 

  90. Senthil Kumar, A.M., Venkatesan, M.: Task scheduling in a cloud computing environment using HGPSO algorithm. Clust. Comput. 22(1), 2179–2185 (2019)

    Article  Google Scholar 

  91. Meena, J., Kumar, M., Vardhan, M.: Cost effective genetic algorithm for workflow scheduling in cloud under deadline constraint. IEEE Access 4, 5065–5082 (2016)

    Article  Google Scholar 

  92. Abrishami, S., Naghibzadeh, M., Epema, D.H.J.: Deadline-constrained workflow scheduling algorithms for infrastructure as a service clouds. Future Gener. Comput. Syst. 29(1), 158–169 (2013)

    Article  Google Scholar 

  93. Zhang, W., Zhang, Z., Zeadally, S., Chao, H.-C.: Efficient task scheduling with stochastic delay cost in mobile edge computing. IEEE Commun. Lett. 23(1), 4–7 (2018)

    Article  Google Scholar 

  94. Wang, X., Ning, Z., Guo, S., Wang, L.: Imitation learning enabled task scheduling for online vehicular edge computing. IEEE Trans. Mob. Comput. 21, 598–611 (2020)

    Article  Google Scholar 

  95. Singh, S.P., Nayyar, A., Kaur, H., Singla, A.: Dynamic task scheduling using balanced VM allocation policy for fog computing platforms. Scalable Comput. 20(2), 433–456 (2019)

    Google Scholar 

  96. Wang, Y., Ru, Z.Y., Wang, K., Huang, P.Q.: Joint deployment and task scheduling optimization for large-scale mobile users in multi-UAV-enabled mobile edge computing. IEEE Trans. Cybern. 50(9), 3984–97 (2019)

    Article  Google Scholar 

  97. Breitbach, M., Schäfer, D., Edinger, J., Becker, C.: Context-aware data and task placement in edge computing environments. In 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom, pp. 1–10. IEEE (2019)

  98. Mekala, M.S., Viswanathan, P.: A survey: energy-efficient sensor and VM selection approaches in green computing for x-iot applications. Int. J. Comput. Appl. 42(3), 290–305 (2020)

    Google Scholar 

  99. Nesa, N., Banerjee, I.: Sensorrank: an energy efficient sensor activation algorithm for sensor data fusion in wireless networks. IEEE Internet Things J. 6(2), 2532–2539 (2018)

    Article  Google Scholar 

  100. Liu, M., Li, D., Zeng, Y., Huang, W., Meng, K., Chen, H.: Combinatorial-oriented feedback for sensor data search in internet of things. IEEE Internet Things J. 7(1), 284–297 (2019)

    Article  Google Scholar 

  101. Mekala, M.S., Viswanathan, P.: Equilibrium transmission bi-level energy efficient node selection approach for internet of things. Wirel. Pers. Commun. 108(3), 1635–1663 (2019)

    Article  Google Scholar 

  102. Zhao, Z., Min, G., Gao, W., Yulei, W., Duan, H., Ni, Q.: Deploying edge computing nodes for large-scale iot: a diversity aware approach. IEEE Internet Things J. 5(5), 3606–3614 (2018)

    Article  Google Scholar 

  103. Pham, X.-Q., Nguyen, T.-D., Nguyen, V.D., Huh, E.-N.: Joint node selection and resource allocation for task offloading in scalable vehicle-assisted multi-access edge computing. Symmetry 11(1), 58 (2019)

    Article  MATH  Google Scholar 

  104. Zhang, T., Wen, H., Tang, J., Song, H., Xie, F.: Cooperative jamming secure scheme for IWNS random mobile users aided by edge computing intelligent node selection. IEEE Trans. Ind. Inf. 17(7), 4999–5009 (2020)

    Article  Google Scholar 

  105. Cao, Y., Chen, Y.: QOE-based node selection strategy for edge computing enabled internet-of-vehicles (ec-iov). In 2017 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE (2017)

  106. Mekala, M.S., Viswanathan, P.: (t, n): sensor stipulation with THAM index for smart agriculture decision-making iot system. Wirel. Pers. Commun. 111(3), 1909–1940 (2020)

    Article  Google Scholar 

  107. Shao, M., Liu, J., Yang, Q., Simon, G.: A learning based framework for MEC server planning with uncertain BSS demands. IEEE Access (2020)

  108. Hao, Y., Yinging Jiang, M., Hossain, S., Alhamid, M.F., Amin, S.U.: Learning for smart edge: cognitive learning-based computation offloading. Mob. Netw. Appl. 25(3), 1016–1022 (2020)

    Article  Google Scholar 

  109. Zhang, J., Guo, H., Liu, J.: Adaptive task offloading in vehicular edge computing networks: a reinforcement learning based scheme. Mob. Netw. Appl. 25(5), 1736–1745 (2020)

    Article  Google Scholar 

  110. Yang, G., Hou, L., He, X., He, D., Chan, S., Guizani, M.: Offloading time optimization via Markov decision process in mobile-edge computing. IEEE Internet Things J. 8(4), 2483–93 (2020)

    Article  Google Scholar 

  111. He, Y., Zhao, N., Yin, H.: Integrated networking, caching, and computing for connected vehicles: a deep reinforcement learning approach. IEEE Trans. Veh. Technol. 67(1), 44–55 (2017)

    Article  Google Scholar 

  112. Fengxian Guo, F., Richard, Yu., Zhang, H., Ji, H., Liu, M., Leung, V.C.M.: Adaptive resource allocation in future wireless networks with blockchain and mobile edge computing. IEEE Trans. Wirel. Commun. 19(3), 1689–1703 (2019)

    Google Scholar 

  113. Huang, L., Bi, S., Zhang, Y.J.: Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks. IEEE Trans. Mob. Comput. 19(11), 2581–93 (2019)

    Article  Google Scholar 

  114. Huang, L., Feng, X., Feng, A., Huang, Y., Qian, L.P.: Distributed deep learning-based offloading for mobile edge computing networks. Mob. Netw. Appl. 27, 1123–1130 (2018)

    Article  Google Scholar 

  115. Thanmayatejaswi, G., Varma, G.P.S., Mekala, M.S.: Efficient task optimization algorithm for green computing in cloud. Internet Technol. Lett. p. e254 (2022)

  116. Liang Huang, X., Feng, C.Z., Qian, L., Yuan, W.: Deep reinforcement learning-based joint task offloading and bandwidth allocation for multi-user mobile edge computing. Digit. Commun. Netw. 5(1), 10–17 (2019)

    Article  Google Scholar 

  117. Rose Qingyang, H., et al.: Mobility-aware edge caching and computing in vehicle networks: a deep reinforcement learning. IEEE Trans. Veh. Technol. 67(11), 10190–10203 (2018)

    Article  Google Scholar 

  118. He, Y., Liang, C., Yu, F.R., Han, Z.: Trust-based social networks with computing, caching and communications: a deep reinforcement learning approach. IEEE Trans. Netw. Sci. Eng. 7(1), 66–79 (2018)

    Article  Google Scholar 

  119. Haifeng, L., Chunhua, G., Luo, F., Ding, W., Liu, X.: Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning. Future Gener. Comput. Syst. 102, 847–861 (2020)

    Article  Google Scholar 

  120. Zhang, C., Zheng, Z.: Task migration for mobile edge computing using deep reinforcement learning. Future Gener. Comput. Syst. 96, 111–118 (2019)

    Article  Google Scholar 

  121. Zeng, D., Lin, G., Pan, S., Cai, J., Guo, S.: Resource management at the network edge: a deep reinforcement learning approach. IEEE Netw. 33(3), 26–33 (2019)

    Article  Google Scholar 

  122. Jie, X., Chen, L., Ren, S.: Online learning for offloading and autoscaling in energy harvesting mobile edge computing. IEEE Trans. Cognitive Commun. Netw. 3(3), 361–373 (2017)

    Article  Google Scholar 

  123. Qiao, G., Leng, S., Zhang, Y.: Online learning and optimization for computation offloading in d2d edge computing and networks. Mob. Netw. Appl. 27, 1111–1122 (2019)

    Article  Google Scholar 

  124. Wang, R., Li, M., Peng, L., Ying, H., Hassan, M.M., Alelaiwi, A.: Cognitive multi-agent empowering mobile edge computing for resource caching and collaboration. Future Gener. Comput. Syst. 102, 66–74 (2020)

    Article  Google Scholar 

  125. Kao, Y.-H., Krishnamachari, B., Ra, M.-R., Bai, F.: Hermes: latency optimal task assignment for resource-constrained mobile computing. IEEE Trans. Mob. Comput. 16(11), 3056–3069 (2017)

    Article  Google Scholar 

  126. Sun, Y., Zhou, S., Jie, X.: EMM: energy-aware mobility management for mobile edge computing in ultra dense networks. IEEE J. Sel. Areas Commun. 35(11), 2637–2646 (2017)

    Article  Google Scholar 

  127. Cui, Q., Gong, Z., Ni, W., Hou, Y., Chen, X., Tao, X., Zhang, P.: Stochastic online learning for mobile edge computing: learning from changes. IEEE Commun. Mag. 57(3), 63–69 (2019)

    Article  Google Scholar 

  128. Zhang, F., Ge, J., Wong, C., Li, C., Chen, X., Zhang, S., Luo, B., Zhang, H., Chang, V.: Online learning offloading framework for heterogeneous mobile edge computing system. J. Parallel Distrib. Comput. 128, 167–183 (2019)

    Article  Google Scholar 

  129. Liang Huang, X., Feng, L.Z., Qian, L., Yuan, W.: Multi-server multi-user multi-task computation offloading for mobile edge computing networks. Sensors 19(6), 1446 (2019)

    Article  Google Scholar 

  130. Liang, F., Wei, Yu., Liu, X., Griffith, D., Golmie, N.: Toward edge-based deep learning in industrial internet of things. IEEE Internet Things J. 7(5), 4329–4341 (2020)

    Article  Google Scholar 

  131. Zhao, X., Yang, K., Chen, Q., Peng, D., Jiang, H., Xianze, X., Shuang, X.: Deep learning based mobile data offloading in mobile edge computing systems. Future Gener. Comput. Syst. 99, 346–355 (2019)

    Article  Google Scholar 

  132. Mahmoodi, S.E., Uma, R.N., Subbalakshmi, K.P.: Optimal joint scheduling and cloud offloading for mobile applications. IEEE Trans. Cloud Comput. 7(2), 301–13 (2016)

    Article  Google Scholar 

  133. Liu, J., Mao, Y., Zhang, J., Letaief, K. B: Delay-optimal computation task scheduling for mobile-edge computing systems. In 2016 IEEE International Symposium on Information Theory (ISIT), pp. 1451–1455. IEEE (2016)

  134. Jehangiri, A.I., Maqsood, T., Ahmad, Z., Umar, A.I., Shuja, J., Alanazi, E., Alasmary, W., et al.: Mobility-aware computational offloading in mobile edge networks: a survey. Clust. Comput. 24(4), 2735–2756 (2021)

    Article  Google Scholar 

  135. Keshavarznejad, M., Rezvani, M.H., Adabi, S.: Delay-aware optimization of energy consumption for task offloading in fog environments using metaheuristic algorithms. Clust. Comput. 24(3), 1825–1853 (2021)

    Article  Google Scholar 

  136. Guo, X., Du, Z., Jin, S.: Nash equilibrium and social optimization of a task offloading strategy with real-time virtual machine repair in an edge computing system. Clust. Comput. 25, 3785–3797 (2022)

    Article  Google Scholar 

  137. Mao, Y., Zhang, J., Letaief, K.B.: Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE J. Sel. Areas Commun. 34(12), 3590–3605 (2016)

    Article  Google Scholar 

  138. Patel, Y.S., Reddy, M., Misra, R.: Energy and cost trade-off for computational tasks offloading in mobile multi-tenant clouds. Clust. Comput. 24(3), 1793–1824 (2021)

    Article  Google Scholar 

  139. Jehangiri, A.I., Maqsood, T., Umar, A.I., Shuja, J., Ahmad, Z., Dhaou, I.B., Alsharekh, M.F.: Limpo: lightweight mobility prediction and offloading framework using machine learning for mobile edge computing. Clust. Comput. (2022). https://doi.org/10.1007/s10586-021-03518-7(2022)

    Article  Google Scholar 

  140. Ulukus, S., Yener, A., Erkip, E., Simeone, O., Zorzi, M., Grover, P., Huang, K.: Energy harvesting wireless communications: a review of recent advances. IEEE J. Sel. Areas Commun. 33(3), 360–381 (2015)

    Article  Google Scholar 

  141. Ouarnoughi, H., Strugeon, G.-L., Niar, S., et al.: Simulating multi-agent-based computation offloading for autonomous cars. Clust. Comput. 25, 2755–2766 (2021)

    Article  Google Scholar 

  142. Zhang, W., Wen, Y., Guan, K., Kilper, D., Luo, H., Dapeng Oliver, W.: Energy-optimal mobile cloud computing under stochastic wireless channel. IEEE Trans. Wirel. Commun. 12(9), 4569–4581 (2013)

    Article  Google Scholar 

  143. Mekala, M.S., Patan, R., Gandomi, A.H., Park, J.H., Jung, H.-Y.: A drl based 4-R computation model for object detection on rsu using lidar in ilot. In 2021 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 01–08 (2021)

  144. Chen, X., Jiao, L., Li, W., Xiaoming, F.: Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Netw. 24(5), 2795–2808 (2015)

    Article  Google Scholar 

  145. Zhang, D., Cao, L., Zhu, H., Zhang, T., Jinyu, D., Jiang, K.: Task offloading method of edge computing in internet of vehicles based on deep reinforcement learning. Clust. Comput. 25(2), 1175–1187 (2022)

    Article  Google Scholar 

  146. Fersi, G.: Fog computing and internet of things in one building block: a survey and an overview of interacting technologies. Clust. Comput. 24(4), 2757–2787 (2021)

    Article  Google Scholar 

  147. Mekala, M.S., Park, W., Dhiman, G., Srivastava, G., Park, J.H., Jung, H.-Y.: Deep learning inspired object consolidation approaches using lidar data for autonomous driving: a review. Arch. Comput. Methods Eng. 29, 2579–2599 (2021)

    Article  MathSciNet  Google Scholar 

  148. Mekala, M.S., Park, W., Dhiman, G., Srivastava, G., Park, J.H., Jung, H.-Y.: Deep learning inspired object consolidation approaches using lidar data for autonomous driving: a review. Arch. Comput. Methods Eng. 54(359), 01–21 (2022)

    MathSciNet  Google Scholar 

  149. Morshed, A., Jayaraman, P.P., Sellis, T., Georgakopoulos, D., Villari, M., Ranjan, R.: Deep osmosis: holistic distributed deep learning in osmotic computing. IEEE Cloud Comput. 4(6), 22–32 (2017)

    Article  Google Scholar 

  150. Zhang, P., Liu, J.K., Richard Yu, F., Sookhak, M., Man Ho, A., Luo, X.: A survey on access control in fog computing. IEEE Commun. Mag. 56(2), 144–149 (2018)

    Article  Google Scholar 

  151. Ning, Z., Dong, P., Wang, X., Obaidat, M.S., Xiping, H., Guo, L., Guo, Y., Huang, J., Bin, H., Li, Y.: When deep reinforcement learning meets 5G-enabled vehicular networks: a distributed offloading framework for traffic big data. IEEE Trans. Ind. Inf. 16(2), 1352–1361 (2019)

    Article  Google Scholar 

  152. Qi, Q., Wang, J., Ma, Z., Sun, H., Cao, Y., Zhang, L., Liao, J.: Knowledge-driven service offloading decision for vehicular edge computing: a deep reinforcement learning approach. IEEE Trans. Veh. Technol. 68(5), 4192–4203 (2019)

    Article  Google Scholar 

  153. Li, M., Gao, J., Zhang, N., Zhao, L., Shen, X.: Collaborative computing in vehicular networks: a deep reinforcement learning approach. In ICC 2020-2020 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2020)

  154. Ning, Z., Zhang, K., Wang, X., Obaidat, M.S., Guo, L., Hu, X., Hu, B., Guo, Y., Sadoun, B., Kwok, R.Y.: Joint computing and caching in 5G-envisioned Internet of vehicles: a deep reinforcement learning-based traffic control system. IEEE Trans. Intell. Transp. Syst. 22(8), 5201–12 (2020)

    Article  Google Scholar 

  155. Atallah, R., Assi, C., Khabbaz, M.: Deep reinforcement learning-based scheduling for roadside communication networks. In 2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pp. 1–8. IEEE (2017)

  156. Atallah, R.F., Assi, C.M., Khabbaz, M.J.: Scheduling the operation of a connected vehicular network using deep reinforcement learning. IEEE Trans. Intell. Transp. Syst. 20(5), 1669–1682 (2018)

    Article  Google Scholar 

  157. Djenouri, Y., Srivastava, G., Yazidi, A., Lin, J.C.-W.: An edge-driven multi-agent optimization model for infectious disease detection. Appl. Intell. 52, 14362–14373 (2022)

    Article  Google Scholar 

  158. Menaga, D., Ambati, L.S., Bojja, G.R.: Optimal trained long short-term memory for opinion mining: a hybrid semantic knowledgebase approach. Int. J. Intell. Robot. Appl. (2022). https://doi.org/10.1007/s41315-022-00248-w

    Article  Google Scholar 

  159. Othman, M., Madani, S.A., Khan, S.U., et al.: A survey of mobile cloud computing application models. IEEE Commun. Surv. Tutor. 16(1), 393–413 (2013)

    Google Scholar 

  160. Baza, M., Lasla, N., Mahmoud, M., Srivastava, G., Abdallah, M.: B-ride: ride sharing with privacy-preservation, trust and fair payment atop public blockchain. IEEE Trans. Netw. Sci. Eng. 8(2), 1214–29 (2019)

    Article  Google Scholar 

  161. Yilmaz, I., Baza, M., Amer, R., Morsi, R.: On the assessment of robustness of telemedicine applications against adversarial machine learning attacks. In: 33th International Conference on Industrial, Engineering Other Applications of Applied Intelligent Systems (2021)

  162. Razaque, A., Halder, D., Amsaad, F., Mohamed, B.: Analysis of sentimental behaviour over social data using machine learning algorithms. In: 33th International Conference on Industrial, Engineering Other Applications of Applied Intelligent Systems (2021)

  163. Jia, M., Cao, J., Liang, W.: Optimal cloudlet placement and user to cloudlet allocation in wireless metropolitan area networks. IEEE Trans. Cloud Comput. 5(4), 725–737 (2015)

    Article  Google Scholar 

  164. Mekala, M.S.: Study on Measurement Index and Adaptive Energy Efficient VM Selection Based on Resource Utilization with Node Stipulation in Cloud Computing For IoT. PhD thesis, VIT University (2019)

  165. Machen, A., Wang, S., Leung, K.K., Ko, B.J., Salonidis, T.: Live service migration in mobile edge clouds. IEEE Wirel. Commun. 25(1), 140–147 (2017)

    Article  Google Scholar 

  166. Mekala, M.S., Viswanathan, P., Srinivasu, N., Varma, G.P.S.: Accurate decision-making system for mining environment using li-fi 5G technology over IoT framework. In 2019 International Conference on contemporary Computing and Informatics (IC3I), pp. 74–79. IEEE (2019)

Download references

Funding

This work was supported in part by the Basic Science Research Programs of the Ministry of Education (Grant No. NRF-2018R1A2B6005105) and in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (Grant No. 2019R1A5A8080290).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: KP; Methodology: KP and MSM; Validation: MSM; Writing—Original Draft: KP; Writing—Review & Editing: MSM, and GS.

Corresponding authors

Correspondence to M. S. Mekala or Gautam Srivastava.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest in this paper.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrika, P.K., Mekala, M.S. & Srivastava, G. Edge resource slicing approaches for latency optimization in AI-edge orchestration. Cluster Comput 26, 1659–1683 (2023). https://doi.org/10.1007/s10586-022-03817-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03817-7

Keywords

Navigation