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Abstract. System identification is an important means for obtaining dynamical
models for process control applications; experimental testing represents the most
time-consuming step in this task. The design of constrained, “plant-friendly” multi-
sine input signals that optimize a geometric discrepancy criterion arising from Weyl’s
Theorem is examined in this paper. Such signals are meaningful for data-centric
estimation methods, where uniform coverage of the output state-space is critical.
The usefulness of this problem formulation is demonstrated by applying it to a
linear problem example and to the nonlinear, highly interactive distillation column
model developed by Weischedel and McAvoy. The optimization problem includes a
search for both the Fourier coefficients and phases in the multisine signal, resulting in
an uniformly distributed output signal displaying a desirable balance between high
and low gain directions. The solution involves very little user intervention (which
enhances its practical usefulness) and has great benefits compared to multisine
signals that minimize crest factor. The constrained nonlinear optimization problems
that are solved represent challenges even for high-performance optimization software.

Keywords: system identification, process control, constrained optimization

1. Introduction

Dynamic modeling is a critical task to many problems in the areas
of simulation, prediction, and control of process systems. Given the
complexity of most industrial plants, a sensible approach is to es-
timate dynamic models from data generated through well-designed
experiments; this is the problem of system identification (Ljung, 1999).
Particular industries, such as the petrochemical and refining industries,
rely almost exclusively on system identification as the principal means
for obtaining dynamic models for advanced control purposes.
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System identification is traditionally broken down into four sub-
steps: 1) experimental planning and execution, 2) data preprocessing
and model structure selection, 3) parameter estimation and 4) model
validation. The quality of the data generated from the experimental
design stage is critical to the success of the comprehensive system
identification and subsequent control design procedures. In the chem-
ical process industries, identification testing is by necessity conducted
while the plant is in normal operation, and as such represents one of
the most expensive and time consuming steps in the application of
advanced control in the process industries. It comes as no surprise that
model development has been reported to account for 75% of the costs
associated with an advanced control project (Hussain, 1999).

The need for “plant-friendliness” in system identification for the
process industries stems from the fundamental need for informative ex-
periments despite practical requirements to the contrary (Rivera et al.,
2003). A plant-friendly identification test will produce data leading to
a suitable model within an acceptable time period, while keeping the
changes and variability in both input and output signals within user-
defined constraints. In recent years, there has been significant interest
in data-centric dynamic modeling frameworks such as Just-in-Time
modeling (Cybenko, 1996) and Model-on-Demand (MoD) estimation
(Stenman, 1999). The appeal of these modeling approaches is that they
enable nonlinear estimation, while reducing the structural decisions
made by the user and maintaining reliable numerical computations.
The performance of these methods, however, is highly dependent upon
the availability of quality, informative databases, and consequently,
good experimental designs are an imperative. An important considera-
tion in experimental design for these estimation methods is to achieve
uniform coverage of regressors in the database. This paper examines the
development of multisine signal designs that are ultimately intended for
data-centric frameworks and also satisfy plant-friendliness constraints
during identification testing.

The idea of uniformly distributed experimental designs for system
identification relying on multisine signals is not entirely new, but the
concept is not well known, even within the control community. The
work of Duym and Schoukens (1995) motivates the problem on the
need for nonparametric identification intended for kinematic modeling
applications (where both velocity and displacement output variables
need to uniformly cover the state-space) as opposed to data-centric
estimation. The approach relies on minimizing an objective function
quantifying the real and actual discrepancy from a user-defined grid.
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An iterative procedure that does not apply constraint enforcement is
used in this work.

A novel, more systematic approach that we present in this paper is to
rely on the principles of geometric discrepancy theory (Matoušek, 1999)
as a means for achieving uniformity of the data in a regressor space.
This is accomplished by minimizing a discrepancy function made up
of trigonometric polynomials arising from Weyl’s Theorem that insure
that the points are equidistant on a state-space. The optimization prob-
lem calls for minimizing this discrepancy function on the anticipated
outputs of the system, subject to the restrictions of an orthogonal “zip-
pered” spectrum (used to enable multi-channel implementation) and
simultaneously enforcing plant-friendliness time-domain constraints on
upper and lower limits, move sizes, and rates of change in either (or
both) input and output signals. The optimization problem is solved
using a state-of-the-art NLP solver (KNITRO 3.1) which uses an inte-
rior point trust region method and employs SQP techniques to solve
the barrier subproblems. Through out the CG-iterative algorithm was
chosen.

The paper is organized as follows: Section 2 presents some necessary
background material, while Section 3 describes the Weyl criterion that
defines the geometric discrepancy objective. Section 4 presents an ex-
ample based on a simple linear highly interactive system that leads to a
plant-friendly constrained optimization problem formulation that is the
basis for this work. Section 5 describes the results of a more demand-
ing case study (based on the nonlinear Weischedel-McAvoy distillation
column) while Section 6 contains a Summary and Conclusions.

2. Background

Multisine signals are deterministic, periodic signals, which have great
versatility for use in system identification. A multisine signal u(k)
corresponding to the j-th channel of a system with m total inputs
is represented by the equation

uj(k) =

(m+1)ns
∑

i=1

√

2αij cos(ωikT + φij), ωi =
2πi

NsT
, ns ≤

Ns

2
(1)

The power spectrum in a multisine input can be directly specified by the
user through the selection of the Fourier coefficients αij, the number of
independent harmonics ns, and the signal length Ns. k and T represent
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the sampling index and sampling time, respectively. Multisine inputs
are easy to implement in a real-time setting; as deterministic signals,
one cycle can be designed to include all the frequency content needed for
consistent estimation of the plant dynamics. Under noisy experimental
conditions, multiple cycles of a periodic input can be applied until the
variance in the model estimate is reduced to acceptable levels (Ljung,
1999). Multisine inputs have been deemed effective in a number of
diverse application environments, from large space structures (Bayard,
1993) to industrial boilers (Godfrey, 1993).

No single criterion comprehensively defines plant-friendliness, al-
though varied metrics have been proposed (Rivera et al., 2003). One
measure that has been studied in the context of plant-friendliness is
the crest factor (CF ) (Guillaume et al., 1991; Godfrey, 1993). The
crest factor, defined as the ratio of the `∞ (or Chebyshev) norm and
the `2-norm of a signal x,

CF (x) =
`∞(x)

`2(x)
, `p(x) =

[

1

Ns

∫ Ns

0
|x(t)|pdt

]
1

p

(2)

provides a measure of how well distributed the signal values are over its
span. A low crest factor indicates that most of the elements in the input
sequence are distributed near the extremum values of the sequence. For
example, if two signals with equivalent power spectral densities are to
be evaluated for identification purposes, the one with lower crest factor
is preferred because it will deliver the same power over a lower overall
span. An alternative measure of signal distribution is the Performance
Index for Perturbation Signals (PIPS) (Godfrey et al., 1999)

PIPS(%) = 200

√

x2
rms − x2

mean

xmax − xmin

(3)

where xrms and xmean are

xrms =

√

√

√

√

1

Ns

Ns
∑

i=1

x2
i xmean =

1

Ns

Ns
∑

i=1

xi (4)

The PIPS measure ranges between 0 and 100% (compared to 1
versus ∞ for crest factor), which gives it an intuitive, practical appeal.
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3. Uniform Distribution of Infinite Sequences - The Weyl

Criterion

Discrepancy theory deals with the distribution of points in space (Ma-
toušek, 1999). The Weyl criterion (Weyl, 1916) gives the necessary and
sufficient conditions for a sequence to be uniformly distributed in [0, 1)d,
the d-dimensional unit interval. Suppose u = (u1, u2, . . .) be an infinite
sequence of points in [0, 1]. The sequence u above is called uniformly
distributed in [0, 1] if for each sub-interval [a, b) ∈ [0, 1]

lim
n→∞

(

1

n
|{u1, u2, . . . , un} ∩ [a, b)|

)

= b − a (5)

Let f : [0, 1] → R be a Riemann-integrable function. If the sequence
u = (u1, u2, . . .) is uniformly distributed in [0, 1] then by definition of
uniform distribution it is easy to see that

lim
n→∞

(

1

n

n
∑

i=1

f(ui)

)

=

∫ 1

0
f(x) dx (6)

Equation (6) is valid for all Riemann-integrable functions. We know
that any function f(x) as defined above can be expanded into a complex
Fourier series as follows:

f(x) =
∞
∑

k=−∞

ck e2πikx (7)

Here e2πikx, k = integer, act as basis functions for the expansion. Note
that for k = 0 the basis function is e2πi0x = 1 for which equation (6)
holds trivially. Hence for k 6= 0 the basis functions satisfy equation (6).
This means that

lim
n→∞





1

n

n
∑

j=1

e2πikuj



 =

∫ 1

0
e2πikx dx (8)

But
∫ 1

0
e2πikx dx =

(

e2πikx

2πik

)1

0

= 0 (9)

From (8) and (9) and the Weirstrass approximation theorem it is easy
to prove that a sequence u = (u1, u2, . . .) is uniformly distributed in
[0,1] if and only if for all integers k 6= 0

lim
n→∞





1

n

n
∑

j=1

e2πikuj



 = 0 (10)
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This result is called the Weyl Criterion. Weyl’s criterion can be ex-
tended to higher dimensions also.

THEOREM 1 (H. Weyl, 1916). A sequence {y1(k), y2(k)} is equidis-

tributed in [0, 1)2 if and only if

lim
N→∞

1

N

N
∑

k=1

e2πi(l1y1(k)+l2y2(k)) = 0

∀ sets of integers l1, l2 not both zero.

Breaking the above equation into real and imaginary parts we get that
the sequence {y1(k), y2(k)} is equi-distributed in [0, 1)2 if and only if ∀
sets of integers l1, l2 not both zero the following conditions hold:

lim
N→∞

1

N

N
∑

k=1

cos[2π(l1y1(k) + l2y2(k))] = 0 (11)

and

lim
N→∞

1

N

N
∑

k=1

sin[2π(l1y1(k) + l2y2(k))] = 0 (12)

4. An Illustrative Example

To illustrate the effectiveness of the Weyl criterion for signal design,
we consider a highly interactive system based on the simplified model
of a high-purity distillation column (Morari and Zafiriou, 1988). The
system dynamics are described in terms of the continuous time transfer
function is as follows:

y(s) =
1

75s + 1

[

87.8 −86.4
108.2 −109.6

]

u(s) (13)

where y(s) and u(s) are Laplace transform of the output and input
signals to the system respectively. When sampled at a T sampling
interval, (13) becomes

y1(k) = a y1(k − 1) + b (87.8u1(k − 1) − 86.4u2(k − 1)) (14)

y2(k) = a y2(k − 1) + b (108.2u1(k − 1) − 109.6u2(k − 1)) (15)

where a = e
−T

75 and b = (1 − a).
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4.1. Constrained Problem Formulation

Our goal here is to design an input signal that is uniformly distributed
and as such has good directionality information in the output state
space of the system. This assumes a priori knowledge of the plant
model as either an equation or a computer program that is available to
the optimizer.

We introduce two cycles of input each of length Ns and let the
transients die out in the first cycle (k = 0, . . . , Ns−1) of the output. As
before the input u(k) and output y(k) are vectors with two components.
To design a plant friendly signal we impose bound constraints on both
u(k) and/or y(k) in the second cycle. Here, z is one of y1, y2, u1, u2.

|z(k)| ≤ Cz, k = Ns, . . . , 2Ns − 1 (16)

In the above equations, the Cz are user defined constants. We would
also like to have the move size of u(k) and y(k), which is the difference
between successive values in u(k) and y(k), to be small. We therefore
impose the constraints:

|z(k + 1) − z(k)| ≤ ∆Cz, k = Ns − 1, . . . , 2Ns − 2 (17)

Again the ∆Cz are user defined constants.

The a priori information about the plant must be available as ei-
ther a model estimated from previous tests or as a computer program
simulating the system. These relationships are:

y1(k) = f1(u1, u2, y1, y2), k = 0, . . . , 2Ns − 1 (18)

and
y2(k) = f2(u1, u2, y1, y2), k = 0, . . . , 2Ns − 1 (19)

Here the arguments of f1 and f2 indicate the dependence of y1 and y2

on the values of the vectors u1, u2, y1 and y2; for the example problem
these correspond to (14) and (15). The inputs u1(k) and u2(k) are
chosen to be multisine inputs:

uj(k) =

(m+1)ns
∑

i=1

√

2αij cos(
2πi

Ns

k + φij), j = 1, 2 (20)

with Fourier coefficient bounds corresponding to a modified zippered
spectrum as described below:

αij =







≥ 0, i = j, (m + 1) + j, · · · , (m + 1)(ns − 1) + j

≥ 0, i = m + 1, 2(m + 1), · · · , ns(m + 1)
= 0, for all other i up to (m + 1)ns

(21)
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The goal is to uniformly distribute the points (y1(k), y2(k)) in the
output state space region [−Cy1

, Cy1
)× [−Cy2

, Cy2
). We wish to use the

Weyl Criterion described in the previous section to achieve this uniform
distribution. Since the Weyl Criterion deals with uniform distributions
in [0, 1)2, we introduce a change of variables:

ŷ1(k) =
y1(k) + Cy1

2Cy1

ŷ2(k) =
y2(k) + Cy2

2Cy2

(22)

Since we only have a finite number of points, we cannot impose (11)
and (12) as described before. We choose an integer L and form the set
S as follows:

S = {x : x ∈ Z and |x| ≤ L} (23)

where Z is the set of all integers. Then define the set W as

W = {(l1, l2) : l1 ∈ S, l2 ∈ S and (l1, l2) 6= (0, 0)} (24)

We then try to minimize the sum in equations (11) and (12) for all
elements of the set W . As before we impose this “Weyl” constraint
on the second cycle (k = Ns + 1, . . . , 2Ns − 1) of the output. The
optimization is carried out to estimate the amplitudes and phases
αi1, αi2, φi1, φi2, i = 1, . . . , (m + 1)ns of the m = 2 multisine inputs.
The complete problem statement is as follows:

min
αi1,αi2,φi1,φi2

t (25)

s.t.
2Ns−1
∑

k=Ns+1

cos[2π(l1ŷ1(k) + l2ŷ2(k))] ≤ t,∀ (l1, l2) ∈ W (26)

s.t.
2Ns−1
∑

k=Ns+1

sin[2π(l1ŷ1(k) + l2ŷ2(k))] ≤ t,∀ (l1, l2) ∈ W (27)

s.t. t ≥ ε (28)

and subject to constraints per Equations (16)-(22). The lower bound
constraint on t is imposed to promote faster convergence. ε is chosen
to be some small positive constant.

4.2. Note on the Computer Solution

The constrained problems designed in this paper were solved by pro-
gramming them in the modelling language AMPL which has built in
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automatic differentiation up to second order derivatives. The Weyl
constraints are twice continuously differentiable and so the optimizer
can make direct use of second derivative information. The optimizer
used was KNITRO developed by Byrd and co-workers (Byrd et al.,
1999; Byrd et al., 2000). KNITRO is an interior point trust region
SQP solver and is suitable for solving both large and small problems.
KNITRO is available with several other interfaces, including Matlab,
GAMS and Excel.

For the computations in Pendse (2004) version 3.1 of KNITRO was
used and was able to solve all the optimization problems. Problem
sizes could be increased somwhat for serial computations. For much
larger problems, such as dozens of channels, distributed resources will
be needed. Since the time of the first computations, the following codes
were also applied: CONOPT-3.14D, filterSQP, IPOPT-2.2.1d, LOQO-
6.06, PENNLP-1.0, SNOPT-7.1-1, and version 4.0 of KNITRO. All
but the first two codes were also compared in our AMPL benchmark
(Mittelmann, 2004), see there for references, in which they were able
to solve most of the selected problems. Here, however, the challenges
seem overwhelming. SNOPT is the only code except KNITRO which
succeeds in the linear example, and for the Weischedel and McAvoy
distillation column case study (discussed in Section 5) only KNITRO
can solve the problem. In order to further algorithm development we
plan to add the AMPL scripts to our benchmark problem collection
and include the results in the benchmark website cited above. Such ac-
tions have repeatedly, for example in the nonlinear and the semidefinite
programming area, led to improvements by the authors of the software.
To complete the algorithm references, see Drud (1994) for CONOPT
and Fletcher and Leyffer (2002) for filterSQP.

4.3. Design Variables for the Weyl Criterion

To better understand the influence of design variables L and ε on
the distribution of points in the output state space we perform two
experiments using the example problem per (13) with the bound and
move sizes shown in Table I.

4.3.1. Experiment 1

In this experiment, we fix ε at a value of 10−3 and vary L. The dis-
tribution of points in the output state space obtained for two different
simulations with L = 2 and 6 is shown in Figure 1. Pendse (2004)
contains simulations for L = 3 through 5. It can be seen that by
increasing L, the uniformity in the output state space distribution
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improves dramatically. An increase in the design variable L seems to
move the various clusters of points at different places in the state space
to achieve an approximation to a uniform distribution.

4.3.2. Experiment 2

In this experiment, we fix L = 3 and vary ε. We know from Experi-
ment 1 that a low value of L gives a relatively poor distribution. The
effect of changing ε would be more easy to decipher on a relatively poor
distribution than with a good distribution. In view of this fact we fix L

at a low value of 3. Two different simulations with ε = 10−2 and 10−6

are shown in Figure 2; other intermediate values can be found in Pendse
(2004). We observe that a decrease in the value of ε has the following
effect on the output state space:

1. Various clusters of points remain in more or less the same position.

2. Points within each cluster are redistributed. Decreasing the value
of ε seems to push apart the points overall.

It should be noted that we are attempting to satisfy the Weyl criterion
under certain limitations:

Limited Data: Weyl’s theorem has an infinite summation; we are only
using a finite amount of data in the second cycle of the system out-
put. Given this fact, we should not expect to achieve a completely
uniform distribution but only an approximation to it.

Weyl Grid Resolution: The sufficient conditions to ensure a uniform
distribution (11) and (12) should hold true for all sets of integers
l1 and l2. This enforcement is impractical and therefore we choose
a finite implementation using the sets S and W defined in (23)
and (24). There is a considerable amount of flexibility in choosing
these sets. It is clear from Experiment 1 that selection of larger
sets S and W would result in a closer approximation to equations
(11) and (12) and therefore a better output space distribution.
However, one should note that increasing L in the set S increases
the size of W at a rate approximately proportional to L2. Hence
from a computational point of view, one would select a reasonable
value of the parameter L. Experiment 1 revealed that L = 6 is a
“reasonably good” value.

Tolerance Value ε: The Weyl criterion requires the limit on the left
hand side of (11) and (12) to go to zero as N → ∞. Since we
have a finite amount of data we only attempt to make this sum
“small enough”. Again there is no straightforward way of choosing
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ε. In Experiment 2 we saw that decreasing ε does not create new
clusters at different locations but leads to a redistribution of points
within the same cluster. Given this information, there is not much
to gain by decreasing ε beyond a certain limit; it is much more
advantageous to increase L instead.

5. Case Study: Nonlinear High-Purity Distillation Process

Multivariable dynamical systems, in contrast to single variable ones,
may be ill-conditioned and highly interactive; this phenomena presents
challenges for both system identification and subsequent controller de-
sign. A demanding nonlinear and highly interactive multivariable pro-
cess system that benefits from judiciously applied system identification
techniques is high purity distillation (Figure 3); the methanol-ethanol
distillation column model developed by Weischedel and McAvoy (1980)
is commonly used as a benchmark problem (Chien and Ogunnaike,
1992; Sriniwas et al., 1995). In a typical binary high-purity distillation
column (such as the Weischedel-McAvoy column), the objective is to
separate a two-component mixture into streams that are very pure in
one component in each of the product streams (yD in the distillate D

and xB in the bottom B stream). Reflux (L) and boilup (V ) flows can
be used as manipulated variables to maintain the column at desired
operation. The highly interactive nature of high-purity distillation is
reflected in the fact that dynamically the system will tend to respond
in the principal gain direction (consisting of achieving greater purity
in one stream at the expense of purity in the other) while the low
gain direction (reflecting conditions where purities in both the distillate
and bottom streams increase simultaneously) is much less evident. An
illustration of this phenomenon for the column model per Weischedel
and McAvoy (1980) using a standard zippered multisine signal design
that minimizes the input crest factor (min CF(u), Lee et al. (2003))
can be seen by examining the input and output state-space plots in
Figure 4.

To address the demands of highly interactive systems, one approach
is to modify the standard multisine signal to contain correlated har-
monics with high levels of power, which improve the low gain-direction
content in the data and promote better coverage of the output state-
space (Lee et al., 2003) . Design parameters determined on the basis of
the guidelines per Lee et al. (2003) using dominant time constant esti-
mates (τL

dom = 5 and τH
dom = 20 min) and user choices of δ = 0, αs = 2,

and βs = 3, lead to parameter settings of T = 2 minutes, ns = 189,
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and Ns = 378. A value of the amplification factor γ = 15 was chosen
for a min CF(y) signal with modified spectrum; the resulting input
spectrum for this signal is shown in Figure 5a. Constraints applied to
the problem and salient characteristics of these signals are summarized
in Table II; an output state-space plot is shown in Figure 6a.

A significant benefit of the optimization-based problem formulation
presented is that nonlinear model forms can be readiliy incorporated in
the design procedure, which results in an improved ability to both meet
plant-friendliness requirements as well as address the directionality and
uniform distribution requirements in the output for demanding applica-
tions. A polynomial Nonlinear AutoRegressive with eXternal (NARX)
input model with structure as proposed by Sriniwas et al. (1995):

y(k) = θ(0) +

ny
∑

i=1

θ
(1)
i y(k − i) +

nu
∑

i=ρ

θ
(2)
i u(k − i) + (29)

+

ny
∑

i=1

i
∑

j=1

θ
(3)
(i,j)y(k − i)y(k − j) +

nu
∑

i=ρ

i
∑

j=ρ

θ
(4)
(i,j)u(k − i)u(k − j)

+

ny
∑

i=1

nu
∑

j=ρ

θ
(5)
(i,j)y(k − i)u(k − j) + ...

was estimated for the Weischedel-McAvoy column and used to gener-
ate output predictions for the optimizer in both the min CF(y) and
Weyl-based signals design scenarios. The benefits of the Weyl-based
formulation over the minimum crest factor signal design in producing
a uniform distribution in the output state-space of the data can be
clearly seen by contrasting Figures 6a and 6b: the use of the Weyl-
based criterion clearly results in a much more uniformly distributed
coverage of the state-space, and a much better suited dataset for data-
centric estimation purposes. The uniform distribution of the output
within the bounds specified in the problem results in a natural balance
between the high and low gain information content in the data. From
Table II one does notice, however, that the improvement in output state
space uniformity is obtained at the cost of higher crest factor, which
consequently reduces the signal-to-noise ratio of the data in a noisy
data setting. As a result there is an inherent tradeoff between these
objectives that needs to be recognized. One way of addressing this issue
in practical input design is to include maximum crest factor bounds
as inequality constraints within the Weyl problem formulation; these
can be readily incorporated in the numerical optimization framework
described in this paper.
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An important difference between these signal designs is observed
in the input spectra (Figure 5). In the min CF (y) case, only the
phases and a subset of the Fourier coefficients in the high frequency
range of the multisine signal are chosen by the optimizer, while for the
Weyl-based design, the optimization problem includes a search for all

Fourier coefficients and phases, including those corresponding to the
correlated harmonics; this can be seen in Figure 5b. Not only do these
extra degrees of freedom in the optimizer contribute to the improved
performance, they reduce the number of decisions made a priori by the
user, leading to a more practical design procedure.

6. Summary and Conclusions

The paper describes a constrained optimization-based formulation of
th multisine input signal problem that allows users to simultaneously
specify important frequency and time domain properties of these sig-
nals. The objective considered arises from the Weyl criterion, which
seeks to minimize the geometric discrepancy of the output in the state-
space. As a consequence, the signals are meaningful for accomplishing
plant-friendly identification testing in the process industries and can be
used in support of data-centric estimation algorithms. A problem for-
mulation that helped understand design variables in the Weyl objective
was shown and illustrated via a numerical example, culminating in a
case study demonstrating the effectiveness of the design procedure for
a high purity distillation column, a challenging nonlinear, multivariable
process system.

Clearly, the power of the proposed framework lies in its flexibil-
ity, allowing the user to incorporate both linear and nonlinear models
for output prediction, time-domain constraints, and information and
control-theoretic frequency domain requirements. The use of state-of-
the-art interior-point optimization methods enables the efficient solu-
tion of these nonlinear and nonconvex optimization problems. Due to
the nonconvexity, computed solutions can only be guaranteed to be
local optima.
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Table II. Results summary for signals designed for the Weischedel-McAvoy distillation column Case
Study.

Cy1
Cy2

∆Cy1
∆Cy2

∆Cu1
∆Cu2

0.5 0.5 0.47 0.47 2.2 2.2

Type Signal (x) CF(x) PIPS(%) max ∆x max x min x

min CF (u) design; standard zippered

spectrum

u1 1.21 82.43 0.0025 0.0020 -0.0020

u2 1.22 81.77 0.0026 0.0020 -0.0020

y1 2.48 48.84 0.0037 0.0325 -0.0211

y2 2.19 46.12 0.0031 0.0199 -0.0204

min CF(y) design; modified zippered
spectrum using NARX model
prediction |∆u| ≤ 0.01, |∆y| ≤ 0.008

& |y| ≤ 0.0085

u1 3.74 31.51 0.0100 0.0365 -0.0254

u2 3.25 34.37 0.0100 0.0316 -0.0250

y1 1.30 77.45 0.0051 0.0088 -0.0086

y2 1.31 77.01 0.0082 0.0087 -0.0086

data-centric experiment using NARX
model via a modified zippered
spectrum subject to |∆u| ≤ 0.01,

|∆y| ≤ 0.08 & |y| ≤ 0.0085

u1 2.78 37.52 0.0079 0.0292 -0.0268

u2 2.50 41.28 0.0076 0.0240 -0.0225

y1 1.79 56.54 0.0062 0.0084 -0.0082

y2 1.76 57.13 0.0053 0.0082 -0.0083
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Figure 3. Binary distillation column schematic, per Morari and Zafiriou (1988)
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