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Abstract The emerging need for societal transitions raises the need for a better un-
derstanding of the dynamic nature of large scale societal systems, and therefore the
development of an analytical approach for drawing dynamic conclusions based on
system’s dynamic mechanisms, feedback relationships and interacting components.

The objective of this study is to explore the degree to which System Dynamics
as an approach enhances the process of understanding transition dynamics in socio-
technical systems. In other words, it is aimed to reveal the type of insights that can
be developed about such systems and their dynamic behaviour using the approach,
as well as the shortcomings of the approach in this challenging task. In order to do
s0, a modeling study aiming to understand the underlying mechanisms of the waste
management transition in the Netherlands is conducted.

The quantitative model developed is based on the historical case of the waste man-
agement transition of the Netherlands, and it portrays issues as the dynamics of ac-
tors’ preferences, development of infrastructure and environmental consequences of
dominant mode of functioning and provides an instance for demonstrating and eval-
uating the feedback-focused perspective discussed in this paper.

Finally, the paper discusses a set of points regarding the utilized approach, System
Dynamics, observed during this study both in general and in the specific context of
transitions. In short, System Dynamics stands as a promising approach mainly due
to its strength in explaining the source of complex dynamics based on interacting
feedback loops, but it also has certain drawbacks in the context of transitions.
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1 Introduction

The severity of the problems experienced in the socio-technical systems, and the
rising concerns about the sustainability of the current functioning and the structure
of the large-scale societal systems requires understanding how to change such sys-
tems. Given the interconnection of social and physical/technological components in
such systems, these processes of change are complex because these are long-term
structural change processes spreading over several aspects of the societal system,
such as culture, technology, institutions and infrastructure, and are referred to as
transitions (Rotmans et al. 2001; Rotmans 2005). Additionally, designing effective
interventions in order to steer them is troublesome. These aspects of the transition
processes are already discussed in the relevant literature (Berkhout et al. 2004; Geels
2002, 2005b; Geels and Schot 2007; Loorbach 2007; van der Brugge et al. 2005;
Unruh 2000, 2002).

This difficulty raises the need for a better understanding of the dynamic nature of
such systems. The dynamic complexity of the transition processes that makes them
hard to comprehend arises mainly from the way the elements of the societal systems
are arranged and the way they interact. The actors in these systems are embedded in
a web of feedbacks that make their future actions conditioned to their own and other
actors’ actions. These feedbacks may come from the technical, social and environ-
mental domains, and some of these feedbacks are slow, whereas others are fast. Cou-
pling this with the multiplicity of the actors in these systems (i.e. multi-actor aspect),
a big set of interacting feedback loops with different speeds and impact strengths
seems to be in operation. The second aspect of these systems that contribute to their
dynamic complexity is the time delays embedded in the system. These delays can
be identified between the actions of the actors and their consequences (e.g. capac-
ity increase decisions and the realization of the new capacity installation), as well
as in the information diffusion processes (e.g. time to recognize the supply shortage
in the market). Apart from these two aspects, these systems also include non-linear
interactions among their components. Variable returns-to-scale in technological de-
velopment, production costs, or learning processes stand as some examples of such
non-linearities.

Understanding the dynamics of transitions is crucial in the context of policy mak-
ing. However, the aspects of societal systems mentioned above (i.e. feedback loops,
time delays and non-linear interactions) make it a hard and challenging task. The
system boundaries used by the policy makers, which are generally not wide enough
to capture some of the important feedback loops, is one side of the problem. Apart
from that, misperception of the feedbacks, difficulty in reasoning about causes and
effects distant in time (i.e. due to time delays), and failure to make inferences about
dynamics of a system that includes even a modest number of feedback loops (i.e.
computational burden exceeding mental skills) are other known problems that stand
in the way of learning more about the dynamic complexity of these systems. The ex-
istence of such problems in reasoning about complex systems is demonstrated clearly
in various studies, of which a subset is presented by Sterman (1994, 2000).

When discussing the challenges of understanding the dynamic complexity of sys-
tems, Sterman highlights a set of elements crucial in learning about such systems
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(Sterman 1994). One of these elements is a set of tools to articulate and frame issues,
elicit knowledge and beliefs, and create maps of the feedback structure of an issue
from that knowledge. The other set of crucial elements are formal models and simu-
lation methods to assess the dynamics of those maps, test new policies, and practice
new skills. We recognize System Dynamics (SD), which is proposed as an approach
for studying systems with dynamic complexity, as an approach that incorporates such
elements and evaluate it as having the potential of being a fruitful approach for un-
derstanding more about transitions of societal systems.

The main objective of this study is to explore the degree to which SD as an ap-
proach enhances the process of understanding transition dynamics. In other words,
we aim to reveal the type of insights that can be gathered about such systems and
their dynamic behaviour using the approach, as well as the shortcomings of the ap-
proach in this challenging task. In order to do so, we conduct a modeling study for a
specific societal transition case; the waste management transition of the Netherlands.
By using SD, we aim to study, at a high aggregation level, the dynamics of the given
transition case in terms of a certain set of actors, their objectives, their interaction with
the other components of the system and their decision mechanisms. While doing so,
we also aim to look at the process from a wider perspective and evaluate the process,
highlighting the advantages and shortcomings of SD approach in this context.

The next section is a brief introduction to SD as a modeling approach. Section 3
explains the objective of this modelling study and describes the modelling process of
the waste management case of the Netherlands. Section 4 presents the results of the
base run and the sensitivity analysis. The lessons learned in this modeling process are
presented in Sect. 5. Section 6 is devoted to the discussion on the assessment of SD
based on this modeling study, and to the main conclusions.

2 System Dynamics (SD)

System Dynamics (SD), which is mainly known as a modeling method that relies
on differential equations, appeared in the literature by the works of Forrester in the
1960s (Forrester 1961, 1969). However, SD does not only cover how to model a
given system, but also how and where to look for the underlying mechanisms of
the observed behaviour (i.e. has an embedded epistemological perspective). It would
therefore be more appropriate to consider it as an approach for studying the dynamic
behaviour of systems benefiting from quantitative simulation models.

As an approach for studying the dynamic behavior of socio-economic systems,
SD focuses on feedback relations and delays embedded in the system structure. This
is clearly expressed by Richardson as follows,

“The expressed goal of the SD approach is understanding how a system’s feed-
back structure gives rise to its dynamic behavior.” (Richardson 1991, p. 299)

A researcher studying a certain (problematic) dynamic system behaviour with a
SD perspective will be relying on qualitative as well as quantitative data about the
system and the studied behaviour in order to conceptualize the system structure that
is influential in the emergence of such a dynamic behaviour. This process basically
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focuses on identification of important components of the system, their interactions,
time-delays and the feedback loops, which are closed sequences of causes and effects
(Richardson and Pugh 1961), formed by these interactions (Sterman 2000). Such a
depiction of the system constitutes a hypothesis about the structure of the system that
yields the observed dynamics. In that sense, the feedback structure conceptualized
by the researcher is referred to as the dynamic hypothesis in the SD approach. This
dynamic hypothesis is tested and updated based on the behaviour demonstrated by the
model until it is concluded that a good dynamic mechanism is identified in the system
that explains the observed behaviour. SD practitioners use visual conceptualization
tools such as causal loop diagrams (CLD) or influence diagrams (ID) during the
construction of a dynamic hypothesis (Coyle 2000; Sterman 2000).

The fundamental epistemological perspective of the SD approach is that the inter-
nal causal structure is responsible for the dynamic behaviour to be understood (i.e.
the way system components interact that mainly conditions the overall dynamics of
the system being observed). Explanations for the observed behaviour come therefore
from the system structure itself (i.e. endogenous explanation) in the form of feedback
loops, delays and non-linearities embedded in the system, not from single decisions
or external disturbances (Richardson 1991). This assumption is key for determining
the decisions regarding the system boundary employed in model construction in SD;
any component or relationship hypothesized to influence the observed behaviour shall
be considered as a part of the system, and the system boundary shall be large enough
to cover any feedback loop that is conceptualized to play an important role in the
long-term behaviour of the system.

Similar to other modeling approaches, a four stage modeling process (i.e. concep-
tualization, model formulation, validation and experimentation), followed rather in a
recursive than a linear manner (Randers 1980; Sterman 2000), is used in SD. One of
the issues that differentiates SD from other modeling approaches is its emphasis on
behaviour patterns, rather than numerical accuracy during the validation and exper-
imentation stages (Barlas and Kanar 1999; Yiicel and Barlas 2007). This is in line
with the focus of SD on understanding the structural cause of the dynamic behaviour,
rather than on generating numerical predictions regarding the future behaviour of
the studied system, especially because the uncertainty level of numerical prediction
increases exponentially when studying long term dynamics.

The focus on long-term behaviour and the emphasis on the system aspects yielding
dynamic complexity (i.e. non-linearities, delays, etc.) made SD a favorable approach
to be utilized in studying transition dynamics. Despite differences in their applica-
tion domains, several studies already utilized the approach in exploring transition
dynamics (Fiddaman 1997; Homer 1987; Schade and Schade 2005; Sterman 1981;
Struben and Sterman 2008).

3 Learning about the Dutch waste management transition
The way waste is handled in the Netherlands went through a significant change over
the last four decades, which includes changes in various aspects from the infrastruc-

ture used to the formal institutions about the issue. In that sense, this long-term
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change in the waste management system is accepted as a transition. Although his-
torical narratives of the process that are mainly descriptive in nature are available, a
proper understanding about the underlying dynamics is lacking.

In this modeling study we aim to develop some insight about the way the waste
management system evolved over time, and try to explain the dynamic behavior in
terms of the way the system components were interacting. In doing so, we will be
using SD as an approach, and trying to incorporate important elements and their
interactions of the system in a quantitative model. By using the model, we will be
able to see various interactions and developments mentioned in the narrative of the
case simultaneously at work. The insights to be developed using the model about the
underlying mechanisms of the system behavior are important in the sense that they
have the potential to be transfered to other transition contexts (e.g. mobility, energy,
health, etc.).

The following sub-section will present a brief summary of the developments ob-
served in the Dutch waste management system (for an extensive description of this
transition, which served as the basis for this study, please refer to Loorbach (2007)).
Next, the model developed for the problem is presented. Last two sub-sections are
devoted to the model behavior analysis and conclusions regarding this modeling ex-
ercise.

3.1 Waste management transition in the Netherlands

The second half of the 20th century can be characterized with a significantly growing
amount of waste as a direct consequence of the new lifestyle and economic sys-
tem, promoting increased consumption. In line with this, the 1960s brought enor-
mous amount of waste, especially synthetics in the form of packaging materials and
disposable products. Additionally, chemicals and toxic substances were also part of
this stream. By that time, it was already socially and institutionally assumed that the
government should be responsible for the waste management (Collection-treatment-
disposal). An almost exponential growth of waste to be handled was exerting serious
pressure on the existing waste handling system. By the end of 1960s, the dominant
way of dealing with this waste was landfilling.

The environmental concerns being raised at a global scale and the high volume of
waste being landfilled triggered the change in the social awareness during 1970’s
regarding the environmental consequences of the landfilling practice. Meanwhile,
some significant changes in the governmental arena were also taking place paral-
lel to the changes in public opinion. The law on waste was pronounced and a method
for ranking different types of waste management—better known as the “Lansink’s
Ladder”—was made public. The introduction of the law on waste forced the accep-
tance of a separate waste collection system by waste handlers. Again recycling and
re-use emerged in the form of alternative circuits for glass, paper, clothes and met-
als. By the end of the 1970s waste collection and transportation were organized as
municipal service.

In the 1980s the social awareness increased due to deforestation and acid rain
while searching for a healthy environment. Additionally, the Lansink’s Ladder be-
came the basis of a law pronounced in the mid 1980s. Because of that law, incin-
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eration became the method promoted by the government for waste disposal, which
increased the investments in this kind of facilities.

In the 1990s, the institutional and market structure, the physical infrastructure, the
practices and culture changed in order to improve efficiency and economic benefit
from the waste management. Not only the waste practices in households but also the
waste management system itself diversified, making possible an intensive use of the
different waste flows and a shift from landfilling practices to incineration and reuse at
the waste management level, and recycling at household level at the end of the 1990s.
This situation did not impede the growth of total waste production.

At the beginning of the 21st century, the Dutch waste management system can be
characterized as a re-use dominated system in which landfilling is the least utilized
option. At the same time, market developments, organizational aspects, policies and
individual practices reached a temporal equilibrium.

3.2 Model description and specification

Based on the case study summarized above, three major means of managing waste,
which will be referred to as options, are identified in the Dutch waste manage-
ment system, namely landfilling, incineration and re-use. As mentioned before and
also highlighted by other authors working on societal transitions (Homer 1987;
Struben and Sterman 2008), a wide system boundary is needed in order to prop-
erly capture the ongoing dynamics in a transition process. Hence, apart from the fast
dynamics at the decision-makers’ level, our model also incorporates slower environ-
mental dynamics. Briefly, the decision-makers stand at the core of the conceptual-
ization, and the model covers the information flow, preference change and decision
change dynamics (i.e. decisions regarding feasible waste management options) of rel-
evant actors in the waste management system. These constitute the fast processes in
the model. Additionally, the model also incorporates the processes of infrastructure
development and endogenous technological development (e.g. improvements air and
soil pollution caused per unit of waste processed) regarding available waste manage-
ment options, which are basically driven by the decisions and resource allocations
of the decision-makers. Finally, the dynamics of aggregate space used for waste, air
pollution and soil pollution levels are considered as the relevant slow processes in the
system. This briefly depicts the boundaries of our model.

We utilize a conceptual framework that guide us in mapping the obtained informa-
tion about the system for the dynamic hypothesis we develop regarding the observed
dynamics of the system. Due to the possibility of recognizing most of its aspects in
other transition processes, a general discussion on the elements of this framework
will be followed by the specification of these elements in the case of the Dutch waste
management transition. The following subsections aim to provide a summary of the
main assumptions, the boundary and the important formulations of the model. The
full set of model equations and the parameter values used, in the form of Vensim
model equations, can be found in the electronic supplement of this article.

3.2.1 Multi-actor nature of the system

Actors’ decisions result in a change in the system and the nature of the change varies
depending on the type of the decision being made. A decision can be related to e.g.
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“using public transport”, or “investing in public transport”. Based on the actors’ de-
cision, the impact on the societal system being considered will vary. This results in
the need for defining actor types based on the impact of their decisions on the system.
Based on an inductive study using a set of empirical transition case studies (van der
Brugge et al. 2005; Geels 2002, 2005a, 2005b; Loorbach 2007), the following four
actor types, or actor roles are identified;

— Providers: Actors who provide and maintain the means for fulfilling the societal
function and whose decisions influence the means of provision (e.g. infrastructure).
This includes maintaining the infrastructure, supplying a certain artefact, investing
in new options, etc. The societal function being defined as the management of
the waste produced, the providers for our specific case are the contractors that
work with local municipalities and providing them waste management services
(e.g. incineration, landfilling).

— Regulators: Actors whose preferences regarding the means for fulfilling the identi-
fied function influence their use via regulations (e.g. a government agent providing
subsidies or taxes). The decisions of these actors have an impact on, for exam-
ple, laws and regulations regarding the available options. The representative of the
regulator-type actor in the waste management transition is the central Dutch gov-
ernment.

— Practitioners: Actors who actually use the available means for fulfilling the soci-
etal function of concern. Local municipalities, being responsible of managing (i.e.
planning and organizing waste collection and removal) the waste collected, are
identified as the main practitioners of this case.

— Supporters: These actors’ preferences regarding a means for fulfilling the identi-
fied function may influence the way it is perceived as more or less favorable by
other actors. However, their influence on the perception of the means, or the means
themselves is indirect. The decisions of this actor group to support or oppose an
option at the most general level are thought to be influencing the social percep-
tion regarding that option. In the Dutch waste management case, the supporters are
used to represent the common opinion in the public regarding the waste manage-
ment options.

As mentioned above, the categorization of the actors is done on the basis of dif-
ferences in the nature and consequences of their decisions. Going over the actors
covered in this model, the central government is responsible for the institutional set-
ting about the waste management issue. In reality this is done via laws, regulations,
subsidies, etc. In the model, a set of variables represent the degree of support for the
options in the regulatory arena. In each time period, the regulator (i.e. central gov-
ernment) is conceptualized as deciding on how much to alter this state of regulatory
support (i.e. increase/decrease the regulatory support for an option). The decisions
of the practitioner (i.e. municipalities) is conceptualized to be about how much to
alter the shares of each option in waste handling (i.e. percentage of total waste to be
handled via a particular option), while in reality this is done by hiring more waste
contractors of the preferred option for waste handling and less of the least preferred
option. On the provider side, decisions are related to capacity management and they
decide on how much to change their investment behavior, which is conceptualised
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as the percentage of capital investment allocated to a particular option. Finally, the
supporters are assumed to have an opinion about the convenience of each option, and
their instantaneous decisions are about in which way and how much to change them;
however their change in opinion is conceptualised in a rather continuous way. The
formulation of these decisions will be discussed in the following section.

Apart from being heterogenous in terms of the nature and impact of their de-
cisions, actors naturally have differing objectives, which is also highlighted as the
multi-actor nature of the transitions (Rotmans 2005). Hence, in the model each ac-
tor is assumed to have a set of objectives, and makes decisions according to those
objectives. Table 1 summarizes the objectives of each actor as well as the monitored
attributes of the system used by those actors in assessing their situation in relation
to these objectives. For example, one of the objectives of the government (i.e. regu-
lator) is identified to be complying with the public opinion as much as possible. So,
in assessing the degree to which its decisions fulfill this objective, the actor uses the
information it has about public support for each waste management option.

3.2.2 Formalization of the decision process

In the way actors are conceptualized in the model, the actors are facing a multi-
objective decision process. Referring to the decision analysis field (Keeney and Raiffa
1993; Keeney and Gregory 2005), in order to formalize such a multi-objective deci-
sion making process two fundamental components need to be specified; a preference
structure for the actor and attributes that will be monitored by the actor to evaluate
the consequences of decisions.

In the formalization of the conceptualized decision process, the attributes are iden-
tified as the properties of the available options that represents the degree to which an
option serves a particular objective of the actor. In other words, for each objective,
an actor uses a single quantifiable attribute related to an option in order to evaluate
the consequences of choosing that option in terms of that specific objective. For ex-
ample, when considering a mobility-related problem, CO, emission performance of
hybrid cars may serve as the attribute of that option to be used regarding the objec-
tive of reducing global warming impact. The relevant attributes for each actor for
each objective are already given in Table 1.

The formalization of a preference structure (i.e. formalizing a value function for
each actor) is not a straightforward task, and the purpose is to obtain a suitable func-
tion for the conceptualization of this transition problem. Considering the main objec-
tives of this work, a considerably simple value function is formulated for the actors.
Let d represent a particular plausible decision for the actor (e.g. buying a hybrid car),
and x,4; represent the expected level of attribute i (e.g. CO, emitted per km traveled),
which is related to the ith objective (e.g. reducing global warming impact) of the
actor, to be realized as a consequence of decision d. Then we assume that the actor
values the consequences of the decision d as follows;

Va(t) =) hi()v(xai) (1)

where v(.) is the component value function (Keeney and Raiffa 1993). These func-
tions are used to evaluate the consequences of decisions for each objective in an

@ Springer



G. Yiicel, C.M. Chiong Meza

328

Kyoedeos Suissaooad disem 1od paxnnbar ooedg
suondo ayj jo douewtojrad uonnjjod Iy

suondo ay) jo soueutojrad uonnyjod (10§

suondo ay) jo Ajoededs parjddns pue popuewop usamiaq ded ayJ,

suondo ayj 10§ 11oddns J01e[NSY

suondo ay) 10§ 110ddns 101R[NTY

Kyoedeos urssaoord s[qefreae jo oafesn
Kyoedes urssaooad gysem 1ad paxmnbar soedg
suondo ay) jo douewoyrad uonnyjod Iy
suondo ayj jJo douewtojrad uonnyjod (10§

suondo ayj 10§ 1oddns orqng

Kyoedes urssaooad dysem 1ad paxmnbar aoedg
suondo ay) jo doueunojrad uonnyjod Iy
suondo ayj jJo douewtojrad uonnyjod (10§

suondo ayj 105 110ddns o1qng

JUUIASBURW 9)SBM JOJ Pasn 2deds dzZruTurA
joedwr uonnod Ire oZiuIuI

1oedur vonnjod [1os dzruIUIN SODN/oNANd

de3 Kyoedes-parpddns ozrwrurjy

suone[ngar oy} YPIm aouerdwod SZiuIxej SI0JOBIIUOD 9JSBAN

suonenSar yIm oouerdwod dZrurxe

deo Surssaooid d[qe[IeAR JO 9SN OZIWIXBIA
JuowaSeURW 9)SeM J0J Pasn aoeds ozrurury
joedwrt uonnyjod Ire SZIWIUTIA

joedwr uonnyrod [10s SZIWIUTIA

orqnd o M doueridwod ozruTXeIA sonediomunu [ed0]

JUSWAFeURW )SBM 0] Pasn 20eds azZIuIuIA
joedwir uonnyrod Jre dzuur
joedwir uonnyrod [10s QZIWIUTIA

orqnd ot M doueridwod ozrurXe A JUQUILIOAOD)

PaIojIuoOwW SAINQLIIY

seAnd2[qO 1010y

PaIOJTUOW SAINQLINE PAAL[I PUE SI0)E ) JO SAANA(QO T dqBL,

pringer

A's



Studying transition dynamics via focusing on underlying feedback interactions 329

isolated manner and the decision that yields the best possible attribute level yields a
value of 1 (i.e. v(xpesr) = 1). All decisions are evaluated in a range of [0, 1] according
to these the component value functions. A;’s in the formulation represents the weight
of the objective i for the actor, and can be assumed to be a consequence of the norms
and preferences of that particular actor. Considering the time horizon and the nature
of transitions, these weights are defined to be dynamic in order to capture probable
shifts in norms and preferences of the actors. Due to the dynamic nature of these
weights, a certain decision that was favorable once, might become unfavorable in the
future.

Despite its simplicity, the dynamic nature of the value functions of the actors
stands as a powerful representation that may reveal interesting dynamics in terms
of transitions. In the following sections the factors that are influencing these value
functions will also be discussed briefly.

The outcome of the value functions are used to change the decisions' of the actors.
For example, in the case of waste contractors the instantaneous decisions are assumed
to be the percentage of new capital investment allocated to the options.

In the model, the change in decisions is formulated in the form of bidirectional
change equations. An example of these equations is given in (2), which represents
the rate of change in the investment percentage for landfilling (1;4,4(¢));

dllomd(t)

dr = Sreuse,land @)+ Sinc,[and(t) — Sland,reuse () — Sland,inc(t) 2)

where s; ;(¢) represents the shift from option i to option j at time ¢ and specified as
follows;

sij@)=HV; = V)la.(V; — Vi).I;] 3)

where H (.) is the Heaviside functions (i.e. H(x) =1 for x > 0, and H (x) = 0 oth-
erwise), V; is the value attributed to option i, and « is a constant representing the
normal fractional change. Hence, when the actor attributes a higher value to choos-
ing landfilling compared to incineration (e.2. Viang > Vinc)s Sinc.land 15 €xpected to be
positive, whereas synq,inc Will be zero due to Heaviside function. Consequently, the
change in the percentage of investment to landfilling (e.g. %) will be positive.

Regarding the equation given above, almost identical formulations are used for
each actor type. The only customization in the equation that differs among actors
is the constant that determines the speed of change in the decisions for each actor
(i.e. o). Additionally, one important assumption about (3) is related to the status-
quo seeking nature of the actors; if two available options are evaluated to be equally
desirable (i.e. V; = V;), no significant change is observed in the decisions of the actor.
This implies that in order to trigger a significant change, an alternative option has to
outperform the current favorite option of the actor.

LAt this point it is important to emphasize that considering the aggregate nature of our actors, the decisions
of the actors are not discrete, as choosing whether to use landfilling, or not. The modeled decisions are
more like resource allocation decisions (i.e. what percentage of available resources shall be allocated to a
given option?), and are continuous in nature.
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3.2.3 Rationality of the actors

In the model the actors are formalized as agents making decisions based on the ag-
gregate performance of the societal system, the attributes of the options and also the
decisions of the other actors. The previous section briefly discussed the evaluation and
decision making process. Despite the rational nature of the depicted decision making
heuristic, the information used by the actors during the decision making process is
not precise and complete. This is attained by introducing perception delay structures
in the model. In using such structures, the assumption is that actors may use only
the information they have already recognized (e.g. perceived operating cost of hybrid
car), rather than the actual and precise information (e.g. actual operating cost of the
hybrid car). The used formulation representing the perception delay is an information
smoothing formulation” widely used in SD practise;
d)e,'j(t) _ xi(t) — fi‘/(t — dt)

= 4
dt pdj @)

where X;;(7) is the perceived level of information x; that can be used by the actor j
in decisions, and pd; is the perception delay of the actor.

Via introducing delayed access to information, the actors have limited access to
precise information, and this imprecise information bounds and limits their rationality
in the decision making process. In other words, the actual world and the world per-
ceived by the actors are decoupled in the model. Additionally, the introduced mech-
anism also results in an information heterogeneity among the actors in the modeled
societal system, which yields heterogeneous responses. Finally, such delays in the
diffusion of precise information, which can be in favor or against further acceptance
of an option, play an important role in the societal responses towards innovations in
transitions. In that sense, the model is expected to capture, at least at some level, the
dynamic richness caused by this information diffusion process.

3.2.4 Feedbacks as the driver of change

As mentioned before, the dynamic complexity of the societal systems stem partially
from the multiplicity of slow and fast feedback loops that exist in the system. Keeping
the relevant actors (e.g. policy makers, users, etc.) as the reference point, we identify
three major types of feedback interactions that condition the transition dynamics of
societal systems (see Fig. 1).

1. Feedbacks within the social domain: The actors constitute the social compo-
nent of the socio-technical system under consideration. Apart from other infor-
mation, the actors also care about what other actors are doing. According to
Coleman (Coleman 1990), actors, as socialized elements in the system, influ-
ence each other by means of interdependent dynamics. These dynamics result
in a particular choice at an aggregate—system—Ievel depending on the particu-
lar set of actors in the system. This means that the aggregated behaviour of the

2n fact, this formulation is equivalent to the exponential smoothing used in forecasting applications
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Fig. 1 Major feedbacks hypothesized to be influential in transitions

actors influence each actor’s decisions and the consequences of all these deci-
sions affect the behavior of each actor in the system; closing the feedback loop
and defining the direction of the transition. For example, the diffusion of a par-
ticular practice among users (e.g. practitioners), would make it more desirable
for the potential adopters and increase their likelihood of giving a decision to-
wards adopting it. Discussions on the existence of such a mechanism is quite
common in the diffusion of innovations literature and referred to as neighborhood
effect or word-of-mouth effect (Mahajan and Peterson 1985; Mahajan et al. 2000;
Rogers 1983), among others. Additionally, increasing public support for a par-
ticular option may induce a regulator decision (e.g. subsidy provided by central
government) in favor of an available option (e.g. bio-fuels), which may further
change the diffusion dynamics of that option. A very similar feedback exists in
the model connecting the decisions of the supporter and the regulator groups, the
supporter group acting as the controller of the regulator’s actions.

2. Feedbacks between the social and the technological/physical components: The
technological/physical component (i.e. infrastructures, artifacts, etc.) has its own
internal dynamics and these dynamics are influential regarding the actor decisions
in a transition process (e.g. number of refueling points related to the hydrogen car
usage decisions). Coupling the dynamics of the social and technological compo-
nents is therefore vital for studying transitions. In this formalization, a preliminary
attempt towards accomplishing such a coupling in a simplified manner is made.
For example, it is assumed that the decision of a provider towards a particular op-
tion improves the carrying capacity related to that option (e.g. number of charging
stations for electric cars). On the one hand, a decision of a practitioner towards
using an option results in economies-of scale dynamics and hence improves the
properties of the options (e.g. price of electric cars). On the other hand, increased
utilization of an option by practitioners causes a load on the carrying capacity
of that option, hence may result in deterioration of some attributes of an option.
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Fig. 2 Feedback loop driving technological development in the model

As an example for such a case, consider the average passenger per vehicle as the
attribute that actor cares about public transport option. Increased usage of the op-
tion results in an increase in this attribute, which makes the option less attractive.
As it should be expected, all of these changes feed back into the actors decision
processes in the form of dynamic information related to the available options and
influence their future decisions.

In our specific case, we can talk about two examples of such feedbacks. One
of them is about the performance enhancement of the options (e.g. air pollu-
tion per unit of waste incinerated). More investment in the incineration option
triggers faster performance improvements (assuming more investment will bring
about more research and development spending). This, in turn, puts incineration
to a cleaner position compared to other options. Increasing demand for cleaner
incineration triggers further investment to the option. This feedback depicts the
success-to-successful type of feedback loop in this specific context. This feedback
is coupled with another feedback loop that controls the development process and
leads to decreasing returns in technological development. Figure 2 depicts both of
these loops. The second example of this type of feedback is mainly responsible for
capacity-demand balance in the system. Unsatisfied demand for a waste manage-
ment option triggers capacity installations. The increase in the capacity reduces
the unsatisfied demand, hence leading to less investment to the option.

3. Feedbacks between the social component and the natural environment: This type
of feedback can be characterized as the limits-to-growth type referring to the
widely discussed work of Meadows et al. (1972). The stress on the natural en-
vironment due to the way a societal system operates may exceed the carrying
capacity of the environment and this may initiate a need for transition in the way
societal system performs. A considerable majority of the problems contemporary
societal systems are facing are due to the changes occurring in their natural en-
vironment due to the existing pattern of interaction between the environment and
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the societal system. Generally these significant changes may act as the initiator of
a transition process. In short, the way a societal system operates feeds back into
the system in the form of environmental problems and may result in alteration of
the current mode of operation in the long run. As mentioned before, the model
includes attributes of the options regarding their performances related to the rel-
evant issues (e.g. air pollutant emissions of waste incineration option). Coupling
this information with the decisions of the actors related to utilization of the op-
tions allows the model to capture aggregate level impact of the societal system
on its environment (e.g. total air pollutant emissions), and then trace the envi-
ronmental consequences of such an impact (e.g. increasing air pollution). These
consequences are perceived by the social component with a delay and may result
in a shift in preference structure (i.e. A;’s in the value function) of the actors. This
in turn may initiate a change in the way societal system performs.

In the waste case, three environmental issues are identified as relevant; space
occupied for waste handling sites, land pollution, and air pollution emissions.
Coupling the attributes of the options regarding these issues (e.g. space required
per waste handling capacity, pollutant emitted per unit waste processed) with the
amount of waste handled via each option, it is possible to represent the aggre-
gate consequences of the waste system’s operation. This information is perceived
by the actors over time and as mentioned before may alter their value functions,
resulting in the feedback loop depicted in Fig. 3.

The way value functions of the actors change is formalized as follows, going
over the case regarding the space issue affecting the practitioner (i.e. municipal-
ity);
5}space,mun (t)

)Lmun,space (t) = f( )jhmun,space(tO) (5)

i’space,mun (to)

where Jspace,mun represents the information that actor (i.e. Municipality) has about
the environmental impact (i.e. space used for waste management), and A ; is the
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priority of actor j for objective i. Assuming that there will be a decreasing-rate of
return in the response to the environmental impact levels, f(.) is an S-shaped func-
tion and it represents the effect of change of the level of environmental attributes
relative to their initial levels on the related priorities of actors. Considering the
given space-municipality example, when the space occupied for waste manage-
ment (e.g. landfilling sites) increases compared to its initial level, this formulation
yields an increased priority for the space-related objectives of the municipality in
its value function.

4 Model output

The simulation model constructed for the selected case mainly aims to capture the
dynamics of the preferences of the four major actor/actor groups regarding the waste
management options and their priorities related to the relevant objectives identified
in the case. The model behavior spans a time horizon of three decades from 1970 to
2000.

The discussion of the model output is made from the point of view of the regulator,
as a sample interpretation of the model’s output. Considering the space constraints,
other actors’ behaviors will be discussed more briefly. For the regulator, a detailed
discussion of the observed dynamics is presented as well as the underlying feedback
mechanisms.

4.1 Reference run

As mentioned before, the regulator in the model has a set of objectives; to minimize
the environmental impact (e.g. space used, soil pollution and air pollution) and to
comply with public opinion as much as possible. Apart from the public opinion case,
the priorities of these objectives are dynamic in the value functions of the regulator
(see (1) for the value function).

Figure 4 gives the change in the priorities of these objectives for the actor during
the model run. These show that at the beginning of the run the most important issue
for the actor is the used space. In the first decade of the run, used space and soil pol-
lution issues are gaining more importance for the regulator, hence the priorities for
the relevant objectives are increasing. The environmental impact of the waste man-
agement system explains this priority change. Figure 5 summarizes the change in the
aggregate soil pollution, the air pollution emissions and the land used for waste man-
agement. In the first quarter of the model run, a significant increase in the soil pollu-
tion and also in space allocated to waste management are observed, mainly due to the
dominance of landfilling as the waste management option as well as the increase in
the amount of waste to be managed. As a consequence of the aforementioned changes
in regulator’s priorities, the landfilling option is no longer evaluated to be comparable
to other available options, and the regulator slowly shifts away from the landfilling
option towards the reuse and incineration options (Fig. 6).

Parallel to the shift in the regulator’s preferences, the amount of waste being incin-
erated demonstrates a significant increase during the second decade of the run. Since
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Fig. 5 System’s aggregate environmental impact

incineration is a significant source for air pollutant emissions in the model (i.e. worst
performing option in terms of air pollution objectives), the environmental impact of
the waste management system regarding air pollution is observed to be as in Fig. 5.
The increase in the air pollutant emissions induces a change in the priority of the air
pollution related objectives of the regulator (Fig. 4). This change in the actor’s value
function (i.e. change in A’s) results in a worse evaluation for the incineration option
around the end of second decade.

These changes in the option evaluation influence the dynamics of the option pref-
erences in the regulatory arena (i.e. which options are supported and how much they
are supported in the regulatory arena). The model output related to the preferences
regarding options in terms of desired percentage of the waste to be processed via a
given option is given in Fig. 6. As it can be seen, landfilling loses its position in the
regulatory arena and, by the end of model run, it stands as an undesired option. On the

@ Springer



336 G. Yiicel, C.M. Chiong Meza

_;;»——3“—‘_3‘__’}{_#

0.75 ==

B
B

0.5

0.25 R 8

1‘“\.\_\_\_\_%3\‘

Hﬁ)’:
eereescigsisssins gl T i M S

1970 1980 1990 2000
Time (Year)
Landfilling T T T 1 T 1 T T T T . - T 1
R s ST WA WS RN, E USRI ORI AT CRL W BILY, WL D)
Rewse —3—F—3F —3-—3—-—3——3—3—3— 3 —3-—3-—3—

Fig. 6 Waste allocation percentages targeted by the regulator

other hand, incineration experiences an increase in preference until mid-80s, which
is mainly due to its relative advantage in the soil pollution and space demand issues.
And finally, it loses the comparative advantage due to rising air pollution issue, and a
stabilization is observed towards the end of the model run.

Up to this point, only the behaviour of the actor is discussed without referring
to the underlying feedback mechanisms. Figure 7 presents a simplified® causal-loop
diagram (CLD%) showing five feedback loops influencing the observed behavior of
the regulator. The loops are numbered from 1 to 5, and each link is labeled with the
number/s of the loop/s it belongs to in order to facilitate the understanding of the
diagram.

At the beginning, the loop #1 (L1) exerts some control over the level of soil pollu-
tion (i.e. more soil pollutant causes more pollutant degradation per unit time, which
in turn decreases the soil pollutant level), which can be seen as a balancing act against
the increase of the soil pollution level. However, as a consequence of the increase in

3The discussion in the CLD is limited to the issues of soil pollution and air pollution. Although there
also exist feedback loops regarding the space issue, their behavior and impact are quite similar to the ones
related to the soil pollution. For the sake of clarity, the CLD contains elements summarizing the actual
model variables and presents interactions in a more compact form, avoiding an excessive level of detail of
the actual model variables.

4Causal Loop Diagrams (CLD) or Influence Diagrams (ID) present important variables of the system
and have arrows—links between variables—indicating a positive or negative influence of one variable on
another (Sterman 2000). Besides individual links, there are also different types of feedback loops; positive
(or reinforcing) loops and negative (or balancing loops). A feedback loop is characterized as negative if
the number of negative individual links constituting that loop is odd; as positive, otherwise. As it can
be understood from the name, positive feedback loops reinforce any change in the loop while negative
feedback loops balance or counteract any change in the loop. Assuming that only one feedback loop is
passing through a particular variable, if it is assumed that a variable’s value in the loop is increasing, the
loop will reinforce this effect in time, and the variable’s value will continue increasing even faster in the
case of positive loops. Following the same example, the increase in a variable will trigger a balancing
behaviour via a negative feedback loop, and an increase rate of the variable will decrease until rate of
change vanishes.
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Fig. 7 A simplified CLD of the feedback mechanism underlying regulator’s behavior

the total waste to be handled, the growth in the soil pollution exceeds the levels that
can be suppressed via degradation mechanism. The observed increase in soil pollu-
tion triggers L2, the second balancing loop in the diagram. According to this loop, an
actor changes its priorities with a time delay following the recognition of the increase
in the soil pollution. The actor therefore changes the assessment of the options, and
incineration becomes more favorable. This induces further changes for other actors.
For example, as a consequence of changing regulations for supporting incineration, it
becomes more favorable for the provider and a shift in investment towards incinera-
tion starts. The practitioner also presents a similar change, shifting its practice more
towards the incineration option. Via these mechanisms> the percentage of waste be-

SDashed linked in the CLD indicates that the relationship is not direct between those two variables, but
the variable at the tail influences the variable at the head via other structures in the model that are omitted
in the diagram.
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Fig. 8 Public preferences for available options

ing incinerated changes after a delay, which in turn, slows down the growth in the
soil pollution.

In the absence of other loops, the expected consequence would be that L2 will
drive the system to a point where the desired percentage of landfilling for the reg-
ulator is zero without losing any pace. However, before that point is reached other
feedback loops are triggered in order to balance the shift to incineration driven by L2.

The shift to the incineration results in a significant increase in the air pollu-
tant emissions. This triggers L3, which tries to balance the dynamics caused by L2
through increased priority of the regulator for air pollution. The consequence of the
activation of L3 is the worsening of the evaluation of the incineration option and a
decrease in the pace of the shift in the regulator’s preferences towards incineration.
However, the activation of L3 initiates other two counteracting loops; L4 and LS.
They are both related to the performance improvement mechanism, activated as a
consequence of the air pollution issue that is gaining importance in the regulatory
arena. These loops can also be interpreted as the defensive mechanisms of the incin-
eration niche to keep itself as a favorable option in the system. L4 balances the rise
of air pollution level that was increasing due to the shift towards incineration. On the
other hand, L5 attempts to balance the decrease in the assessment score of the option
due to a gain in priority of the air pollution issue.

Although the discussion above can be extended considering the loops related to
the reuse option and the space issue as well, it illustrates adequately the interplay
between the landfilling and the incineration options in the regulatory arena.

As it was mentioned before, a summarized explanation of the behaviors of the
other actors is presented subsequently. When we consider the behavior of the public
actor, we observe similar dynamics related to the priority of the issues; air pollution is
becoming an increasingly important issue and dominating other issues in the second
half of the run. This in turn results in the changes regarding public opinion about
available options presented in Fig. 8. One difference that needs to be highlighted is
the fast preference change of this actor compared to the regulator. Considering that
these dynamics represent opinion change, it is reasonable to observe faster changes
compared to the changes in the regulations.
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Fig. 10 Percentage of waste allocated to different options by the practitioner

Two graphs summarizing the dynamics related to the practitioner actor (i.e. mu-
nicipality) are given in Fig. 9 and Fig. 10. Looking at the latter one, which represents
the percentage of total waste managed by the means of each option, it can be said that
the system, initially starting from a stable option composition, converges to another
stable composition of options after significant dynamic changes. Hence it seems rea-
sonable to state that a transition is close to being completed at the end of the model
run.

The model output given in Fig. 10 is one of the very few for which historical time-
series data can be obtained. Unfortunately, the accessible precise information about
the Dutch waste management system goes back only to 1985. When the model gen-
erated output is compared with this historical data (see Fig. 11), it can be concluded
that model output is successful in replicating the historical trends. Although there are
some numerical deviations, considering that the main goal is to obtain a pattern-based
fit rather than a numerical fit, the model output is evaluated to be satisfactory.

Finally, the behaviour of the provider is represented in the following figures that
represent the installed processing capacity (Fig. 12) and the percentage of the total
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Fig. 12 Percentage of capital investment allocated to options by the provider

investments allocated to each option (Fig. 13). Due to the lifetime of the existing
waste processing capacity, it takes some time to observe a decrease in the landfill-
ing capacity even after investments for this option have ceased. Another point worth
mentioning is the behaviour of the investments to incineration. By the end of the run,
a significant decrease is observed. This behaviour is basically due to the fact that the
installed capacity around that time seems to be satisfactory for handling the inciner-
ation demand coming from the practitioner.

4.2 Sensitivity analysis

One of the key features of SD approach is its position favoring the inclusion of soft
variables into the model at least at some level, rather than totally ignoring them due
to their incommensurability. This was also the case with our model. A concept like
“actors’ priorities for objectives” was a hard-to-quantify concept, but at the same
time it was too important to ignore. Hence, based on the qualitative data presented
by Loorbach (2007) we come up with an ordinal ranking of these priorities, and then
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Fig. 14 Waste % to landfilling—sensitivity to initial values for regulator priorities

used a priority scale with the range of [0, 5] to quantify them in a consistent way with
this ranking. However, it is possible to come up with several quantifications consis-
tent with the same ordinal ranking. Hence, we conducted a sensitivity analysis on
the initial values used for the priorities. In this multivariate analysis,® the numerical
values of the parameters are randomly chosen in a consistent way with the ordinal
ranking. In this way, 1000 replications are performed and the change in the observed
behavior patterns is studied. Results of a sample analysis (e.g. initial priority values
for the regulator) are presented in Figs. 14 and 15.

We have also conducted a sensitivity analysis for the actor-specific delays in
changing their priorities. The parameters belonging to all actors are altered concur-
rently in a multivariate analysis, and as a consequence of 1000 runs, the results in
Figs. 16 and 17 are obtained.

SFor this analysis Multivariate Sensitivity Analysis feature of the simulation software, Vensim, is used.
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Fig. 15 Waste % to incineration—sensitivity to initial values for regulator priorities
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Fig. 16 Waste % to landfilling—sensitivity to priority change delay

Another quantification related problem came up with an aggregate index repre-
senting the air pollution performance of the options. Hence, we utilized a similar
sensitivity analysis for these values. The outcome of the analysis regarding air pollu-
tion related parameter values are given in Figs. 18 and 19.

Based on the results obtained during the sensitivity analysis, it can be concluded
that, despite sensitivity in the numerical results, the pattern-wise sensitivity of the
model is low, which indicates that the long-term behavior observed is strongly condi-
tioned by the feedback structure modeled, rather than some individual variable values
or randomness.
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Fig. 17 Waste % to incineration—sensitivity to priority change delay
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Fig. 18 Waste % to landfilling—sensitivity to air poll. performance values

5 Lessons learned from the modelling study

The Dutch waste management transition case served as an example for elucidating
the feedback-centered conceptual model of transitions having actors—as socialized
elements with preferences, objectives and decisions—at the core.

Three aspects of the discussed model deserves to be highlighted. The model ex-
plicitly treats actors as the driver of change in the system via the decisions they make.
Secondly, the model integrates the two sides of the societal transitions (i.e. techno-
logical/physical and social) via covering both dynamics of actors perceptions and
value structures, and dynamics of the infrastructure and improvement of available
options. Finally, the model incorporates the feedback between the functioning of the
societal system and its environment. So it closes the feedback loop between the ag-
gregate consequences of the system’s mode of functioning, and the internal dynamics
of the system (i.e. preferences of the actors). The latter kind of change is generally
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stimulated via exogenous signals in most of the transition models, rather than as en-
dogenous as it has been done in this case.

The model enabled to establish the linkage between different aspects of the system
and observed dynamics. Specifically, the initiation of the transition process seems to
be triggered by the sense of urgency driven by the land pollution issues. The delay
in the perception of the environmental consequences of landfilling yields some sort
of overshooting the sustainable limits, which in turn caused the problems leading
to a fast shift to the alternatives rather than slow introduction of them. Another de-
lay in the system seems to be influential during the take-off phase of the incineration.
This option reaches a significant share until the actual environmental performance be-
comes known by the actors in the system. The realization of the air pollution impact
seems to prevent the further increase in the share of the option. However, the endoge-
nous technological development loop seems to prevent the backlash and decrease in
the share of the incineration option. The coupling of these two system aspects (i.e.
the delay in the perception of the actual properties of an option, and the technologi-
cal improvement mechanisms leading to success-to-successful type of consequences)
reveal how an inferior option can take-off and obtain a significant share in a socio-
technical system. Finally, the model also reveals how a domino effect may take place
in the presence of interrelated actors having differing objectives and perspectives in
the system.

To sum up, the designed model of the waste management transition case per-
formed well in reproducing the main characteristics of the historical developments,
while providing the opportunity to reveal the structural mechanisms leading to such
behavior. Hence, the model stands as a promising platform that can be exploited in
order to develop a better understanding of the dynamic consequences of the discussed
web of feedback interactions.
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6 Discussion and conclusions

The development and the interpretation of the model in this study is mainly intended
to explore the SD approach when studying a large scale societal change, namely
a transition. This section intends to discuss some issues regarding the application
of the SD approach that resulted from this exploration process, as well as the ones
recognized by the authors during their former experience with the approach.

Considering the model presented in this article, one of the first points that de-
serves discussion is the level of aggregation used. For example a single model actor
represents the set of municipalities that are related to the modeled transition, which
explicitly means that it is the “average” behavior of the municipalities that matter in
the long run according to the model assumptions. The apparent drawback of such an
assumption is the loss of heterogeneity and any complex dynamics that may result
from the heterogeneous responses of the individual municipalities. This aggregation
issue is not specific to our model, but it is a general criticism towards SD. However,
there is also an important gain in such aggregations as long as the loss of information
due to aggregation can be assumed not to alter long term dynamics seriously, and this
loss is taken into account when interpreting the model output. Fundamentally, mod-
eling is about reducing the complexity of the real world system to a manageable level
for a researcher, and aggregation is one way of simplification. In theory it would have
been possible to introduce the municipalities as separate actors in the model with all
their diversity, but that would make the model almost intractable, thus it would be
much harder to understand the link between the system structure and the observed
dynamics. A related trade-off is the one between the model boundary and the level of
detail (e.g. aggregation level) in the model. By keeping the aggregation level high, it is
possible to extend the model boundary to include important slow feedback loops into
the model, and still keep the model simple enough to be comprehendible. Regarding
this trade-off, SD stands in favor of keeping the boundary wide enough, instead of
having a very fine-grained depiction of the system.

Another point of discussion is also related to the level of aggregation used. Stick-
ing to the high aggregation level, the researcher switches to a more conceptual world
where he/she starts to think about the relationships between, for example, average
income level and infant mortality, rather than more atomic relationships like hours
of work and weekly income. Usually it may be possible to formulate such high level
interaction by using existing theories and/or empirical data. Although it was not the
case in the waste management transition model, there may also be cases where such
a formulation will not be straight forward, and it will be prone to doubt and criticism.
This is one of the points where SD in general attracts criticism especially from the
agent-based modeling community. In the recent years, proposals have been put for-
ward to overcome this shortcoming, which includes hybrid models (i.e. combination
of agent-based and SD models). For example one of such propositions discussed is
the real time coupling of an agent-based model to substitute such a hard-to-formulate
interaction between two aggregate level variables (Yiicel and Chiong Meza 2007), as
presented in Fig. 20.

One of the biggest challenges in modeling the waste management case was the
amount of soft variables included in the system of concern, and the difficulties in
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Fig. 20 Coupling of system dynamics and agent-based models

integrating them to the model as well as quantifying them. Attempting to represent
behaviour of the actors who act according to the soft (i.e. hard or impossible to mea-
sure) variables like importance, priority, preference, etc. brought about the challenge
of quantifying them. Considering the significance of the social components in tran-
sitions, any attempt to study these phenomena with quantitative approaches will face
such a challenge. One way to deal with the issue could be sticking to the quantifi-
able space and ignore the soft variables, which is a very common practice. However,
such a way would mean omitting these variables known to be influential, and this will
probably lead to different conclusions than representing them with an error margin.
Some effort was therefore devoted to quantify such soft variables. The used approach
was mainly based on quantifying these variables based on a reference point. For ex-
ample, importance of air pollution is selected to be reference at = 0, and its value
is set to be 1. Based on the qualitative data like “being more important”, or “being
less important”, other importance variables are initialized using this reference. As a
result it was possible to attribute some values to these variables that are meaningless
by themselves, but have an information value during comparisons to be made with
other variables of the same type. Such a model initialization significantly decreases
the predictive value of the models, and increases the need for extensive sensitivity
analysis to see the impact of changes in these parameters on the system behavior. In a
more comprehensive transition study, it may be possible to identify some measurable
indicators that may be used as representative of such soft variables.

Since the SD models, including the one discussed above, rely on ordinary differ-
ential equations they are both continuous-in-time (i.e. no discrete events are repre-
sented in the model) and continuous-in-space (i.e. variables in the model can take
values in a continuous space) models. That has direct consequences in the way actors
in the model behave and interact; it is not possible to have any actor instantaneously
shifting to another state discretely, and interactions between actors take place in the
form of continuous information flows. The approach used therefore constrains the re-
searcher in terms of actions and interactions that can be included in the model. That
might constitute a serious shortcoming in cases where discrete state shifts are crucial.
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However, the very nature of transitions, conceptualized as continuous processes,
fit perfectly such a continuous representation. Transitions are long term processes
(e.g. 25-30 years); hence, instantaneous discrete actions or changes lose their sig-
nificance in such a time frame. Additionally, since this is a matter of deep rooted
regimes transforming, a continuous and smooth change dynamics may be a better
representation than discrete switches in the system state.

It is important to mention that SD is a quantitative approach suitable for dealing
with transitions since it has a growing toolbox that assists the researcher at vari-
ous stages of the process. These include conceptualization tools (Coyle 2000), stan-
dardized methods for model validation (Barlas 1996; Forrester and Senge 1980),
and formal analytical methods for identifying the influential feedback loops at
any instance of a simulation run (Guneralp 2006; Kampmann and Oliva 2006;
Oliva 2004). Since the focus of this paper is on the applicability of SD for analyzing
transitions, information about the use of those tools during the modeling process and
model use were excluded from the content.

To sum up, this paper addressed and assessed the feedback-centered perspective
of SD as an approach for designing a quantitative model suitable for studying a cho-
sen transition case while having in mind the need for understanding the underlying
mechanisms of transitions.

SD is not only evaluated as a modeling technique but also as an approach for
understanding complex dynamic behavior. Therefore, the replication of the system
behavior, or simulation runs representing alternative scenarios are not the only out-
come of a SD study. As it has been briefly demonstrated in the behavior description
section, linking the observed behavior to the underlying feedback structure is another
important and fundamental aspect of the approach. It is however important to con-
sider that the plausibility of such task depends on the size of the model, which is
dependent on the aggregation level chosen by the researcher.

Considering the lessons learned about the approach in general and the waste tran-
sition case in specific, SD seems to provide a fruitful perspective in understanding
the complexity of the transition dynamics, especially allowing the researcher to un-
derstand how slow and fast feedbacks in the system interact and what kind of im-
pact do time-delays in the system has on the overall dynamics. However, considering
the defining characteristics of the approach (i.e. aggregate system depiction, episte-
mologically being closer to structuralist view, etc.) it will be erroneous to assume
that this perspective alone provides enough insight about the transition processes in
every aspect. It is evident that these complex processes demand a combination of
approaches for understanding different aspects of them.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Barlas Y (1996) Formal aspects of model validity and validation in system dynamics. Syst Dyn Rev
12(3):183-210

@ Springer



348 G. Yiicel, C.M. Chiong Meza

Barlas Y, Kanar K (1999) A dynamic pattern-oriented test for model validation. In: Proceedings
of 4th systems science European congress, Valencia, 1999. http://www.ie.boun.edu.tr/~ybarlas/
BarlasKorhan99.pdf

Berkhout F, Smith A, Stirling A (2004) Socio-technological regimes and transition contexts, chap 3. Sys-
tem innovation and the transition to sustainability: theory, evidence and policy. Edward Elgar, Chel-
tenham Glos

Coleman J (1990) Foundations of social theory. Belknap Press of Harvard University Press, Cambridge

Coyle G (2000) Qualitative and quantitative modelling in system dynamics: some research questions. Syst
Dyn Rev 16(3):225-244

Fiddaman T (1997) Feedback complexity in integrated climate-economy models. PhD thesis, Alfred P.
Sloan School of Management, Massachusetts Institute of Technology

Forrester J (1961) Industrial dynamics. MIT Press, Cambridge

Forrester J (1969) Urban dynamics. MIT Press, Cambridge

Forrester J, Senge P (1980) Tests for building confidence in system dynamics models. System dynamics.
North-Holland, Amsterdam, pp 209-228

Geels F (2002) Technological transitions as evolutionary reconfiguration processes: a multi-level perspec-
tive and a case study. Res Policy 31:1257-1274

Geels F (2005a) Co-evolution of technology and society: the transition in water supply and personal hy-
giene in the Netherlands (1850-1930)—a case study in multi-level perspective. Technol Soc 27:363—
397

Geels F (2005b) The dynamics of transitions in socio-technical systems: a multi-level analysis of the tran-
sition pathway from horse-drawn carriages to automobiles. Technol Anal Strateg Manag 17(4):445—
476

Geels F, Schot J (2007) Typology of sociotechnical transition pathways. Res Policy 36:399-417

Guneralp B (2006) Towards coherent loop dominance analysis: progress in eigenvalue elasticity analysis.
Syst Dyn Rev 22(3):263-289

Homer J (1987) A diffusion model with application to evolving medical technologies. Technol Forecast
Soc Change 31(3):197-218

Kampmann C, Oliva R (2006) Loop eigenvalue elasticity analysis: three case studies. Syst Dyn Rev
22(2):141-162

Keeney R, Gregory R (2005) Selecting attributes to measure the achievement of objectives. Oper Res
53(1):1-11

Keeney R, Raiffa H (1993) Decisions with multiple objectives: preferences and value tradeoffs. Cambridge
University Press, Cambridge

Loorbach D (2007) Transition management: new mode of governance for sustainable development. PhD
thesis, Erasmus University, Rotterdam

Mahajan V, Peterson R (1985) Models for innovation diffusion. Quantitative applications in the social
sciences. Sage, Thousand Oaks

Mahajan V, Muller E, Wind Y (eds) (2000) New-product diffusion models. Kluwer Academic, Dordrecht

Meadows D, Meadows D, Randers J, Behrens W (1972) The limits to growth. Potomac Associates, New
York

Oliva R (2004) Model structure analysis through graph theory: partition heuristics and feedback structure
decomposition. Syst Dyn Rev 20(4):313-336

Randers J (1980) Guidelines for model conceptualization. In: Randers J (ed) Elements of the system dy-
namics method. Productivity Press, Cambridge

Richardson G, Pugh A (1961) Introduction to system dynamics modelling with DYNAMO. MIT Press,
Cambridge

Richardson GP (1991) Feedback thought in social science and systems theory. University of Pennsylvania
Press, Philadelphia

Rogers E (1983) Diffusion of innovations, 3rd edn. Cambridge University Press, Cambridge

Rotmans J (2005) Societal innovation: between dream and reality lies complexity. Erasmus University,
Rotterdam

Rotmans J, Kemp R, Asselt M (2001) More evolution than revolution: transition management in public
policy. Foresight 3(1):15-31

Schade B, Schade W (2005) Assessment of environmentally sustainable transport scenarios by a backcast-
ing approach with escot. In: Proceedings of the 23th International conference of the system dynamics
society, Boston, 2005

Sterman J (1981) The energy transition and the economy: a system dynamics approach. PhD thesis, Alfred
P. Sloan School of Management, Massachusetts Institute of Technology

@ Springer


http://www.ie.boun.edu.tr/~ybarlas/BarlasKorhan99.pdf
http://www.ie.boun.edu.tr/~ybarlas/BarlasKorhan99.pdf

Studying transition dynamics via focusing on underlying feedback interactions 349

Sterman J (1994) Learning in and about complex systems. Syst Dyn Rev 10(1):291-330

Sterman J (2000) Business dynamics: systems thinking and modeling for a complex world. Irwin/McGraw-
Hill, Boston

Struben J, Sterman J (2008) Transition challenges for alternative fuel vehicle and transportation systems.
Environment and planning B: planning and design advance online publication

Unruh GC (2000) Understanding carbon lock-in. Energy Policy 28:817-830

Unruh GC (2002) Escaping carbon lock-in. Energy Policy 30:317-325

van der Brugge R, Rotmans J, Loorbach D (2005) The transition in Dutch water management. Reg Environ
Change 5:164-176

Yiicel G, Barlas Y (2007) Pattern-based system design/optimization. In: Sterman J, Oliva R (eds) Proceed-
ings of the 25th international conference of the system dynamics society, Boston, 2007. http://www.
systemdynamics.org/conferences/2007/proceed/index.htm

Yiicel G, Chiong Meza CM (2007) Benefiting from the other: proposals on incorporating agent based and
system dynamics approaches. In: Amblard F (ed) Proceedings of the 4th conference of the European
social simulation association, Toulouse, 2007. http://essa2007.free.fr/ESSA2007Proceedings.pdf

Goneng Yiicel earned his MSc in Industrial Engineering from Bogazi¢i University in Turkey. Since 2006,
he is working as a PhD researcher at Technology University of Delft, Netherlands. His research interests
include simulation modelling and simulation-based optimization. He is mainly focusing on application
of simulation-based approaches to socio-economic problems. Since his appointment in TU Delft, he is
focusing on the topic of dynamics of socio-technical transitions.

Catherine Miluska Chiong Meza obtained her MSc degree (honours) in “Engineering and Policy Analy-
sis”, at Delft University of Technology. Her graduate research project addressed the consequences of in-
vestment decisions on the production capacity of the Dutch Paper and Board Industry, and used System
Dynamics as research methodology. Currently, she has joined Delft University of Technology as a PhD
candidate and explores to what extent a transition from the fossil-based fuels paradigm towards the use of
alternative energy sources—especially bio-based fuel—can be effectively influenced from an Institutional
Economics point of view.

@ Springer


http://www.systemdynamics.org/conferences/2007/proceed/index.htm
http://www.systemdynamics.org/conferences/2007/proceed/index.htm
http://essa2007.free.fr/ESSA2007Proceedings.pdf

	Studying transition dynamics via focusing on underlying feedback interactions
	Abstract
	Introduction
	System Dynamics (SD)
	Learning about the Dutch waste management transition
	Waste management transition in the Netherlands
	Model description and specification
	Multi-actor nature of the system
	Formalization of the decision process
	Rationality of the actors
	Feedbacks as the driver of change


	Model output
	Reference run
	Sensitivity analysis

	Lessons learned from the modelling study
	Discussion and conclusions
	Open Access
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


