Skip to main content
Log in

Efficient Computation of the Hausdorff Distance Between Polytopes by Exterior Random Covering

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, a simple yet efficient randomized algorithm (Exterior Random Covering) for finding the maximum distance from a point set to an arbitrary compact set in Rd is presented. This algorithm can be used for accelerating the computation of the Hausdorff distance between complex polytopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Alt, B. Behrends, and J. Blömer, “Approximate matching of polygonal shapes” In Proc. 7th Annu. ACM Sympos. Comput. Geom., 1991, pp. 186–193.

  2. H. Alt, B. Behrends, and J. Blömer, “Approximate matching of polygonal shapes” Ann. Math. Artif. Intell., vol. 13, pp. 251–266, 1995.

    Article  Google Scholar 

  3. H. Alt, P. Brass, M. Godau, Ch. Knauer, and C. Wenk, “Computing the Hausdorff distance of geometric patterns and shapes” Technical Report B01-07, Freie Universität, Berlin, Fachbereich Mathematik und Informatik, Nov. 2001.

  4. M.J. Atallah, C. Ribeiro, and S. Lifschitz, “A linear time algorithm for the computation of some distance functions between convex polygons” RAIRO Rech. Opérat., vol. 25, no. 4, pp. 413–424, 1991.

    MathSciNet  Google Scholar 

  5. H.H. Bauschke and J.M. Borwein, “On projection algorithms for solving convex feasibility problems” SIAM Rev., vol. 38, pp. 367–426, 1996.

    Article  Google Scholar 

  6. J.D. Boissonat and M. Yvinec, Algorithmic Geometry, Cambridge University Press: Cambridge, 1998.

    Google Scholar 

  7. H. Brezis, Analyse Fonctionelle, Masson, 1983.

  8. L.P. Chew, M.T. Goodrich, D.P. Huttenlocher, K. Kedem, J.M. Kleinberg, and D. Kravets, “Geometric pattern matching under euclidean motion” Comput. Geom. Theory Appl., vol. 7, pp. 113–124, 1997.

    Google Scholar 

  9. L.P. Chew, D. Dor, A. Efrat, and K. Kedem, “Geometric pattern matching in d-dimensional space” Discrete Comput. Geom., vol. 10, pp. 257–274, 1999.

    Google Scholar 

  10. F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley and Sons: New York, 1983.

    Google Scholar 

  11. L. Devroye, “Progressive global random search of continuous functions” Math. Program., vol. 15, pp. 330–342, 1978.

    Article  Google Scholar 

  12. Y.G. Etvushenko, Numerical Optimization Techniques, Springer: Berlin, 1985.

    Google Scholar 

  13. M. Godau, “On the complexity of measuring the similarity between geometric objects in higher dimensions” Dissertation, Freien Universität, Berlin, 1998.

    Google Scholar 

  14. M.T. Goodrich, J.S.B. Mitchell, and M.W. Orletsky, “Approximate geometric pattern matching under rigid motions” I.E.E.E. Trans. on Pattern Analysis and Machine Intelligence, vol. 21, pp. 371–379, 1999.

  15. M. Hagedorn, “Pattern matching using similarity measures” Thesis, Universiteit Utretch, 2000.

  16. R. Horst and H. Tuy, Global Optimization. Deterministic Approaches, Springer: Berlin, 1993.

    Google Scholar 

  17. D.P. Huttenlocher, K. Kedem, and M. Sharir, “The upper envelope of Voronoi surfaces and its applications” Discrete Comput. Geom., vol. 9, pp. 267–291, 1993.

    Google Scholar 

  18. K.U. Jahn, “Effective evaluation of Hausdorff distances for finite unions of hyperrectangles” In Validation Numerics, Theory and Applications, R. Albrecht, G. Alefeld, and H.J. Stetter (Eds.), Springer: Berlin, 1993, pp. 93–100.

    Google Scholar 

  19. S.R. Lay, Convex Sets and their Applications, John Wiley and Sons: New York, 1982.

    Google Scholar 

  20. R. Lenz, Group Theoretical Methods in Image Processing, Lecture Notes in Computer Science 413, Springer: Berlin, 1990.

    Google Scholar 

  21. M. Lin, “Efficient collision detection for animation and robotics” Ph.D. Thesis, University of California at Berkeley, 1993.

  22. B. Llanas and F.J. Sainz, “ Hausdorff matching and Lipschitz optimization” (submitted), 2001.

  23. B. Llanas and C. Moreno, “Finding the projection on a polytope: An iterative method” Comput. Math. Appl., vol. 32, pp. 33–39, 1996.

    Article  Google Scholar 

  24. B. Llanas, M. Fernández de Sevilla, and V. Feliú, “An iterative algorithm for finding a nearest pair of points in two convex subsets of RN” Comput. Math. Appl., vol. 40, pp. 971–983, 2000.

    Article  Google Scholar 

  25. B. Llanas, M. Fernández de Sevilla, and V. Feliú, “Minimum distance between the faces of two convex polyhedra. A sufficient condition” J. Global Optim., vol. 26, pp. 361–385, 2003.

    Article  Google Scholar 

  26. R. Motwani and P. Raghavan, “Randomized Algorithms” in Algorithms and Theory of Computation Handbook, M. J. Atallah (Ed.), CRC Pess, 1999.

  27. K. Mulmuley, Computational Geometry. An Introduction Through Randomized Algorithms, Prentice Hall, 1994.

  28. R.T. Rockafellar, Convex Analysis, Princeton University Press: Princeton, 1983.

    Google Scholar 

  29. S. Schirra, “Robustness and Precision Issues in Geometric Computation” in Handbook of Computational Geometry, J.-R. Sack and J. Urrutia (Eds.), Elsevier, 2000, pp. 597–632.

  30. K. Sekitani and Y. Yamamoto, “A recursive algorithm for finding the minimum norm point in a polytope and a pair of closest points in two polytopes” Math. Program., vol. 61, pp. 233–249, 1993.

    Article  Google Scholar 

  31. R.C. Veltkamp and M. Hagedoorn, “State-of-the-art in shape matching” Technical Report UU-CS-1999–27, Utrecht University, the Netherlands, 1999.

  32. Ph. Wolfe, “Finding the nearest point in a polytope” Math. Program., vol. 11, pp. 128–149, 1976.

    Article  Google Scholar 

  33. A.A. Zhigljavsky, Theory of Global Random Search, Kluwer: Dordrecht, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Llanas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llanas, B. Efficient Computation of the Hausdorff Distance Between Polytopes by Exterior Random Covering. Comput Optim Applic 30, 161–194 (2005). https://doi.org/10.1007/s10589-005-4560-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-005-4560-z

Keywords

Navigation