
Its All in a Name: Detecting and Labeling Bots
by Their Name

David M. Beskow and Kathleen M. Carley

School of Computer Science
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213, USA
Email: dbeskow@andrew.cmu.edu and kathleen.carley@cs.cmu.edu

Abstract. Automated social media bots have existed almost as long
as the social media environments they inhabit. Their emergence has
triggered numerous research efforts to develop increasingly sophisticated
means to detect these accounts. These efforts have resulted in a cat and
mouse cycle in which detection algorithms evolve trying to keep up with
ever evolving bots. As part of this continued evolution, our research pro-
poses a multi-model ‘tool-box’ approach in order to conduct detection at
various tiers of data granularity. To support this toolbox approach this
research also uses random string detection applied to user names to filter
twitter streams for bot accounts and use this as labeled training data for
follow on research.

1 Introduction

Automated social media accounts, often called “bots”, are increasingly used on
many social media sites. Ever since social media sites built Application Pro-
gramming Interfaces (API’s) that allow their platforms to integrate with other
platforms and applications, various actors have developed computer routines
that conduct a variety of automated tasks on the respective social media ecosys-
tems. While some bots are designed for positive purposes [14], many others range
from nuisance (i.e. a spam bot) to propaganda [19], suppression of dissent [26],
and network infiltration/manipulation [12,3] . They have recently gained wide-
spread notoriety due to their use in several major international events, including
the British Referendum known as “Brexit” [15], the American 2016 Presidential
Elections [7], the aftermath of the 2017 Charlottesville protests [13], the Ger-
man Presidential Elections [21], the conflict in Yemen [18], and recently in the
Malaysian presidential elections [2].

As these bots have proliferated and their use is being discussed broadly in
the media and political bodies, researchers have increasingly developed methods
to detect these accounts. The same openness and ease of use of the social media
API’s that facilitates the creation and use of automated accounts also facilitates
the collection of data used to detect them. As detection efforts proliferate, bot
engineers change and adapt in order to survive and succeed in a dynamic envi-
ronment. The requirement for higher accuracy in the midst of a changing signal

ar
X

iv
:1

81
2.

05
93

2v
1

 [
cs

.C
Y

]
 1

4
D

ec
 2

01
8

motivates our efforts to improve not only the models that detect bots, but the
labeled data that is used to train them.

This paper lays the foundation for a tiered supervised machine learning ap-
proach to bot detection and characterization. This approach acknowledges that
there are discrete levels or ‘tiers’ of data granularity, and seeks to develop super-
vised machine learning models for each tier of data on social media platforms.
The resulting bot detection ‘toolbox’ ensures that researchers have requisite
models for their specific data granularity. Some research aims at understanding
bot behavior in large conversations (analyze overall bot presence in the Twit-
ter conversation surrounding the 2018 mid-term elections), while other research
aims at characterizing a handful of accounts (an depth analysis of the top 10
most influential followers of the NATO Twitter account). A toolbox approach
provides distinct models to support both requirements, allowing researchers to
analyze the proverbial forest with one model and trees with a distinct but related
model.

Table 1: Four tiers of Twitter data collection to support account classification

Tier Description Focus
Collect/process Time
per 250 Accounts

of Data Entities
(i.e. tweets)

Tier 0
Tweet text or
user name

Semantics N/A** 1

Tier 1
User Object
+ 1 Tweet object

Account
Meta-data

∼ 1.9 seconds 2

Tier 2
User Object
+ Timeline

Temporal
patterns

∼ 3.7 minutes 200+

Tier 3
User Object
+ Timeline
+ Friends Timeline

Network pat-
terns

∼ 20 hours 50,000+

To support the development of this toolbox, our research has identified sev-
eral tiers of Twitter data collection and developed related machine learning
feature space and models. The constraints of data availability and rate limiting
associated with the Twitter API [1] artificially create these tiers, which are sum-
marized in Table 1. Tier 0 involves just a single entity, most often either a single
status or screen name. Tier 1 is the tweet object (and associated user object),
and is the most common data granularity collected by researchers. Tier 2 adds
a user timeline object (up to last 3,200 tweets) for every account, and Tier 3
adds the larger conversation that an account interacts with (i.e. an ego-network
conversation).

The data, feature space, and models associated with higher tiers are rich and
provide higher accuracy, but computationally expensive, as indicated in Table
1. Tier 3 models can take over 20 hours to process 250 accounts. Currently,
researchers who use Tier 2 models on large datasets are forced to sample their
data and assume that their sample is representative of overall bot distribution

and characteristics. By providing models at Tier 0 and Tier 1, our toolbox will
allow these researchers to conduct bot detection on 100% of their data instead
of sampling.

While numerous research efforts have attempted to exploit pieces and parts of
this data spectrum, few have attempted to create a comprehensive approach that
covers all tiers. The closest effort that we’ve seen is the Botometer effort discussed
later in this paper. While offering an robust model through an accessible API, it
is only offered at Tier 2, meaning high volume classification is computationally
expensive. Additionally, if does not exploit the rich network features available
at Tier 3.

This paper seeks to lay the groundwork for a toolbox approach to bot detec-
tion, discuss screen name focused data annotation, as well as build and evaluate
a Tier 0 model. See [5] for discussion of our Tier 1 model and [4] for initial efforts
to develop baseline Tier2 and Tier 3 models.

Our work therefore makes three primary contributions to the literature. First,
we propose a novel random string detection model that is specifically designed
to detect 15 character randomly generated strings. When applied to the screen
name field of Twitter data, this technique is able to easily filter accounts that
are likely bot accounts. Second, by applying this filtering technique to a large
sample collected from the Twitter Streaming API, we have produced a large
and diverse annotated data set for use in training more robust specialized and
general purpose bot detection models. Finally, this paper lays the foundation for
bot-hunter, a multi-model ‘toolbox’ approach to bot detection.

This paper begins with a brief description of the background of general bot
detection, as well as past efforts perform random string detection. We will then
describe the models and algorithms that we developed for random string classi-
fication, as well as methods that we used to evaluate them on the narrow tasks
that they were created for. Finally, we describe how we’ve applied this algo-
rithm to create a large and diverse annotated Twitter bot data set for use by
the research community.

2 Related Work

2.1 Twitter bot detection

Although early work on classifying Twitter accounts dates back to as early as
2008 [16], the deliberate detection of automated accounts on the Twitter Plat-
form began in earnest in 2010 when [8] conducted three-class classification (hu-
man, bot, cyborg) using an ensemble model. In 2011, a team from Texas A&M
became the first to use honey pots to detect thousands of bots [17]. These honey
pots used bots that generate nonsensical content, designed only to attract other
bots. The Texas A&M bots attracted thousands of bots, and generated a la-
beled data set that has been used on many later research efforts. This honey pot
method was repeated by others to create similar data sets in other parts of the
world [25].

In 2014, Indiana University and the University of Southern California launched
the Bot or Not online API service [9]. This used traditional classification models
trained on the Texas A&M dataset to help users evaluate whether or not an
account is a bot. Bot or Not leverages network, user, friend, temporal, content,
and sentiment features with Random Forest classification.

In 2015 the Defense Advanced Research Projects Agency (DARPA) spon-
sored a Twitter bot detection competition that was titled “The Twitter Bot
Challenge” [25]. This four week competition pitted four teams against each other
as they sought to identify automated accounts that had infiltrated the informal
Anti-Vaccine network on Twitter. Most teams in the competition tried to use
previously collected data (mostly collected and tagged with honey pots) to train
detection algorithms, and then leverage tweet semantics (sentiment, topic analy-
sis, punctuation analysis, URL analysis), temporal features, profile features, and
some network features to create a feature space for classification. All teams used
various techniques to identify initial bots, and then used traditional classification
models (SVM and others) to find the rest of the bots in the data set.

Most recently, the team from Indiana University re-branded Bot-or-Not to
Botometer, increasing the set of features to 1,150 account related features [10].
Their team compared Random Forests, AdaBoost, Logistic Regression and De-
cision Tree classifiers and still found that Random Forests performed best. They
also attempted to update their training data by manually annotating tweet ac-
counts, and merging this with the original Texas A&M Dataset (collected in
2011).

The continued use of the 2011 Texas A&M data highlights the difficulty that
researchers have in creating and/or updating the labeled data that is used train
algorithms to find these automated accounts. The use of aging training data for
bot classification also ensures that emerging bots are likely to avoid detection.
Additionally, since bots have a variety of purposes as well as a spectrum of actors
that create/use them, the collection technique used for labeled data will bias the
detection toward that family of bots. For example, the honey pot collection
technique will bias toward bots that randomly follow accounts, but may not
detect intimidation bots that conduct targeted following and messaging.

2.2 Classifying algorithmic character strings

Classifying strings as random or not random in order to filter or flag anomalous
events has a limited background.

Several methods have been proposed for identifying or highlighting the ran-
domness of character strings. Some have proposed leveraging Shannon’s Entropy
calculation [24] as a method for sorting strings by a measure of randomness. Some
cyber security research teams have proposed a similar detection methods in order
to detect domain names that are generated by Domain Generation Algorithms
(DGA). These teams have separately used Kullback-Leibler Divergence [27], a
dictionary approach [20] and Markov modeling [23].

The past research most closely connected to our effort was conducted by
LinkedIn in 2013. At that time [11] presented the application of the Naive Bayes

model on Character N-grams features of LinkedIn account names in order to
identify spammy accounts (first and last name as provided by the account owner).
This effort was very effective, and replaced the legacy spam detection models
that LinkedIn was using on their OSN. To date, our team has not found any
team that has replicated a similar approach to Twitter screen names.

2.3 Project background

Our team has focused on detecting, characterizing, and modeling the behavior
of bots, bot networks and their creators. In doing this we’ve studied several
recorded bot events. Recently we focused on a known and publicized bot attack
against the Atlantic Council Digital Forensic Labs (DFR Lab), and tangentially
against the NATO Public Affairs Office. This attack primarily occurred between
August 28 and August 30, 2017. We also focused on a recorded bot harass-
ment event against journalists in Yemen [18]. In both events we observed nu-
merous bot accounts that used 15 character randomly generated alpha-numeric
strings for the screen name. Examples of this include Wy3wU4HegLlvHgC,
5JSQavWW3tvQwA7, and gG6RKc6QBqOLKyU (these are not real Twit-
ter accounts). Note that these randomly generated strings always sample from
upper and lower case alpha-numeric characters. Observing this phenomenon mo-
tivated the construction of this algorithm and its application on Twitter at large
in order to observe other bots and bot actors that are using these same type
of bot screen names. More importantly, we hope this dataset can be used as a
large and diverse annotated bot training data for larger and more comprehensive
machine learning models.

3 Modeling

3.1 Feature engineering

In order to develop a random string detection model for this unique case, we con-
structed training data consisting of 200,000 non-random Twitter screen names
(randomly sampled from Twitter and manually verified as non-random) and
200,000 randomly generated 15 digit strings. We then developed a combination
of heuristic filtering and traditional machine learning models to label the string
as random or not random. This development is described below.

For feature engineering, the primary feature that we extracted from the
strings was character n-gram. For string s with length m, a character n-gram is
the (m− n + 1) sequential substrings of length n found in string s. In our case,
we explored several settings for n, to include using multiple values in the same
feature set (i.e. using both bigrams and trigrams).

We then transformed the resulting sparse character n-gram matrix using term
frequency-inverse document frequency (TF-IDF). TF-IDF is defined in Equation
1 and 2 below, and is used to scale the characters by the information that they
provide. In our case, frequent characters in a string provide information, but not

if they’re frequent in all of the strings. To calculate the IDF for character c in
strings s, we take the logarithm of the ratio of the total number of strings in
corpus S by the number strings that contain c, as shown in Equation 1.

idf(c, S) = log
N

|{c ∈ S : c ∈ s}|
(1)

We then calculate the TF-IDF for character c in string s found in corpus S
as follows

tfidf(c, s, S) = tf(c, s)i̇df(c, S) (2)

This therefore weights characters that have a high local frequency but a
lower global frequency. At first it may seem that TF-IDF is unnecessary since
each character n-gram is equally likely in random strings, given a strong pseudo-
random number generator. n-grams are not equally likely for human generated
strings, however. Given this fact we felt it appropriate to transform the data
with TF-IDF.

These features were merged with several other features. We started by merg-
ing the normalized count of upper case, lower case, and numeric characters.
n-gram generation by default converts all text to lower case. We maintained this
default behavior, but saw that the number of upper and lower case in letters
in particular provided a strong signal. Since our training data contained some
human generated strings that were not 15 characters in length, we normalized
these counts.

Additionally, we included the Shannon string entropy in our feature set.
Shannon string entropy, while not strong enough to use by itself in our case, still
provides a strong signal that we felt would be useful. We will test this assumption
below. Shannon entropy is defined in 3, where pi is the normalized count for each
character found in the string.

H (A) = −
n∑

i=1

pilog2pi (3)

The A full table of features is given in Table 2.

Table 2: Features for Random String Detection

Feature Type Description

Character Bi-gram Numeric Term frequency inverse document frequency of

bi-gram

No. lower case Numeric Normalized count of lower case letters
No. upper case Numeric Normalized count of upper case letters
String entropy Numeric Shannon String entropy

We used the scikit − learn package [22] to explore and build the machine
learning classification model for Random Strings. We evaluated Naive Bayes,
Logistic Regression, and Support Vector Machines (SVM) with 10 fold cross-
validation. The results are presented in Table 3. We conducted model compar-
isons between these models, and found SVM and Logistic Regression did are
not statistically different (t = 0.62912, df = 18, p.value < 0.5372). Given these
results, we used Logistic Regression for our production model, given that it is
simpler and faster. Note that this result entails significantly more training data
than we used in earlier research (see [6]), where SVM performed better.

Table 3: Model Performance in Classifying Randomly Generated Strings for
Screen-names

Model Accuracy F1 Kappa Precision Recall ROC AUC

Log. Regression 0.996 0.996 0.991 0.994 0.997 0.999

Näıve Bayes 0.969 0.97 0.939 0.947 0.995 0.996

SVM 0.996 0.996 0.993 0.995 0.998 1

Before predicting whether or not a string was random, we first applied several
heuristic filters. These verified that 1) the string was 15 characters in length, and
2) contained at least one capital letter, lower case letter, and numeric digit. This
final filter was applied given that 15 character strings have a 0.02% chance of
not containing a capital or lower case letter and a 7% chance of not containing
a numeric digit. This heuristic was applied given that precision was a higher
priority than recall.

In Figure 1 we evaluate the best value of n (number of characters for n-gram)
as well as whether or not using Shannon’s Entropy as a column feature provides
leverage in prediction. In this visualization we see that bigrams with Shannon’s
entropy provides the best leverage in predicting random strings.

In addition to exploring the feature based machine learning models discussed
above, we also explored the use of Markov model of character sequencing, but
found during initial exploration that this did not have sufficient power to classify
the strings given the inherent random nature of human generated screen names.
Additionally, we explored using Shannon entropy as the only measure for filter-
ing these strings. Once again, while helpful, this method did not demonstrate
sufficient power for our purposes.

3.2 Model Deployment

Our primary use for the algorithm was to filter accounts with 15 character ran-
dom strings from a Twitter data stream. To do this we ran a random sample from
the Twitter Streaming API from 23 December 2017 to 20 June 2018. During this
time the stream collected approximately 433 million tweets. This collection was

Fig. 1: Evaluating n (number of characters in n-gram) and use of Shannon’s
entropy as a feature

done without any semantic or geographic filters, and stored the raw JSON files
that are returned by the Twitter API.

Having performed the collection, we next applied our algorithm to all 433
million tweets, filtering out all accounts that were labeled as having 15 digit
randomly generated screen name. This produced a collection of 7.8 million tweets
from 1.7 million unique accounts.

4 Model Evaluation

Given the desired use case of annotating diverse bot accounts, we conducted two
evaluations on our results. First, we wanted to estimate the false positive rate on
our random string detection, since false positives have a high likelihood of not
being an autonomous account. To accomplish this we randomly selected 1,000
of the screen names that were labeled as random, and manually identified those
that contained clear words or acronyms. Given this method, we estimate that
our false positive rate is approximately 1%.

Additionally, we wanted to estimate the percentage of random character
screen name accounts that are automated, or appear automated. In other words,
how many of our true positive random string accounts are truly bots. To estimate

this, we randomly sampled 100 accounts, verified that the user name appeared
random, and inspected the account in the Twitter web client. Of the 100 that
we manually inspected, five were suspended, eight provided no results (most
likely the account was closed by the user), and all others exhibited autonomous
behavior. After thoroughly evaluating these 100 randomly sampled accounts we
were were satisfied that this methodology provides annotated bot data that is
at least as accurate as honey pot data, and likely has a wider range of bot types.

4.1 Data Characterization

One of our first tasks in exploring the data is to understand how these accounts
differ from the average Twitter account, and whether those differences were
uniform across the language of the bot creator.

99% of the 7.8 million tweets in this dataset are associated with seven lan-
guages. It’s interesting to note that none of the Continental European Languages
(French, Spanish, German, Portuguese, Italian, etc) are in this list. Somewhat
surprisingly, the proportion associated with Japanese and Arabic accounts is very
high, second only to English. A full breakdown of the languages and a short gen-
eral description of our observations are provided in Table 4. Only 840 tweets
contained coordinate locations, and these locations are strongly correlated to
the languages mentioned below (United States, Japan, the broader Middle East,
Russia, and Thailand).

The major observations from Table 4 are that the random string accounts
are younger, less popular, and less active than the average Twitter account. We
see that the median age for the random bots is 224 days, compared to 1,248 days
for your average active Twitter account. The median number of followers/friends
ratio for the random string bots is 6/39 versus 277/294 for the average Twitter
account. We also see that the median random string bot account only produced
54 tweets over its lifetime, versus 8,216 for the average account (this comparison
is affected by age difference).

While some languages (Arabic, Japanese, Korean, and Thai) appear to be
slightly more popular and active, in general these random string accounts appear
to have a high number of accounts that are dormant, or at least in a state of low
activity. Some of these may be waiting to be activated for a given event or task,
while others may be used for intimidation attacks (as some of these were with the
Yemen journalist discussed above). Intimidation accounts (accounts that follow
a user in mass) do not need to be active or popular. Their intent is to push
another account out of the Twitter conversation through intimidation.

Given the fact that our data set contains primarily bot accounts, we observed
a number of account suspensions during the course of our study. Between mid
December 2017 and August 22 2018, 247,022 accounts (∼15%) were suspended by
Twitter, while 46,985 accounts (∼2.7%) were removed by the user. As the media
and politicians put pressure on Social Media companies, the natural response is
to increase their policing of this automated behavior on their platforms.

Table 4: Summary Statistics by Language
Language Arabic English Japanese Korean Russian Thai Chinese other Normal*

of Accounts 246K 626K 593K 103K 61K 47K 21K 18K 1599K

Age

min 61 61 61 61 62 61 62 61 6
25% 181 105 214 193 162 167 186 192 487
50% 264 165 361 260 292 246 288 297 1,248
75% 413 213 570 427 365 383 423 626 2,235
max 3,046 17,763 3,731 3,020 3,075 3,306 3,431 3,662 4,421
mean 326 210 449 342 322 310 357 550 1,412
std 216 253 315 229 228 219 247 609 1,008

Followers
Count

min 0 0 0 0 0 0 0 0 0
25% 3 0 2 0 0 1 0 2 78
50% 15 2 19 2 1 5 1 15 277
75% 63 17 108 10 5 24 6 85 818
max 828K 1087K 1322K 23,681 54K 177K 50K 944K 40,550K
mean 171 61 136 32 93 163 97 295 3376
std 2,716 2,054 2,366 268 1,013 2,044 921 7,581 94990

Friends
Count

min 0 0 0 0 0 0 0 0 0
25% 26 5 10 1 6 31 7 29 118
50% 79 26 49 21 31 88 32 91 294
75% 226 73 168 74 53 258 70 242 695
max 640K 349K 75K 25K 17K 18K 12K 88K 2,441K
mean 297 101 178 92 130 257 98 298 1044
std 1,543 682 482 326 594 498 322 1,034 8227

Tweet
count

min 1 1 1 1 1 1 1 1 1
25% 15 6 25 26 16 24 15 19 1813
50% 71 20 117 134 69 99 59 109 8216
75% 319 83 515 601 234 370 286 627 27318
max 532K 806K 994K 228K 114K 570K 106K 304K 16,176K
mean 819 301 930 934 456 684 517 1,727 26,652
std 3,753 3,180 4,301 3,652 2,226 4,195 2,036 7,981 66,180

* Normal Twitter Accounts were sampled from the Twitter Streaming API

5 Conclusion

Research in this area is limited by a rich enough data set that supports identifi-
cation of the wide range of types of bots, and that is sufficient to support studies
of bot-evolution. While the data used herein begins to address this issue, it is by
no means comprehensive and needs further expansion. We are working on such
expansion. However, restrictions on data sharing make it difficult to share this
data. Consequently, we are also working on data format that can be shared.

Bots are part of the conversation in social media. But not all bots are the
same. They vary in what they do, how they do it, and intent. While some bots
act independently others work in concert and still others are part of a cyborg -
a human-bot partnership. Research is needed to characterize types of bots and
their evolution. Research is also needed to identify the mapping between types

of bots in use and types of information maneuver or social-group creation that,
that type of bot supports or thwarts.

6 Future Work

Our future effort begins with the exploration of this dataset so that we can
cluster these accounts by type and function. We then intend to develop and
train several specialized as well as a general purpose bot detection algorithms
for use in detecting and classifying bots. Once complete, our effort will shift to
the detection and characterization of bot networks and the actors behind them.

ACKNOWLEDGMENT

This work was supported in part by the Office of Naval Research (ONR) Mul-
tidisciplinary University Research Initiative Award N000140811186 and Award
N000141812108, the Army Research Laboratory Award W911NF1610049, De-
fense Threat Reductions Agency Award HDTRA11010102, and the Center for
Computational Analysis of Social and Organization Systems (CASOS). The
views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed
or implied, of the ONR, ARL, DTRA, or the U.S. government.

References

1. Twitter rate limiting. https://developer.twitter.com/en/docs/basics/rate-limiting.
Accessed: 2018-05-02.

2. A. Ananthalakshmi. Ahead of malaysian polls, bots flood twitter with pro-
government..., Apr 2018.

3. Matthew Benigni and Kathleen M Carley. From tweets to intelligence: Under-
standing the islamic jihad supporting community on twitter. In Social, Cultural,
and Behavioral Modeling: 9th International Conference, SBP-BRiMS 2016, Wash-
ington, DC, USA, June 28-July 1, 2016, Proceedings 9, pages 346–355. Springer,
2016.

4. David Beskow and Kathleen M Carley. Bot conversations are different: Leveraging
network metrics for bot detection in twitter. In Advances in Social Networks
Analysis and Mining (ASONAM), 2018 International Conference on, pages 176–
183. IEEE, 2018.

5. David Beskow and Kathleen M Carley. Introducing bothunter: A tiered approach
to detection and characterizing automated activity on twitter. In Halil Bisgin,
Ayaz Hyder, Chris Dancy, and Robert Thomson, editors, International Conference
on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior
Representation in Modeling and Simulation. Springer, 2018.

6. David Beskow and Kathleen M Carley. Using random string classification to filter
and annotate automated accounts. In Halil Bisgin, Ayaz Hyder, Chris Dancy,
and Robert Thomson, editors, International Conference on Social Computing,
Behavioral-Cultural Modeling and Prediction and Behavior Representation in Mod-
eling and Simulation. Springer, 2018.

7. Alessandro Bessi and Emilio Ferrara. Social bots distort the 2016 us presidential
election online discussion. 2016.

8. Zi Chu, Steven Gianvecchio, Haining Wang, and Sushil Jajodia. Who is tweeting
on twitter: human, bot, or cyborg? In Proceedings of the 26th annual computer
security applications conference, pages 21–30. ACM, 2010.

9. Clayton Allen Davis, Onur Varol, Emilio Ferrara, Alessandro Flammini, and Fil-
ippo Menczer. Botornot: A system to evaluate social bots. In Proceedings of the
25th International Conference Companion on World Wide Web, pages 273–274.
International World Wide Web Conferences Steering Committee, 2016.

10. Emilio Ferrara. Measuring social spam and the effect of bots on information dif-
fusion in social media. arXiv preprint arXiv:1708.08134, 2017.

11. David Mandell Freeman. Using naive bayes to detect spammy names in social
networks. In Proceedings of the 2013 ACM workshop on Artificial intelligence and
security, pages 3–12. ACM, 2013.

12. Carlos Freitas, Fabricio Benevenuto, Saptarshi Ghosh, and Adriano Veloso. Reverse
engineering socialbot infiltration strategies in twitter. In Proceedings of the 2015
IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining 2015, pages 25–32. ACM, 2015.

13. April Glaser. Russian bots are trying to sow discord on twitter after charlottesville.
2017.

14. Timothy Graham and Robert Ackland. Do socialbots dream of popping the fil-
ter bubble? Socialbots and Their Friends: Digital Media and the Automation of
Sociality, page 187, 2016.

15. Philip N Howard and Bence Kollanyi. Bots,# strongerin, and# brexit: Computa-
tional propaganda during the uk-eu referendum. Browser Download This Paper,
2016.

16. Balachander Krishnamurthy, Phillipa Gill, and Martin Arlitt. A few chirps about
twitter. In Proceedings of the first workshop on Online social networks, pages
19–24. ACM, 2008.

17. Kyumin Lee, Brian David Eoff, and James Caverlee. Seven months with the devils:
A long-term study of content polluters on twitter. In ICWSM, 2011.

18. Al Bawaba The Loop. Thousands of twitter bots are attempting to silence reporting
on yemen. 2017.

19. Cristian Lumezanu, Nick Feamster, and Hans Klein. # bias: Measuring the tweet-
ing behavior of propagandists. In Sixth International AAAI Conference on Weblogs
and Social Media, 2012.

20. Mahdi Namazifar. Detecting randomly generated strings, December 2015. [Online;
posted 25 December 2015].

21. LM Neudert, B Kollanyi, and PN Howard. Junk news and bots during the german
federal presidency election: What were german voters sharing over twitter?, 2017.

22. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

23. Jayaram Raghuram, David J Miller, and George Kesidis. Unsupervised, low la-
tency anomaly detection of algorithmically generated domain names by generative
probabilistic modeling. Journal of advanced research, 5(4):423–433, 2014.

24. Claude E Shannon. The bell system technical journal. A mathematical theory of
communication, 27:379–423, 1948.

25. VS Subrahmanian, Amos Azaria, Skylar Durst, Vadim Kagan, Aram Galstyan,
Kristina Lerman, Linhong Zhu, Emilio Ferrara, Alessandro Flammini, and Filippo
Menczer. The darpa twitter bot challenge. Computer, 49(6):38–46, 2016.

26. John-Paul Verkamp and Minaxi Gupta. Five incidents, one theme: Twitter spam
as a weapon to drown voices of protest. In FOCI, 2013.

27. Sandeep Yadav, Ashwath Kumar Krishna Reddy, AL Reddy, and Supranamaya
Ranjan. Detecting algorithmically generated malicious domain names. In Pro-
ceedings of the 10th ACM SIGCOMM conference on Internet measurement, pages
48–61. ACM, 2010.

	Its All in a Name: Detecting and Labeling Bots by Their Name

