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A Variational Discretization Concept
in Control Constrained Optimization:
The Linear-Quadratic Case

M. HINZE

hinze@math.tu-dresden.de

Fakultät für Mathematik und Naturwissenschaften, TU-Dresden, D-01069 Dresden, Germany

Abstract. A new discretization concept for optimal control problems with control constraints is introduced
which utilizes for the discretization of the control variable the relation between adjoint state and control. Its
key feature is not to discretize the space of admissible controls but to implicitly utilize the first order optimality
conditions and the discretization of the state and adjoint equations for the discretization of the control. For discrete
controls obtained in this way an optimal error estimate is proved. The application to control of elliptic equations
is discussed. Finally it is shown that the new concept is numerically implementable with only slight increase in
program management. A numerical test confirms the theoretical investigations.
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1. Introduction

Consider the linear quadratic abstract optimal control problem;

min
(y,u)∈Y×U

J (y, u) s.t. y = Su and u ∈ Uad, (1)

where U = U ∗ denotes the Hilbert space of controls, Y Banach space of states, S : U →
Y ⊆ U the linear, bounded control-to-state solution operator, and Uad ⊆ U the convex,
closed set of admissible controls. For α > 0 further let

J (y, u) = 1

2
‖y − z‖2

Z + α

2
‖u‖2

U ,

where Z = Z∗ denotes a Hilbert space, z ∈ Z and Y ↪→ Z ↪→ Y ∗. Further let Ĵ (u) :=
J (Su, u). With this setting an equivalent formulation of problem (1) then is given by

min
u∈Uad

Ĵ (u). (2)
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Example 1.1. Z = L2(�), S := (−�)−1, Y = H 1
0 (�), U = L2(�) and Uad = {u ∈

U ; ua ≤ u ≤ ub a.e. in �} fit into the abstract frame presented above, see also the subsequent
sections.

The proof of the following theorem can be obtained by standard techniques and therefore
is omitted.

Theorem 1.2. Problem (2) admits a unique solution u∗ ∈ Uad, which satisfies the varia-
tional inequality

( Ĵ ′(u∗), v − u∗)U ≥ 0 ∀ v ∈ Uad. (3)

There holds Ĵ ′(u) = αu + S∗(Su − z), with S∗ denoting the adjoint of S.

In the present work a new discretization concept for the control problem (1) is introduced
which is based on the discretization of the state space alone. It guarantees conformability
of continuous and discrete admissible sets since these sets in fact coincide. Furthermore, in
applications to control of partial differential equations with finite element discretizations the
approach decouples the approximation of the active set from the nodes of the finite element
grid. In the approach presented discrete controls are defined in terms of the discretized state
and co-state variables, i.e. through the discrete optimality condition.

Main result: Let Sh denote a discretization of S which satisfies Assumption 2.3 below.
Further let u∗

h ∈ Uad, u∗
h := argminu∈Uad J (Shu, u). Then

‖u∗ − u∗
h‖U = O(h2),

where u∗ denotes the solution of (1). Moreover, in practical applications, such as control
of partial differential equations u∗

h is numerically computable with only slight increase in
program management compared to the conventional methods.

In the literature the common concept for characterizing and computing approximate solu-
tions to problem (1) is based on discretizations of the set of admissible controls Uad. Specif-
ically when S denotes the solution operator of an elliptic partial differential equation and Sh

its finite element discretization on a finite element grid with gridsize h the approximation of
controls often is also related to this mesh. Typical Ansätze are piecewise constant or piece-
wise linear, globally continuous controls, see Arada/Raymond/Tröltzsch [1]. The authors
for piecewise constant control approximations prove optimal error estimates of the form

‖u∗ − u∗
h‖U = O(h),

and also show convergence of the same order in L∞. A close inspection of their proof
shows that the order of convergence can not be improved even in the presence of better L∞

error estimates for the state and co-state variables. These observations extend to piecewise
linear, globally continuous control approximations where the error of the control has the
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size ‖u∗ − u∗
h‖U = O(h

3
2 ), see Rösch [12] for a proof under special assumptions on

the continuous solutions, compare also Casas/Tröltzsch [4]. These authors propagate the
concept First discretize the control space, then discretize the state space and emphasize that
state space approximation should be adapted to the needs of control space approximation.
However, the discretization method in the presence of control constraints no longer is
conform in the sense that projections of discrete controls onto the continuous admissible set
need not be contained in the discrete admissible set of controls. Furthermore, relating the
Ansatz for the controls to the finite element grid only allows to resolve the active set on this
grid, which certainly is an additional drawback of the conventional approach. The discrete
approach presented here circumvents these shortcomings. Moreover, it yields a discrete
control u∗

h which also in the situations sketched above satisfies ‖u∗ − u∗
h‖U = O(h2) and,

most important is computable with only slight increase in program management compared
to the conventional methods.

The paper is organized as follows. In the following section the new discretization concept
is introduced in the abstract setting. It is applied to linear quadratic control problems for
elliptic equations in Section 3. Section 4 is devoted to numerical implementation of the
new discretization concept and presents numerical results which confirm the theoretical
considerations.

2. The discrete concept

In order to define discrete optimal controls let Sh : U → Yh ⊂ Y ⊆ U be the linear, bounded
control-to-discretized state solution operator, where Yh ⊂ Y is a finite dimensional subspace
equipped with the norm of Y .

Definition 2.1. u∗
h ∈ Uad is called discrete optimal control: ⇔

( Ĵh
′(u∗

h), v − u∗
h)U ≥ 0 ∀ v ∈ Uad, (4)

where Ĵh(u) := J (Shu, u).

Note that Ĵh
′(u) = αu + S∗

h (Shu − z) with α > 0.

Remark 2.2. In the case of linear quadratic control problems with control constraints (as
is the case in the present work) the variational inequality in Definition 2.1 is the necessary
and sufficient optimality condition of

u∗
h = arg min

u∈Uad

J (Shu, u).

The definition of optimal controls in terms of the first order optimality condition allows
greater flexibility. For example, a more general approximation concept would be given by

(αu∗
h + Rh(Shu∗

h − z), v − u∗
h)U ≥ 0 ∀ v ∈ Uad, (5)

where Rh denotes an approximation of the adjoint operator S∗.
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The key idea of the discretization concept becomes more transparent in the case Uad = U .
Then the discrete optimal control u∗

h necessarily satisfies

u∗
h = − 1

α
S∗

h (Shu∗
h − z),

where the right hand side lives in the space U but is a discrete object. In fact the discrete
control u∗

h ∈ U is implicitly discretized in terms of the discretized adjoint operator and
therefore is discrete. In the following section Sh denotes the solution operator of a finite
element discretization with linear elements of an elliptic equation. The control u∗

h in that
case is a continuous, piecewise linear finite element function. In Section 4 it is shown
that this concept in the presence of control constraints also allows an efficient numerical
implementation. In order to prove the main theorem it is assumed that

Assumption 2.3. Sh, S∗
h satisfy

• ‖(S∗ − S∗
h )z‖U ≤ Ch2‖z‖Z , and

• ‖(S∗S − S∗
h Sh)u∗‖U ≤ Ch2‖u∗‖U .

Theorem 2.4. For h > 0 small enough the variational inequality (4) admits a unique
solution u∗

h ∈ Uad, which satisfies

‖u∗ − u∗
h‖U ≤ Ch2{‖u∗‖U + ‖z‖Z } (6)

Here, u∗ ∈ Uad denotes the unique solution of problem (1).

Proof: Existence of u∗
h follows from the fact that u∗

h = argminu∈Uad Jh(Shu, u). To argue
uniqueness let u1 �= u2 two distinguish solutions to (4). Utilizing ui as test control for
u j , (i, j = 1, 2) and adding the corresponding inequalities one gets

( Ĵ ′
h(u1) − Ĵ ′

h(u2), u2 − u1)U ≥ 0.

This implies

α‖u1 − u2‖2
U ≤ (S∗

h (Shu1 − z) − S∗
h (Shu2 − z), u2 − u1)U = −‖Sh(u1 − u2)‖2

U ,

and thus u1 = u2. To prove the error estimate note that u∗
h ∈ Uad and therefore is admis-

sible as test function for the variational inequality (3) for u∗. Analogously to the proof of
uniqueness one has

( Ĵ ′(u∗) − Ĵh
′(u∗

h), u∗
h − u∗) ≥ 0.
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Straightforward estimation yields

α‖u∗ − u∗
h‖2

U ≤ (S∗(Su∗ − z) − S∗
h (Shu∗

h − z), u∗
h − u∗)U

= ((S∗S − S∗
h Sh)u∗ + (S∗

h − S∗)z + S∗
h Sh(u∗ − u∗

h), u∗
h − u∗︸ ︷︷ ︸

−‖Sh (u∗−u∗
h )‖2

U

)U

≤ ((S∗S − S∗
h Sh)u∗ + (S∗

h − S∗)z, u∗
h − u∗)U ≤ Ch2{‖u∗‖U + ‖z‖Z }‖u∗ − u∗

h‖U .

Assumption 2.3 and α > 0 finally give

‖u∗ − u∗
h‖U ≤ Ch2{‖u∗‖U + ‖z‖Z }.

From the considerations above one may also infer some kind of H−1-estimate for the error
in the controls in the case α = 0 .

Corollary 2.5. Let α = 0 and let the assumptions of Theorem 2.4 be satisfied. Assume
further that Uad is also bounded and that ‖(S − Sh)v‖U ≤ Ch‖v‖U for all v ∈ U. Then
problems (3) and (4) admit unique solutions u∗ and u∗

h, respectively which satisfy the
estimate

‖S(u∗ − u∗
h)‖2

U ≤ Ch2
{
(‖u∗‖U + ‖z‖Z )‖u∗ − u∗

h‖U + ‖u∗ − u∗
h‖2

U

}
. (7)

Proof: Existence and uniqueness of solutions may be argued as in the case α > 0. To
obtain the error estimate observe that ‖S(u∗ −u∗

h)‖2
U ≤ 2‖(S − Sh)(u∗ −u∗

h)‖2
U +2‖Sh(u∗ −

u∗
h)‖2

U . The first addend due to the assumptions is bounded by Ch2‖(u∗−u∗
h)‖2

U . The estimate
for the second addend can be deduced from the proof of the previous theorem.

3. Application to control of elliptic equations

The approach presented in the previous section applies to a large class of control problems
for partial differential equations [6, 9]. In the present section its application to control
problems for linear elliptic partial differential equations is shown.

To begin with let � ⊂ R
n (n = 1, 2, 3) be a bounded, open convex domain with (a)

C1,1 or (b) polygonal boundary. Further let A = {ai, j }i, j=1,n ∈ H 1,∞(�)n,n be a symmetric
matrix which is uniformly positive definite on �̄, i.e.

ξ t A(x)ξ ≥ ce|ξ |2 for all ξ ∈ R
n

with some positive constant ce independent of x ∈ �̄. Further let c0 ∈ L∞(�), c0 ≥ 0. Let
Y := H 1

0 (�). Then for f ∈ Y ∗ = H−1(�) the action of the solution operator S : Y ∗ → Y
is defined through

y = S f :⇔ a(y, v) :=
∫

�

A∇ y∇v + c0 y v dx = 〈 f, v〉Y ∗,Y for all v ∈ Y. (8)

The solution operator S is the bounded inverse of a self-adjoint operator. For him standard
existence and regularity theory [7, 8] yields
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Proposition 3.1. For every f ∈ Y ∗ (8) admits a unique solution y ∈ Y which depends
continuously on the data f, i.e. with some positive constant C there holds

‖y‖Y ≤ C‖ f ‖Y ∗ .

If moreover f ∈ L2(�), then y ∈ Y ∩ H 2(�) and

‖y‖2 ≤ C‖ f ‖0.

If in case (a) f ∈ L∞(�), then y ∈ Y ∩ H 2,p(�) for all p > n and

‖y‖2,p ≤ C p‖ f ‖∞,

see [3, 8].

In order to formulate the control problem further let z ∈ Z := L2(�), U = L2(�) = U ∗

and Uad = {u ∈ U ; ua ≤ u ≤ ub a.e. in �}, where ua ≤ ub denote constants. Note that
Uad is only weakly closed in U . Clearly, U ⊂ Y ∗ so that the definition of S in problem (1)
makes sense.

In order to apply the discrete concept introduced in Section 2 to the control problem

min
u∈Uad

Ĵ (u) = J (Su, u) (9)

it remains to supply a discretization concept for the operator S. Here standard finite el-
ement discretizations of S with piecewise linear, globally continuous Ansatz functions
on sequences {τh}h of regular, quasi-uniform triangulations are considered, where h :=
max{diam(T ); T ∈ τh}. One has in case (b) � := ∪T ∈τh T for all h. In case (a) it is as-
sumed that all boundary vertices of �h := ∪T ∈τh T ⊆ � are contained in ∂� so that
|� \ �h | = O(h2). For the notions utilized see e.g. [5]. Now set

Yh := {
vh ∈ C(�̄), vh|T linear for all T ∈ τh, vh = 0 in �̄ \ �h

}

For f ∈ Y ∗ the action of Sh is defined by

yh = Sh f :⇔ a(yh, vh) :=
∫

�

A∇ yh∇vh + c0 yh vh dx

= 〈 f, vh〉Y ∗,Y for all vh ∈ Yh . (10)

The discrete solution operator Sh is selfadjoint. Moreover, for f ∈ Y ∗ the function yh ∈
H 1(�) and ‖yh‖1 ≤ C‖ f ‖Y ∗ . The following error estimates are well known and can be
found for example in [5].
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Proposition 3.2. Let f ∈ L2(�). Further denote by y, yh the unique solutions of

a(y, v) =
∫

�

f v dx for all v ∈ Y, a(yh, vh) =
∫

�

f vh dx for all vh ∈ Yh .

Then y ∈ H 2(�) ∩ Y and

‖y − yh‖0 + h‖∇ y − ∇ yh‖0 ≤ Ch2‖ f ‖0.

The discrete analogon to problem (9) reads

min
u∈Uad

Ĵh(u) = J (Shu, u), (11)

and admits a unique solution u∗
h ∈ Uad, which satisfies the variational inequality (4). Recall

that problem (9) also admits a unique solution u∗ ∈ Uad which satisfies (3). Since with the
previous proposition the requirements of Theorem 2.4 are satisfied for the setting of this
section one immediately gets

Theorem 3.3. Let u∗, u∗
h ∈ L2(�) denote the solutions to (9) and (11), respectively. Then,

for h > 0 small enough there holds

‖u∗ − u∗
h‖0 ≤ Ch2{‖u∗‖0 + ‖z‖0} (12)

where C denotes a positive constant independent of h.

Remark 3.4. It should be noted that for piecewise constant control approximations only
‖u∗−u∗

h‖0 = O(h) and for piecewise linear, continuous approximations only ‖u∗−u∗
h‖0 =

O(h3/2) can be expected. The latter is observed in numerical experiments. The estimate of
Theorem 3.3 therefore improves these results for the unique solution u∗

h of problem (11).

The key idea of the discretization concept becomes most transparent in the case Uad = U .
In this case the unique discrete optimal control u∗

h of (4) necessarily satisfies Ĵ ′(u∗
h) = 0,

which can be rewritten in the form

u∗
h = − 1

α
S∗

h (Shu∗
h − z).

The right-hand side of this equation lives in the space U but is a discrete object. In fact the
discrete control u∗

h ∈ U is implicitly discretized in terms of the discretized adjoint operator
and therefore is discrete. Since in the present section Sh denotes the discrete solution operator
defined in (10) the control u∗

h is a continuous, piecewise linear finite element function.
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Next consider the control constrained case Uad ⊂ U . Then it is well known that u∗
h can

be characterized as

u∗
h = P[ua ,ub]

{
− 1

α
S∗

h (Shu∗
h − z)

}
,

where P[ua ,ub] denotes the projection onto the admissible set Uad. This means that the control
u∗

h is the projection of a finite element function onto the admissible set. And this control
in fact is computable. For example the projected gradient method for every initial control
u0 ∈ Uad yields a sequence {uk}k ⊂ Uad, where with some stepsize ρ > 0

uk = P[ua ,ub]{uk−1 − ρ Ĵh
′(uk−1)}.

Now let ρ = 1
α

. Then uk−1 − ρ Ĵ ′
h(uk−1) = − 1

α
S∗

h (Shuk−1 − z), which is a finite element
function. It is proved in the next section that the number of connected components of its
active set on each element of the triangulation is bounded from above by three. Moreover,
this number can not increase with the iteration counter of the gradient method. Therefore uk

is computable for every iteration index k with the same amount of computational overhead.
More details are given in the next section.

With the help of the L2-estimate (12) it is also possible to provide error estimates in the
L∞ norm for difference of the solutions of the elliptic control problems (9) and (11). A
further ingredient of the proof are the following discrete Sobolev embeddings, whose prove
for example can be found in [14], see also [13] for the case n = 2.

Proposition 3.5. Let τh denote a quasi-uniform, regular triangulation of � ⊂ R
n (n =

1, 2, 3). Then for every piecewise linear, continuous finite element function vh ∈ H 1
0 (�)

there holds

‖vh‖∞ ≤ C

⎧⎪⎨
⎪⎩

1

| ln h| 1
2

h− 1
2

⎫⎪⎬
⎪⎭ |vh |1 for

⎧⎪⎨
⎪⎩

n = 1

n = 2

n = 3

⎫⎪⎬
⎪⎭ , (13)

where C > 0 is a generic constant and |·|1 denotes the H 1 semi-norm.

Theorem 3.6. Let z ∈ L2(�) and let u∗, u∗
h denote the solutions of problems (9) and (11),

respectively. Then there holds

‖u∗ − u∗
h‖∞ ≤ C

⎧⎪⎨
⎪⎩ ‖(S∗ − S∗

h )z‖∞ + ‖(S∗ − S∗
h )Su∗‖∞

+

⎧⎪⎨
⎪⎩

h2

h2| ln h| 1
2

h
3
2

⎫⎪⎬
⎪⎭ ‖u∗‖0 for

⎧⎪⎨
⎪⎩

n = 1

n = 2

n = 3

⎫⎪⎬
⎪⎭

⎫⎪⎬
⎪⎭ . (14)
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Proof: Let μ∗ := S∗(Su∗ − z) and μ∗
h := S∗

h (Shu∗
h − z) denote the Lagrange multipliers

associated to u∗, u∗
h . Now write μ∗ − μ∗

h = S∗Su∗ − S∗
h Shu∗

h +(S∗
h − S∗)z. Since Uad is

defined through box constraints one gets

‖u∗ − u∗
h‖∞ ≤ 1

α
‖μ∗ − μ∗

h‖∞ ≤ 1

α
{‖(S∗ − S∗

h )Su∗‖∞ + ‖(S∗ − S∗
h )z‖∞

+ ‖S∗
h Su∗ − S∗

h Shu∗‖∞ + ‖S∗
h Shu∗ − S∗

h Shu∗
h‖∞}.

To estimate the third and fourth addend utilize Proposition 3.5. For the third addend one
gets in the case n = 2

‖S∗
h Su∗ − S∗

h Shu∗‖∞ ≤ C | ln h| 1
2 |S∗

h Su∗ − S∗
h Shu∗|1

≤ C | ln h| 1
2 ‖Su∗ − Shu∗‖0

≤ C | ln h| 1
2 h2‖u∗‖0.

Similarly for the fourth addend

‖S∗
h Shu∗ − S∗

h Shu∗
h‖∞ ≤ C | ln h| 1

2 |S∗
h Shu∗ − S∗

h Shu∗
h |1

≤ C | ln h| 1
2 ‖u∗ − u∗

h‖0

≤ C | ln h| 1
2 h2{‖z‖0 + ‖u∗‖0},

where Theorem 3.3 was utilized. The exposition for the cases n = 1, 3 is similar. This
completes the proof.

Remark 3.7. To finalize the L∞ error estimate for u∗ − u∗
h it remains to provide estimates

for e1 := ‖(S∗ − S∗
h )Su∗‖∞ and e2 := ‖(S∗ − S∗

h )z‖∞. However, the approximation order
for these terms is restricted by 2. In this sense estimate (14) is optimal. For example there
holds

ei = O(
h2− n

2
)
, i = 1, 2, n = 1, 2, 3,

ei = O(h), i = 1, 2, n = 2, 3, if a discrete maximum principle is satisfied for

the finite element spaces, and

ei = O(h2| ln h|), i = 1, 2, n = 1, 2, if Su∗, S∗z ∈ H 2,∞(�),

see [5].

4. Numerical realization

In the present section the discretization concept is described in more detail. Firstly a char-
acterization of the discrete solution of problem (9) and the related discrete active set is
provided. Then two numerical algorithms are discussed which allow to implement the dis-
cretization strategy proposed in the present work. Finally a numerical example is presented
which confirms the theoretical investigations.
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4.1. Discrete solution and numerical algorithms

In order to start the exposition of this section recall that Uad is defined through constant
box constraints with bounds ua < ub. Further recall that J (y, u) = 1

2

∫
�

|y − z|2 dx
+α

2

∫
�

|u|2 dx , so that for given u ∈ U there holds Ĵ ′(u) = αu +μ, where μ = S∗(Su − z).
To anticipate discussion note, that the subsequent considerations are also valid for bounds
which are linear on every simplex of the triangulation. They may also be extended to the
case of smooth spatially varying bounds ua, ub, and also to more general cost functionals
J (y, u) whose second second partial derivatives Juu satisfy certain monotonicity properties.

Theorem 4.1. Let u∗
h ∈ Uad denote the unique solution to (Ph). Then there exists a partition

κh = {K1, . . . Kl(h)} of � such that u∗
h restricted to K j ( j = 1, . . . , l(h)) is a polynomial

either of degree zero or one. For l(h) there holds

l(h) ≤ Cnt(h),

with a positive constant C ≤ 3 and nt(h) denoting the number of simplexes in τh. In
particular, the vertices of the discrete active set associated to u∗

h need not coincide with
finite element nodes.

Proof: The solution u∗
hô f (Ph) satisfies

u∗
h = P[ua ,ub]

{
− 1

α
μ∗

h

}
, (15)

compare figure 1. Now abbreviate ξ a
h := − 1

α
μ∗

h − ua , ξ b
h := ub − 1

α
μ∗

h and investigate the
zero level sets 0a

h and 0b
h of ξ a

h and ξ b
h , respectively.

Case n = 1: 0a
h ∩ Ti is either empty or a point Sa

i ∈ Ti . Every point Sa
i subdivides Ti into two

sub-intervals. Analogously 0b
h ∩ Ti is either empty or a point Sb

i ∈ Ti . Further Sa
i �= Sb

i
since ua < ub. The maximum number of sub-intervals of Ti induced by 0a

h and 0b
h therefore

is equal to three. Therefore, l(h) ≤ 3nt(h), i.e. C = 3.
Case n = 2: 0a

h ∩ Ti is either empty or a vertex of τh or a line La
i ⊂ Ti , analogously 0b

h ∩ Ti

is either empty or a vertex of τh or a line Lb
i ⊂ Ti . Since ua < ub the lines La

i and Lb
i do

not intersect. Therefore, similar considerations as in the case n = 1 yield C = 3.
Case n = 3: 0a

h ∩ Ti is either empty or a vertex of τh or an edge or a part of a plane La
i ⊂ Ti ,

analogously 0b
h ∩ Ti is either empty or a vertex or an edge of τh or a part of a plane

Lb
i ⊂ Ti . Since ua < ub the surfaces La

i and Lb
i do not intersect. Therefore, similar

considerations as in the case n = 2 yield C = 3. This completes the proof.

It follows now from the considerations above that commonly utilized convergent solution
algorithms for problem (Ph) with discrete initial controls generate sequences of discrete
iterates. In the following this is illustrated for the projected gradient method formulated
next, and also for a special variant of the primal-dual active set method [2, 10, 11].
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Figure 1. Solutions u∗ and u∗
h together with their active sets for h = 1/3 in the case n = 1 (left). Zoom of the

same (right). The decoupling of discrete active set and finite element grid is obvious.

Algorithm 4.2. Projected gradient algorithm

(1) ũ0 ∈ U , u0 := P[ua ,ub]ũ0, k = 0, tol > 0.
(2) dk := Jh

′(uk)
(3) ρ = argmins≥0 Jh(uk − sdk)
(4) uk+1 := P[ua ,ub](uk − ρdk)
(5) If |uk+1 − uk | ≤ tol, STOP
(6) k = k + 1, goto 2.

A close inspection of this algorithm shows that

uk − ρdk = −ρS∗
h (Shuk − z)

in step (4) if ρ = 1
α

. Since S∗
h (Shuk − z) is a finite element function the determination of its

active part follows the lines of the proof of the previous Theorem 4.1. This in turn proves

Corollary 4.3. Let τh denote a triangulation of � and let u0 ∈ U such that u0
|Ti

for all Ti ∈
τh is either a constant or a linear function. Further set ρ = 1

α
in step (3) of Algorithm 4.2.

Then for every iterate uk of Algorithm 4.2 there exists a partition κk
h = {K k

1 , . . . K k
l(h)} of

� such that uk restricted to K k
j ( j = 1, . . . , l(h)) is a polynomial either of degree zero or

11



one. The number l(h) is independent of the iteration index k and satisfies the estimate

l(h) ≤ Cnt(h)

with a positive constant C ≤ 3, where nt(h) again denotes the number of simplexes in τh.

It is now easy to verify that with the settings of Corollary 4.3 the numerical overhead for
Algorithm 4.2 compared to the standard approaches (a-priori discretization of Uad) consists
in managing varying grid points similar to Sa

i , Sb
i in the proof of Theorem 4.1. Of course

these grid points depend on the iteration counter k of Algorithm 4.2 and may alter with
every iteration of the algorithm, but there are at most two such points on every edge of a
finite element simplex.

Next investigate the primal-dual active set strategy [2, 10, 11]. Its algorithmical realization
relies on the numerical treatment of the complementary system associated with problem
(1). Both, the state equation y = Su and the control constraints u ∈ Uad are considered
as hard constraints and are supplied with Lagrange multipliers. For the discrete optimal
control problem (11) considered in the present work the complementarity system reads

(α I d + S∗
h Sh)u + λ̂ = S∗

h z =: −r,

�(u, λ̂) := max(λ̂ + σ (u − ub), 0) + min(λ̂ + σ (u − ua), 0) = λ̂,

where λ̂ = −λa + λb with λa and λb denoting the Lagrange multipliers associated with the
box constraints, and σ > 0 is arbitrary. For the numerical solution of this complementarity
system the primal-dual active set strategy works as follows.

Algorithm 4.4. Primal-dual active set strategy

(1) Initialize u0 ∈ Uad, λ̂0 = −r ; set l = 1, ε > 0 small.
(2) Loop l

(a) Al
ua

:= {λ̂l−1 + σ (ul−1 − ua) < 0} (= {−r − S∗
h Shul−1 − αua < 0}, if σ = α),

(b) Al
ub

:= {λ̂l−1 + σ (ul−1 − ub) > 0} (= {−r − S∗
h Shul−1 − αub > 0}, if σ = α),

(c) Il := � \ (Al
ua

∪ Al
ub

).

(3) l ≥ 2, Al
ua

=Al−1
ua

, Al
ub

=Al−1
ub

, or ‖�(ul−1, λ̂l−1) − λ̂l−1‖ ≤ ε: u = ul−1, λ̂ = λ̂l ,
RETURN.

(4) Otherwise

(a) ul = ua on Al
ua

, ul = ub on Al
ub

, λ̂l = 0 on I l

(b) Solve for ul |Il , λ̂l |Al
ua ∪Al

ub

(α + S∗
h Sh)ul + λ̂l = −r

(5) l := l + 1.

To solve the system in step (4) (a), (b) of the algorithm the conjugate gradient method of
Algorithm 4.5 may be utilized. Let H := α I d + S∗

h Sh

12



Algorithm 4.5. CG to solve (4)

(1) Initialize

v0
|Il := 0, v0

|Al
ua

= ua|Al
ua

, v0
|Al

ub
= ub|Al

ub

,

d0
|Il = r|Il − (Hv0)|Il =: g0

|Il , k := 0.

(2) Do until convergence

(a) tk := ‖gk
|Il ‖2

(dk ,Hdk ) ,

(b) vk+1 = vk + tkdk,

(c) gk+1
|Il = gk

|Il + tk(Hdk)|Il ,

(d) βk = ‖gk+1
|Il ‖2

‖gk
|Il ‖2 ,

(e) dk+1
|Il = −gk+1

|Il + βkdk
|Il ,

(f) dk+1
|Al = 0,

(g) k = k + 1.

(3) Compute λ̂l = −r − Hvk .

As already observed for the projected gradient method of Algorithm 4.2 the particular
choice of a parameter, here namely σ = α allows the numerical implementation of this
algorithm with only slightly increased numerical overhead when compared to the imple-
mentation of the conventional discretization approaches. Indeed, for σ = α in step 2. (a),
(b) of the algorithm the active set in iteration step l can be identified by means of the finite
element function −r − S∗

h Shul−1 − αua , so that on each simplex of the triangulation the
active set in step l contains at most two connected components. These components again
may be managed by varying grid points similar to Sa

i , Sb
i in the proof of Theorem 4.1. Again

note that these grid points may alter with every iteration of Algorithm 4.4, but there are at
most two such points on every edge of an finite element simplex.

Both algorithms presented perfectly mimic the decoupling of the discrete active set and
the finite element grid. As the following numerical example illustrates the approximation
of the active set with the method presented in the present work already is very accurate for
coarse discretizations. Moreover, the boundary of the discrete active set seems to converge
quadratically to that of the continuous active set.

4.2. Numerical example

Consider the following optimal control problem of tracking type;

min
y,u

1

2

∫ 1

0
|y − z|2 dx + α

2

∫ 1

0
u2 dx,
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where u ∈ Uad := {v ∈ L2(0, 1); u ≤ ub} and y and u are related via the second order
boundary value problem

y = Su ⇔ −y′′ + y = u + e in (0, 1), y(0) = y(1) = 0.

Note that in the setting of the previous sections ua = −∞. With the choice of e :=
−2 + x2 − x − min(ub, − x2−x

α
) and z(x) ≡ 2 the unique optimal solution of the control

problem is given by

y(x) = x2 − x, and u(x) = min

(
− x2 − x

α
, ub

)
,

where the associated Lagrange multiplier of the equality constraint is given by μ(x) =
x2 − x .

The solution operator S is discretized with piecewise linear, continuous finite elements
on an equidistant grid xi = ih with grid width h = 1

n+1 . The related discrete solution
operator is denoted by Sh . In all numerical computations presented ũ0 := 0, α = 0.1
and ub = 1

2 (
√

2 − 1)/(2α), so that the boundary points pl = 1
2 (1 − √

1 − 4αub) and
pr = 1

2 (1 + √
1 − 4αub) of the continuous active set can never coincide with a point of

the finite element grid. As numerical solution algorithm the projected gradient method of
Algorithm 4.2 is utilized, where step (3) is replaced by ρ = 1

α
. The iteration is stopped

if the relative difference of two consecutive iterates and the distance of two consecutive
active sets is smaller than 1.e−6. The method for this termination criterion converges after
five iterations, where this number is independent of the finite element grid size. Recall that
for this choice of ρ the projection step (4) consists of projecting on each element the finite
element function −ρS∗

h (Shuk − z) onto the admissible set.
In figure 2 (left) a comparison is shown of the discrete control on a grid containing

5 points and the exact solution. As further reference to the performance of the gener-
alized discretization concept also the numerical solution is shown which is obtained by

Figure 2. Comparison of optimal continuous control (black), control obtained from the generalized discretization
concept (red) and by nodal projections (green) for 5 grid points (left), and zoom of the same at the right contact
point (right).
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the projected gradient method, where the projection in step (4) is replaced by uk+1 =
Q[ua ,ub](uk −ρdk). Here v = Q[ua ,ub](w) iff v ∈ Uad is the finite element function with nodal
values vi = max{ua, min{w(xi ), ub}}. To anticipate discussion note that for both discrete
methods numerically quadratic convergence of the error in both the L2 and L∞ norm is
observed, see the tables below. However, the overall size of the errors on the different refine-
ment levels is much smaller for the generalized approach. The right picture in figure 2 shows
a zoom on the controls at the right contact point pr for the numerical solutions obtained
on a grid with 5 points. As one can see the generalized method approximates the exact
control already pretty well. The figures illustrate that the numerical solution obtained by
the generalized discrete concept already on this coarse grid provides a very good approxi-
mation of the continuous solution. Moreover, the active set is approximated very accurately
as well, see also the tables below illustrating the convergence behavior of the methods. The
numerical solution obtained with projection Q[ua ,ub] only is capable of resolving the active
set on the nodes of the finite element grid which results in linear convergence of the active
set only. For the generalized approach numerically quadratic convergence is observed.

The experimental order of convergence for positive error functionals E(h) with h > 0 in
this context is defined as follows: Given two grid sizes h1 �= h2, let

EOC := ln E(h1) − ln E(h2)

ln h1 − ln h2
.

It follows from this definition that if E(h) = O(hξ ) (h → 0) then EOC ≈ ξ . The error
functionals investigated in the present section are given by

E2(h) := ‖u − uh‖0, E∞(h) := ‖u − uh‖∞ and Ea(h) := dist
(

pr , pr
h

)
.

Table 1 shows the values of the error functionals for the generalized discretization approach
for α = 0.1. The functional value and the values of the error functionals for the numerical
method with projection Q[ua ,ub] on the finest grid for u∗ replaced by its finite element
interpolation are J = 2.39486559, E2 = 6.278354e−08, E∞ = 1.98161808e−07 and
Ea = 5.7761306e−05. In particular, compared to the generalized approach the error for Ea

is three orders of magnitude larger. Table 2 shows the experimental order of convergence for
the generalized approach in the case α = 0.1. As one can see the error estimates (12) and (14)
for the errors in the L2 and L∞ norms, respectively are numerically confirmed. Moreover,
the discrete active set numerically converges quadratically to its continuous counterpart.
Note that with projection Q[ua ,ub] the numerically observed convergence of the L2 and the
L∞ norm is also quadratic. However, the numerically observed rate of convergence of the
discrete active set only is linear, compare the rightmost column in Table 2. Further note that
with increasing α the experimental order of convergence for the L2 and L∞ norms of the
method with projection Q[ua ,ub] deteriorates, whereas the numerically observed convergence
of the generalized approach is robust w.r.t. α.
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Table 1. Values of cost and error functionals on different levels, α = 0.1.

Grid size h J (y∗
h , u∗

h ) E2 E∞ Ea

1/9 2.1176 8.3251e–3 3.3416e–2 6.8213e–3

1/17 2.2417 3.8878e–3 1.0285e–2 1.8470e–3

1/33 2.3156 1.1158e–3 2.8788e–3 3.7634e–4

1/65 2.3546 3.3864e–4 7.6771e–4 1.5612e–4

1/129 2.3748 9.2743e–5 1.9796e–4 4.0610e–5

1/257 2.3851 2.3925e–5 5.0286e–5 1.0442e–5

1/513 2.3903 6.0773e–6 1.2678e–5 2.6992e–6

1/1025 2.3929 1.5299e–6 3.1771e–6 7.0363e–7

1/2049 2.3942 3.8441e–7 7.9761e–7 1.8193e–7

1/4097 2.3948 9.6149e–8 1.9903e–7 4.0055e–8

Table 2. Experimental order of convergence, α = 0.1.

Grid size h E2 E∞ Ea E Q
a

1/9 – – – –

1/17 1.10 1.70 1.88 0.74

1/33 1.80 1.84 2.30 0.73

1/65 1.72 1.91 1.27 2.93

1/129 1.87 1.96 1.94 −0.56

1/257 1.95 1.98 1.96 1.02

1/513 1.98 1.99 1.95 1.06

1/1025 1.99 2.00 1.95 1.14

1/2049 2.00 2.00 1.95 1.34

1/4097 2.00 2.00 2.18 2.08
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4. E. Casas and F. Tröltzsch, “Error estimates for linear-quadratic elliptic control problems,” in V. Barbu et al.
(Eds.), Analysis and Optimization of Differential Systems, Boston, Kluwer Academic Publishers, pp. 89–100,
2003. Institut für Mathematik, Technische Universität Berlin, Germany.

5. P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, 1978.
6. K. Deckelnick and M. Hinze, “Error estimates in space and time for tracking-type control of the instationary

Stokes system,” ISNM, vol. 143, pp. 87–103, 2002.
7. P. Grisvard, Elliptic Operators in Nonsmooth Domains, Pitman: London, 1985.
8. W. Hackbusch, Theory und Numerik elliptischer Differentialgleichungen, Teubner, 1995.
9. M. Hintermüller and M. Hinze, “A SQP-Semi-Smooth Newton-type Algorithm applied to Control of the

instationary Navier-Stokes System subject to Control Constraints,” Technical Report TR03-11, Center of
Computational and Applied Mathematics, Rice University, USA, 2003.

10. M. Hintermüller, K. Ito, and K. Kunisch, “The primal-dual active set method as a semi-smooth Newton
method,” SIAM J. Control and Optim., vol. 13, pp. 865–888, 2003.
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