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Abstract Individual responsive behavior to an influenza pandemic has significant

impacts on the spread dynamics of this epidemic. Current influenza modeling efforts

considering responsive behavior either oversimplify the process and may underes-

timate pandemic impacts, or make other problematic assumptions and are therefore

constrained in utility. This study develops an agent-based model for pandemic

simulation, and incorporates individual responsive behavior in the model based on

public risk communication literature. The resultant model captures the stochastic

nature of epidemic spread process, and constructs a realistic picture of individual

reaction process and responsive behavior to pandemic situations. The model is then

applied to simulate the spread dynamics of 2009 H1N1 influenza in a medium-size

community in Arizona. Simulation results illustrate and compare the spread timeline

and scale of this pandemic influenza, without and with the presence of pubic risk

communication and individual responsive behavior. Sensitivity analysis sheds some

lights on the influence of different communication strategies on pandemic impacts.

Those findings contribute to effective pandemic planning and containment, partic-

ularly at the beginning of an outbreak.
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1 Introduction

Computational simulation has served as an important tool for the understanding and

control of pandemic influenza. Different types of models have also been developed,

from the early differential equation compartmental model to more recent large-scale

individual-based stochastic models (Bobashev et al. 2007). Despite insightful

findings provided, those models usually consider the complex issue without its

crucial social or human factors. They often assume that, individuals do not change

their behaviors during an influenza pandemic but continue with regular activities

(Yoo et al. 2010). Empirical studies, however, have reported different phenomena.

Many individuals when confronted with a pandemic undertake actions (e.g.,

wearing face masks and washing hands more frequently) to protect themselves (Lau

et al. 2007). Those self-protective actions could reduce their probabilities of

infection, and largely change the spread dynamics of the pandemic, particularly at

the beginning of its outbreak (Ekberg et al. 2009).

To address this concern, later studies on pandemic-related estimation include

individuals’ responsive behaviors to the epidemic in simulation models, mainly in

two approaches. The first approach assumes all individuals reducing their social

contacts for self-protection (e.g., Yoo et al. 2010). Simulation models based on this

assumption tend to underestimate pandemic impacts, since there are still lots of

people who behave as normal and do not adopt any preventive measure during a

pandemic (Lau et al. 2003, 2010). The second simulation approach considers the

heterogeneity in individuals’ behavioral responses. But models adopting this

approach are usually extensions or modifications of the classic compartmental

model for influenza pandemic simulation (e.g., Zhong et al. 2013). Limitations

inherent in compartmental models, such as the homogenous population assumption,

still constrain the utility of the model.

This study attempts to appropriately incorporate public risk communication and

individuals’ heterogeneous responsive behaviors into a prototype agent-based model

for influenza pandemic simulation. The main purpose is to develop a computational

model that could potentially more accurately anticipate the spread dynamics of this

epidemic. In the following, this study first reviews current approaches for considering

individual responsive behavior in influenza modeling and their problems. It then

explains how risk communication and individual responsive behavior are incorporated

in an agent-based model. The study further conducts simulation experiments to show

the influences of those social components on influenza spread dynamics, and

sensitivity analyses of uncertain parameters. It ends with a discussion of implications

for the simulation of pandemic influenza and its preparedness and response.

2 Current approaches for simulating individual responsive behavior

Accounting for human response behavior in influenza pandemic simulation is

crucial. Relevant modeling efforts have also realized its importance and developed

two approaches to achieve this purpose. The first approach is to introduce the
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concept of prevalence elastic behavior into simulation models, which refers to the

adaptive actions people take in response to an epidemic (Philipson 2000; Philipson

and Posner 1993). Individuals in these models are assumed to reduce their overall

contacts with other people due to a pandemic, and the degree of reduction depends

on the epidemic’s propagation condition. This assumption is also called the mass

action incidence assumption (Larson and Nigmatulina 2010). For example, both

Larson and Nigmatulina (2009) and Yoo et al. (2010) make the parameter of daily

contact rate in their models a variable instead of a constant. The value for this

parameter is less than the average normal-day contact rate and varies during the

simulation with the size of remaining non-infected population.

One problem with models following this approach is their assumption of all

individuals taking actions for self-protection. They neglect the heterogeneity in

human responses to pandemic situations. According to public risk communication

literature, people in emergency contexts could receive risk information. Risk

information informs them of potential threats and available self-protective actions,

and initiates their reaction processes to the situation (Donner 2006). This reaction

process is highly social and complex. It generally consists of several sequential

stages (Quarantelli 1990). Upon receiving risk information, individuals develop

their interpretations of the message and formulate their understandings on whether

the risk communicated is real. They then seek additional information mainly from

their personal contacts to verify their understandings, and define their own situations

regarding whether they are personally endangered.

People’s responses are actually the adjustive behavioral outcomes of their

reaction processes (Quarantelli 1983). They could respond in a variety of ways,

depending upon the cognitive choices and interaction results with others they make

at each stage of the process. For example, if individuals do not interpret the

information received as a warning message of some risk, or not believe the risk, they

would ignore it and continue with their routine activities (Donner et al. 2007). Same

responses occur when they cannot confirm the risk through personal contacts or do

not consider themselves as targets of the risk (Parker et al. 2009). Previous studies

also find that, individuals under some circumstances tend to take certain actions not

necessarily providing protections (e.g., Donner 2007). Therefore, not all individuals

respond as expected by taking self-protective actions. They may choose to do so

only when the risk information is received, correctly understood and believed,

socially confirmed and personalized.

Those findings are also supported by observations on previous pandemic

outbreaks across areas. For instance, Tang and Wong (2003, 2004) report that,

almost 70% of the public did not practice any preventive health behavior at the early

stage of the SARS outbreak in Hong Kong. This number still remained high ( 40%)

even after the local health authority initiated vigorous communitywide SARS

preventive activities. Later studies likewise find a large percentage of individuals

not taking self-protective actions during the 2009 H1N1 influenza outbreak in China

(e.g., Lau et al. 2009), in England (e.g., Rubin et al. 2009), in Saudi Arabia (e.g.,

Balkhy et al. 2010), and in India (e.g., Kamate et al. 2009). Incorporating individual

behavioral response by reducing the total population’s daily contacts thus does not
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accurately capture the reality, and may cause simulation models an underestimation

of pandemic impacts.

Correspondingly, influenza modeling efforts develop another approach to include

human behavioral component. Models adopting this approach generally modify the

classic compartmental model to structure a population with heterogeneous coping

behaviors. For example, Zhong et al. (2013) divide each compartment in the classic

SEIR model into two sub-compartments: individuals engaging in self-protective

actions and individuals keeping routine ways of behaving.1 For the former, they

reduce their daily contact rates, with the reduction stochastically decided by a

truncated normal distribution. The latter maintain their constant normal-day contact

rates throughout the simulation. Those modifications enable individuals in different

compartments to have varying responsive behaviors. Besides, the number of

individuals in each compartment with self-protective actions changes during the

simulation as determined by the epidemic’s prevalence condition in the total

population and its biological characteristics.

This second simulation approach corrects the oversimplified assumption on

human pandemic responses, but is constrained in utility by limitations inherent in

compartmental models. Classic compartmental models have been consistently

criticized for their assumption of a homogeneous and perfectly mixed population.2

The second approach still assumes a very similar population; for example, the

epidemiological characteristics of an influenza (e.g., latent and infected period) are

the same for all individuals. It introduces some heterogeneities into people’s contact

patterns, but only to a limited degree. The interpersonal interaction structure

remains absent as in the classic compartmental model (Galante et al. 2015).

Furthermore, although this approach attempts to differentiate individuals’ behav-

ioral responses, the group of people taking or not taking self-protective actions and

the size of each group are decided at the system level and in a somewhat arbitrary

way. The mechanism that determines individuals’ behavioral choices in the

simulation requires further scrutiny.

A promising way to address the above limitations and further advance influenza

modeling is to develop an agent-based model for pandemic simulation, and

incorporate human behavioral responses in the model based on public risk

communication literature. The model thus created could correct the homogeneous

and perfectly mixed population assumption by constructing necessary individual

heterogeneities and interpersonal contact patterns based on empirical data. It could

also link public risk communication and individuals’ reaction processes to their

responsive behaviors, which is a both theoretically and empirically supported way to

simulate how individuals respond to pandemic situations and why they make

1 An SEIR model is a four-compartment model. All population in the model are divided into four

compartments based on their health states relative to an epidemic: susceptible (S), exposed (E), infected

(I), and removed (R). The removed compartment is usually further divided into the recovered

compartment and the died compartment.
2 By a homogeneous and perfectly mixed population, individuals are assumed to be identical in all

respects; particularly, an individual is assumed to contact any other individual in the population with the

same probability.
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different behavioral choices. This study aims for such a model. The following part

explains in detail how it is developed and applied in a specific research context.

3 An agent-based influenza model

An agent-based simulation system can be described in order of its three

components: environment, agents, and action rules (Perez and Dragicevic 2009).

This section outlines for each component of the created agent-based model how it is

designed based on previous literature. The whole modeling system is implemented

in the Netlogo toolkit, to simulate the spread dynamics of a pandemic influenza

within a community.

3.1 Environment

The model’s environment is a community. It is conceptualized here as a friendship

network, with nodes representing individuals and edges the friendship between

them. Simulating the community as a friendship network is mainly for two reasons.

First, the contacts between friends constitute an important part of individuals’ daily

contacts for influenza virus transmission (Potter et al. 2012). Second, public risk

communication literature suggests that, most people tend to seek confirmative

information from their friends to verify their initial perceptions (Perry and Lindell

2003). Friendship network therefore provides the necessary basis to simulate

individuals’ daily contacts and their reaction processes in the modeling context.

This study adopts the approach developed by Hamill and Gilbert (2008, 2009,

2010) to construct the friendship network.3 The network thus generated has the key

features of a friendship network previously identified, including high clustering

(Watts 1999), giant components (Newman 2001), and a right-skewed distribution on

the degrees of connectivity (Roberts et al. 2009). The generated network is highly

clustered. Its global clustering coefficient is 0.52 and average local clustering

coefficient 0.51. 88.6% of all individuals are connected directly or indirectly in the

network, indicating the existence of a giant component. The degrees of connectivity

follow a right-skewed distribution, with a mean of 11 and a much smaller median of

4. Meanwhile, the network is assumed to be stable over time, given that the turnover

of a friendship connection is slow relative to the timescale of a pandemic (Keeling

and Eames 2005). But when some individual dies, it and all its connections would

be removed from the environment, while the rest part of the network remains

unchanged.

3.2 Agents and action rules

Agents of the model are community residents or individuals. Their friends are those

connected with them in the friendship network, and strangers those not connected.

3 For more details of setting up the friendship network, please see Hamill and Gilbert’s (2008, 2009,

2010) studies.
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Agents’ actions are characterized by three sets of rules: their daily contact pattern,

the biological process involved in influenza infection, and their reaction process and

responsive behavior to pandemic situations.

Daily contact pattern Influenza transmission requires interpersonal contacts, and

individuals interact with each other based on their contact patterns (Salathe et al.

2010). An individual’s contact pattern refers to how many people have been

contacted by the individual and how (Mikolajczyk and Kretzschmar 2008). It

usually has two indicators: the contact rate, referring to the number of contacts an

individual has within a time unit, and the type of those contacts, meaning whether a

contact is a one-time encounter or a repeated interaction (Mikolajczyk et al. 2008).

This study chooses one day as one time unit. The contact pattern is daily contact

pattern.

Given what has been found in current literature, individual daily contact rate is

assumed to follow a truncated normal distribution, with a mean of 10 (Salathe and

Jones 2010), a standard deviation of 10.6 (Mossong et al. 2008), and a range from 0

to 40 (Edmunds et al. 2006). The daily contact pattern has a hierarchical structure

(Grabowskia and Kosinskia 2005). Most daily contacts are random and first-time

encounters, while the rest repeatedly occur with familiar others (Read et al. 2008).

The ratio of the former to the latter is about 3:1 (Beutels et al. 2006). This study

assumes that, there are two types of daily contacts for each individual: random

encounters with strangers which change every day and stable contacts with friends

which are repeated over time. The former accounts for 75% of the daily contact rate,

and the latter 25%.

To simulate an individual’s daily contacts, its contact rate is first decided, by

randomly selecting a value from the above truncated normal distribution. It is the

number of people the individual contacts on a certain day. The number of random

encounter (random contact rate) and of stable contact (stable contact rate) are then

calculated given their proportions. Next, a number of random contact rate of

individuals are randomly selected from the individual’s strangers, and a number of

stable contact rate of individuals from its friends. The two groups of people are the

strangers the individual encounters and the friends it contacts on that day,

respectively. Individuals’ daily contacts provide the opportunity for an influenza to

spread in the community.

Biological process involved in influenza infection The disease progression of an

influenza is modeled as an SEIR infection, as shown in Fig. 1. Each individual at

each time step could have one of the five health states: susceptible, exposed,

infected, recovered and died. Susceptible individuals are healthy but susceptible to

infection from their contacts. Exposed individuals have been infected, but not yet

showed any symptom. They may be infectious and transmit the virus to their

contacts. Infected individuals are both symptomatic and infectious. Recovered

individuals have experienced the infection and recovered from it. They acquire

immunity and no longer pose threats to their contacts. Dead individuals are those

who have died of the infection.

Each individual may transmit its health state per time step, along the direction of

the arrow in Fig. 1. The probability for a susceptible individual to get infected and

become exposed (infection probability) is calculated by the following formula
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(Eidelson and Lustick 2004). a is the infection rate, which represents the probability

for a susceptible individual to get infected through a contact with an infectious

individual. b0 is the infectious contact rate. It is the number of infectious people

among an individual’s daily contacts.

PSE ¼ 1� expð�ab0Þ ð1Þ

Exposed individuals may become infected based on the infected probability

(Easley and Kleinberg 2010). This probability equals the reciprocal of the average

latent period of an influenza. The latent period is the time period between individual

initially getting infected and it initially showing disease symptoms. Infected

individuals may die of the infection with a mortality probability, which is equal to

the mortality rate empirically found for an influenza. If they survive, they are

randomly decided whether to enter the recovered state based on the recovered

probability (Haber et al. 2007). Recovered probability equals the reciprocal of the

average infected period of an influenza, and the infected period represents the time

period between individual initially becoming symptomatic and it starting to recover.

Reaction process and responsive behavior Individual reaction process and

responsive behavior to a pandemic are simulated based on Quarantelli (1983, 1990)

individual warning response model. It is a well-established model that has been

widely used in public risk communication studies (Donner 2007). According to the

model, an individual begins its reaction process after receiving risk information. The

process consists of three stages, sequentially. The individual first develops its initial

perception of the situation, which is defined as the probability for it to correctly

interpret the information and believe the risk. For simulation, if the individual is

randomly selected to do so based on the probability, it continually goes through the

following two stages; otherwise, it ends its reaction process and gets back to normal

activities.

In the former situation, the individual proceeds to the social confirmation stage,

and randomly selects some of its friends to collect information on whether those

friends are taking self-protective actions. The number of friends selected

(confirmation attempts) is randomly chosen among 1, 2, 3 and 4 (Lindell and

Perry 2004). After social confirmation, the individual defines its situation as to

whether and to what extent it is personally at risk and therefore self-protective

Fig. 1 Individual biological progress after being infected
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actions should be taken. This situational definition depends on both the initial

perception and social confirmation result. Public risk communication literature has

been silent on how individuals use all information received and collected to define

their situations. This study simulates this stage based on the innovation diffusion

model developed by Delre et al. (2006).

In Delre et al.’s model, the probability for an individual to adopt certain

innovation is calculated as the summation of two factors: the individual’s initial

perception after receiving advertising information, and the social influence from its

friends regarding whether they have adopted the innovation. This social process is

very similar as how individuals behave at the situational definition stage.

Individuals develop a propensity to take certain action which could improve their

benefits, and the propensity is simultaneously decided by their initial perceptions

and their friends’ actions. Based on Delre et al.’s model, situational definition is

defined as the propensity for an individual to take self-protective actions, and it is

calculated as

PA ¼ ð1� f ÞPI þ fFIN ð2Þ

where f represents the strength of friends’ influences (social influence effect). PI is

the individual’s initial perception. FIN represents whether friends’ influences occur.

The value for f is set to 50%, by assuming the individual itself and its friends having

the same influences. Delre et al. (2006) also assume a threshold for friends’ influ-

ences to occur (social influence threshold). This study assigns the threshold a value

of 50%. When 50% or more of an individual’s friends selected for information

collection have taken self-protective actions, friends’ influences occur and FIN

equals 1; otherwise, its friends do not exert influences, and the value for FIN is 0.

Situational definition once formulated highly affects an individual’s responsive

behavior. Responsive behavior here refers to whether the individual takes self-

protective actions, and self-protective actions are assumed to be non-pharmaceutical

measures against influenza infection. Individuals taking non-pharmaceutical

measures typically reduce their contacts with other people (Lau et al. 2010). The

self-protective action in the simulation is assumed to affect only an individual’s

daily contacts. Specifically, an individual after formulating its situational definition

is randomly selected to take self-protective actions based on the definition. If it takes

actions, it changes its current daily contacts; otherwise, it maintains existing

contacts.

Regarding the change in daily contacts, an individual taking self-protective

actions reduces its contact rate and the reduction (action effect) is randomly selected

among 30, 40, 50, 60, 70, 80 and 90% (Jefferson et al. 2008). Meanwhile, given few

findings provided on how contact types are affected by those actions, the model

assumes a constant ratio between the two contact types; namely, the random and

stable contact rate are changed by the same degree. For example, an individual’s

current contact rate is 24. If it is decided to take self-protective actions and the

action effect is 50%, its random contact rate is reduced to 9 (24 � 0.75 � 0.5) and

stable contact rate to 3 (24 � 0.25 � 0.5). Then 9 out of 18 current random

encounters are randomly selected as the new random encounters, and 3 out of 6
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current stable contacts as the new stable contacts. These 12 contacts constitute the

individual’s new or updated daily contacts.

3.3 Simulation flow

Pandemic impacts on the community emerge from individual agents’ interactions

based on the above three sets of rules. In general, individuals’ reaction processes

and responsive behaviors affect their interpersonal contacts, which influence their

evolvements of health states relative to influenza infection and further generate the

epidemic spread dynamics at the community level.

Specifically, community as the friendship network is set up before the simulation

starts. During the simulation, each time step consists of five procedures

successively. First, infected and exposed individuals go through their biological

progresses and may change their health states with certain probabilities. The

friendship network is then updated, with dead individuals and their connections

removed. Second, each individual’s daily contacts are determined based on the

second rule set. Third, certain percent of individuals (information coverage) are

randomly selected among the population to receive risk information. If their health

states are susceptible, exposed or infected, they begin their reaction processes. The

third rule set is used to decide whether they take self-protective actions and

accordingly change their daily contacts. Recovered individuals and those not

receiving risk information act in normal and maintain existing contacts. Fourth,

individuals interact with each other based on their updated daily contacts. Fifth,

susceptible individuals transit health state based on their calculated infection

probabilities. This five-procedure simulation flow is repeated per time step after the

simulation starts till time limit.

4 Simulation results

4.1 Simulation scenario

The scenario simulated is the 2009 H1N1 influenza outbreak in Arizona. 2009

H1N1 influenza is the first global influenza pandemic in over 40 years. It was

declared by the U.S. government as a public health emergency on April 26, 2009.

Arizona confirmed its first infection case on April 29, and experienced the first wave

of outbreak in the following spring and summer months. When the second wave of

outbreak occurred in October, effective vaccination against this influenza was still

unavailable, but risk communication plans and strategies had been made (ADHS

2009a).

Arizona Department of Health Services (ADHS) had been using a Joint

Information Center (JIC) and a coordinated statewide messaging system, to widely

disseminate pandemic-related information to encourage the public to take non-

pharmaceutical protective measures within the following influenza season (ADHS

2009b). Meanwhile, the public had acquired certain knowledge on this novel

influenza virus, and many of them were taking self-protective actions because of the
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risk communication activities underway (Jehn et al. 2011). This scenario provides a

proper research context to empirically examine the spread dynamics of a pandemic

influenza with public risk communication and individual responsive behavior.

4.2 Parameters and data sources

Key parameters used in the model can be categorized into three groups:

environment, epidemiologic, and personal. Table 1 shows parameter values and

their data sources. The population size of the community is 1000. It represents a

medium-size community in Arizona (Perez and Dragicevic 2009). Risk information

is sent out in the community with a coverage of 5% and a frequency of 1 day;

namely, 5% of the population are randomly selected at each time step to be

informed of the influenza.

Pilot experiments show that, the influenza dies out in a short time period in the

community if the simulation is initialized with less than 2% infectious population.

For example, the influenza dies out within a month in more than 40 out of 100

experiments when the initial infectious population is 0.5% or less. The situation

occurs less frequently as the percent increases. When the percent is 1.8 or 1.9%, the

influenza dies out within a month in 2 out of 100 experiments. After the percent

reaches 2%, the situation no longer takes place in 100 experiments. To simulate the

influenza outbreak as a public emergency in all experiments, the simulation starts

with 2% of the population randomly chosen to have infected state; all other

individuals are initially susceptible.4

Epidemiologic parameters are related to the biological features of 2009 H1N1

influenza. This study assumes an average latent period of 2 days and an average

infected period of 5 days (CDC 2009). The time period for exposed individuals to be

infectious is 1 day (CDC 2009). The value for infection rate is calculated based on

the following formula (Keeling and Rohani 2008):

a ¼ R0=ðb0c�1Þ ð3Þ

where R0, b0, and c�1 represent the basic reproduction number of an influenza,

individual contact rate, and infected period of the influenza, respectively.5 This

study assumes an infection rate of 1.4%, given what Coburn et al. (2009) and Yang

et al. (2009) have found on the basic reproduction number of 2009 H1N1 influenza.

The mortality rate of this influenza is estimated to be 0.3% (Donaldson et al. 2009;

Tuite et al. 2010).

Personal parameters specify individual agents’ behavioral characteristics,

including their characteristics of daily contacts, biological progresses and reaction

processes. Appropriate values for most of those parameters have been described, as

4 No common approach has been developed to determine the percent of population in each health state at

the beginning of pandemic simulation. The initial population are usually divided into two groups: people

who are infected and infectious, and people who are susceptible to the influenza.
5 The basic reproduction number (R0) is the average number of secondary infections caused by a single

infectious case introduced into the susceptible population (Wu and Riley 2016).
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shown in Table 1. For the initial perception, this study uses the survey information

collected in October 2009 from the Arizona population. Respondents were asked in

the survey whether they agreed that the 2009 H1N1 situation at that moment was

urgent in the state. Approximately 75% of the respondents agreed while the rest

disagreed (Jehn et al. 2011). This study assumes a probability of 75% for an

individual to correctly understand and believe the risky situation after being

informed.

4.3 Experiments and results

Experiments are conducted to explore how the pandemic influenza spreads in two

scenarios; namely, without and with public risk communication and individual

Table 1 Model parameters, values and data sources

Parameters Values Data sources

Environment parameters

Population 1000 Perez and Dragicevic (2009)

% of population susceptible 98% Assumed

% of population infected 2% Assumed

Information coverage 5% Assumed

Dissemination frequency 1 day Assumed

Epidemiologic parameters

Infection rate 1.4% Coburn et al. (2009), Yang et al. (2009)

Average latent period 2 days CDC (2009)

Exposed-infectious period 1 day CDC (2009)

Average infected period 5 days CDC (2009)

Mortality rate 0.3% Donaldson et al. (2009), Tuite et al. (2010)

Personal parameters

Mean of daily contact rate 10 Salathe and Jones (2010)

Std of daily contact rate 10.6 Mossong et al. (2008)

Max of daily contact rate 40 Edmunds et al. (2006)

Min of daily contact rate 0 Edmunds et al. (2006)

Random-stable ratio 3:1 Beutels et al. (2006)

Infected-probability 50% CDC (2009)

Revered-probability 20% CDC (2009)

Mortality-probability 0.3% Donaldson et al. (2009), Tuite et al. (2010)

Confirmation attempts 1, 2, 3, 4 Lindell and Perry (2004)

Risk propensity 75% Jehn et al. (2011)

Social influence effect 50% Assumed

Social influence threshold 50% Assumed

Action effect 30–90% Jefferson et al. (2008)
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responsive behavior. One time step in the simulation is one day, and the first time

step represents October 4, 2009. Each experiment is run 364 time steps to cover the

2009–2010 influenza season (October 4, 2009–October 2, 2010). Simulation outputs

are measured via five indicators. The former three are usually the measurement of

the impacts a pandemic causes in a community, including the percent of population

ever infected by the end of the influenza season (epidemic size), the maximum

frequency of infection during the season (peak prevalence), and the number of days

between season beginning and the elimination of the virus (epidemic duration)

(Salathe and Jones 2010). They are recorded by the end of each experiment. The

latter two indicators are the percent of population in infected state on each day

(morbidity), and the percent of population ever infected by each day since season

beginning (cumulative morbidity). They reflect the influenza diffusion process and

are recorded per time step. For each scenario, the average value of 100 experiments

for each indicator is presented as below.

Table 2 summarizes the simulation results on pandemic impacts in each scenario,

and Figs. 2 and 3 show how the morbidity and cumulative morbidity change over

time. When there is no public intervention and all individuals behave as normal, the

morbidity grows exponentially shortly after the pandemic is initiated. It peaks on

November 6, 2009 (34th time step), and 6.43% of the community population are in

infected state on that day. The morbidity since then begins to decrease, and the

influenza continues to spread till February 25, 2010 (145th time step). By the season

end, nearly half of the population (46.82%) have been infected by the influenza.

After public risk communication and individuals’ behavioral responses are

introduced, the pandemic impact is significantly reduced and its spread speed

slowed. As shown in Table 2, the peak prevalence is reduced to 3.56% on November

4, 2009 (32nd time step), and the epidemic size to 26.69% by the end of the

Table 2 Simulation results from experiment scenarios

Scenario Peak prevalence

(time step) (%)

Epidemic

size (%)

Epidemic

duration (days)

No public intervention 6.43 (34) 46.82 145

Public risk communication 3.56 (32) 26.69 180

Sensitivity analysis of key parameters

Information coverage

5% 3.56 (32) 26.69 180

10% 2.81 (27) 22.86 175

15% 2.08 (31) 19.83 173

20% 2.07 (29) 19.07 172

Dissemination frequency

1 day 3.56 (32) 26.69 180

2 days 4.47 (31) 34.05 135

3 days 5.61 (31) 38.60 137

4 days 5.61 (33) 39.76 136

5 days 5.63 (33) 41.03 134
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influenza season. Those two indicators are respectively reduced by 44.63 and

42.99%, compared with the scenario of no public intervention. Meanwhile, the

epidemic duration is prolonged. No newly infected individuals have been found

since April 1, 2010 (180th time step). The extended epidemic duration, together

with decreased peak prevalence and epidemic size, gains more time for public

managers to respond to the situation.
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Fig. 2 Epidemic curve for morbidity during the 2009–2010 influenza season
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Fig. 3 Epidemic curve for cumulative morbidity during the 2009–2010 influenza season
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4.4 Sensitivity analysis

Assumptions are made on the values for several key parameters, including the

information coverage and dissemination frequency. Both parameters could largely

influence the simulation results, given their decisive roles in individuals’

information receipts and reaction processes. A sensitivity analysis is conducted

on each of them to explore the impact of their variabilities on the influenza spread

dynamics. For each parameter value, the average value of 100 experiments for each

output indicator is calculated. Sensitivity analysis results also indicate the

effectiveness of different public risk communication strategies to control an

influenza pandemic.

Information coverage Four values are experimented for the information

coverage: 5, 10, 15 and 20%. Values for all the other parameters remain as shown

in Table 1. Experiment results are presented in Table 2 and Fig. 4. As more people

receive risk information and initiate their reaction processes per day, the peak

prevalence and epidemic size decrease. For example, increasing the coverage from 5

to 15% could averagely reduce the peak prevalence by 41.57% and the epidemic

size by 25.70%. When the information coverage is 15% or more, the peak

prevalence is no larger than the percent of population initially infected (2%).

Such results suggest the importance of increasing risk information coverage.

Large-scale risk education programs or risk communication campaigns through a

variety of mass media could help widely inform the public and reduce pandemic

impacts. On the other hand, there is a threshold for the influence of this parameter.

Increasing the information coverage after it reaches 15% has small effects to reduce

the peak prevalence and epidemic size. Figure 4 also shows the impact of its

variability on morbidity change over time. Almost identical epidemic curves are
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generated with an information coverage of 15 and of 20%. Moreover, variations of

information coverage have little influence on the occurring time of peak prevalence

and epidemic duration.

Dissemination frequency Dissemination frequency is how often the risk

information is disseminated to the public. It is measured in once per number of

days. For example, a frequency of 2 means risk information sent out once every 2

days. Its default value is 1, and changed to 2, 3, 4 and 5 here. Table 2 and Fig. 5

show the simulation results. Disseminating information less frequently generally

increases pandemic impacts. When the frequency is 2, both the peak prevalence and

epidemic size are increased by more than 25%, and the epidemic duration is

shortened by one and a half months, compared to the default parameter setting.

Changing the frequency from once every 2 days to once every 3 days still causes

considerable increases in peak prevalence and epidemic size, but hardly influences

the epidemic duration. Frequency changes have little effect on the occurrence time

of peak prevalence. The morbidity peaks around November 4, 2009 (32nd time step)

in each experiment scenario, as shown in Fig. 5.

Figure 5 also shows how the initial uncertainty in dissemination frequency

influences the change of morbidity over time. The general pattern indicates a

threshold of once every 3 days. Simulations with a frequency of three or more

generate epidemic curves of great similarities. This finding could also be observed

in Table 2. As long as risk information is sent out less frequently than once every 3

days, variations of this parameter exert little influence on peak prevalence, epidemic

size and epidemic duration. Effective pandemic control therefore requires public

risk information disseminated to the public more frequently than this threshold

value.
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5 Discussion and conclusion

Individual responsive behavior can exert great influences on the spread dynamics of

a pandemic influenza. Previous studies have consistently demonstrated that,

individuals by adopting self-protective actions could decrease their infection

probabilities and further change the pandemic spread process and reduce its

negative social impacts (Ferguson et al. 2005; Taylor et al. 2009). For example,

many studies consider individuals’ voluntary action of reducing their social contacts

an effective means to control the SARS spread (e.g., WHO 2003). Individual

responsive behavior thus becomes an integral component of influenza modeling. On

the other hand, people respond to pandemic situations in a complex way. Current

simulation approaches considering individual responsive behavior either oversim-

plify the process and inaccurately estimate the pandemic impact, or make other

problematic assumptions and are therefore constrained in utility. It remains a

challenge to construct a realistic picture of human behavioral response in influenza

modeling (Funk et al. 2015).

This study responds to the challenge by developing an alternative approach for

influenza pandemic simulation with individual responsive behavior. The approach

should be distinguished based on two features from its previous counterparts. First,

important types of heterogeneities for epidemic simulation need to be considered,

and the interactive and stochastic nature of epidemic spread process captured.

Second, the human behavioral component requires more accurate representation in

the simulation. Agent-based modeling among other influenza modeling methods is

more appropriate to implement the approach. Barrat et al. (2008) summarize

another three distinct methods. Homogeneous mixing and multi-scale models

assume a homogeneous random mixing of people and cannot incorporate

heterogeneities. Social structure models fail to consider interpersonal contact

patterns, and none of the three types of models could include responsive behavior at

the individual level.

Agent-based models simulate individual characteristics and interactions on a

detailed level. The two features could be easily acquired in an agent-based influenza

model. For example, the created model constructs interpersonal interactions and

introduces heterogeneities into individuals’ biological reactions to the disease.

Particularly, the parameter of infection probability enables the heterogeneity in

susceptible individuals’ vulnerability and resistance to an influenza (Huang et al.

2005). Exposed and infected individuals are assumed to be randomly decided

whether to evolve health states based on certain probability. This assumption allows

for the heterogeneities empirically found in individuals’ latent and infected periods

of 2009 H1N1 influenza (CDC 2009). For the human response component, the

model explicitly frames each individual’s reaction process and responsive behavior

based on theories and empirical data from public risk communication literature.

The two features also distinguish the created model from existing agent-based

influenza models. On the one side, the structure of interpersonal contacts is critical

in determining the epidemiological pattern observed in contagious disease spread

(Lloyd-Smith et al. 2005). Previous agent-based models have either relied on priori
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contact assumptions with little or no empirical basis, or simply used certain type of

network (Edmunds et al. 1997). Few of them parameterize the model with empirical

data on interpersonal interactions, as advocated by current epidemic simulation

studies (Mikolajczyk and Kretzschmar 2008). On the other side, individual

responsive behavior has rarely been integrated into influenza spread dynamics in

agent-based models. The created model empirically maps the dynamic contact

pattern for influenza transmission, and appropriately considers relevant human

factors. It helps advance agent-based influenza modeling efforts.

Meanwhile, this study illustrates the significance of public risk communication in

pandemic control. Non-pharmaceutical measures play a salient role when a novel

pandemic strain of influenza is found and no vaccination or antivirals is generally

available. Compared with other non-pharmaceutical measures (e.g., school closure,

travel restriction and quarantine), initiating self-protective actions through public

risk communication is at lower costs, less socially disruptive and more

acceptable for individuals (Cowling et al. 2009; Wu et al. 2010). Previous studies

have also widely supported its effectiveness in pandemic spread containment (e.g.,

Vaughan and Tinker 2009). Our simulation results indicate that public risk

communication and individuals’ self-protective actions could greatly reduce the

pandemic impact, and help buy time to introduce other public interventions,

particularly the production and distribution of enough vaccines for the general

public. Although public managers cannot solely rely on it to manage adverse social

outcomes, public risk communication makes the situation less devastating.

One potential extension of current study is to include different communication

strategies in the model, and simulate and compare their effectiveness for pandemic

control. The sensitivity analysis sheds some lights on this issue, but not systematic

enough. Public managers can change their risk communication strategies by varying

the information coverage, transmission channel, dissemination frequency, and

information content and style, to encourage more individuals to take self-protective

actions (Donner 2007). The current model could further link those attributes with

individual reaction process and responsive behavior, and explore how different

communication strategies influence influenza spread dynamics. Furthermore, other

public interventions are often used with the presence of public risk communication

and individual behavioral responses. The model could further include vaccination

and other containment measures, and provide better understanding of their

influences on pandemic impacts.

There are several limitations in this study. The value for some parameters in the

model cannot be determined empirically, particularly the population characteristics

on public risk communication (e.g., information coverage) and those related to

individual reaction process (e.g., social influence effect). Since few studies can be

referenced, this study assumes their values and conducts sensitivity analysis.

Meanwhile, the contexts in existing studies generally differ from one another and

the parameter value from one context cannot be simply applied to another. For

example, the initial perception often varies greatly with communities, time periods,

and epidemics. A more thorough work of model parameterization is needed in

future research.
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Agent-based modeling is a sharp tool for pandemic influenza simulation, but is

also time and resource demanding. The target social system simulated in the model

is a medium-size community in Arizona. The influenza spread dynamics in the

entire population of the state or of a large city is not considered due to limited

computational capacity. On the other hand, this study is interested in pandemic

influenza spread via individual interactions. The focus on a medium-size

community allows a more comprehensive understanding of the interactions at the

local level, and inferences can still be made on larger groups from the analysis

(Eidelson and Lustick 2004).

Geographical typology in epidemic spread process is not considered in the

simulation. Influenza modeling efforts have increasingly realized the importance of

spatial structure, and a large body of studies have been conducted to explore how

space-related factors affect influenza spread dynamics. Those studies commonly

integrate agent-based modeling with realistic landscapes, which represent the

continuous geographic environment where individuals interact with each other (e.g.,

Bian 2004). Simulation models developed in this way address the non-spatial

characteristic of classic compartmental models. To provide spatial implications for

pandemic control, future research needs to incorporate geographic dimensions in the

model.

Despite those limitations, this study addresses one critical challenge in influenza

pandemic simulation. It proposes an agent-based simulation framework by

synthesizing knowledge from public risk communication, epidemiology, social

network and social influence theory, and both quantitative and qualitative data

found in previous studies. The model developed could properly integrate human

behavioral response into pandemic-related estimates, and more accurately anticipate

the spread dynamics of an influenza, particularly when pharmaceutical measures are

not readily available. With further verification and validation, it could serve as an

exploration instrument in decision-making process to carry out comprehensive

evaluations of intervention strategy choices and help select appropriate pandemic

control measures. This study therefore also contributes to the discussion of

improving the effectiveness of pandemic preparedness and response in a dynamic

environment.
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