Skip to main content

Advertisement

Log in

Adaptive and restarting techniques-based algorithms for circular packing problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study the circular packing problem (CPP) which consists of packing a set of non-identical circles of known radii into the smallest circle with no overlap of any pair of circles. To solve CPP, we propose a three-phase approximate algorithm. During its first phase, the algorithm successively packs the ordered set of circles. It searches for each circle’s “best” position given the positions of the already packed circles where the best position minimizes the radius of the current containing circle. During its second phase, the algorithm tries to reduce the radius of the containing circle by applying (i) an intensified search, based on a reduction search interval, and (ii) a diversified search, based on the application of a number of layout techniques. Finally, during its third phase, the algorithm introduces a restarting procedure that explores the neighborhood of the current solution in search for a better ordering of the circles. The performance of the proposed algorithm is evaluated on several problem instances taken from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akeb, H., Li, Y.: Basic heuristics for packing a great number of equal circles. Working paper No 7, LaRIA, Université de Picardie Jules Verne, Amiens (2005)

  2. Birgin, E.G., Martinez, J.M., Ronconi, D.P.: Optimizing the packing of cylinders into a rectangular container: a nonlinear approach. Eur. J. Oper. Res. 160, 19–33 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Correia, M.H., Oliveira, J.F., Ferreira, J.S.: A new upper bound for the cylinder packing problem. Int. Trans. Oper. Res. 8, 571–583 (2001)

    Article  Google Scholar 

  4. Dowsland, K.A.: Palletisation of cylinders in cases. OR Spektr. 13, 171–172 (1991)

    Article  Google Scholar 

  5. Dyckhoff, H.: A typology of cutting and packing problems. Eur. J. Oper. Res. 44, 145–159 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dyckhoff, H., Scheithauer, G., Terno, J.: Cutting and packing (C&P). In: Dell’Amico, M., Maffioli, F., Martello, S. (eds.) Annotated Bibliography in Combinatorial Optimization, pp. 393–413. Wiley, Chichester (1997)

    Google Scholar 

  7. Fraser, H.J., George, J.A.: Integrated container loading software for pulp and paper industry. Eur. J. Oper. Res. 77, 466–474 (1994)

    Article  MATH  Google Scholar 

  8. George, J.A., George, J.M., Lamar, B.W.: Packing different-sized circles into a rectangular container. Eur. J. Oper. Res. 84, 693–712 (1995)

    Article  MATH  Google Scholar 

  9. Graham, R.L., Lubachevsky, B.D.: Repeated patterns of dense packings of equal disks in a square. Electron. J. Comb. 3, 16 (1996)

    Google Scholar 

  10. Graham, R.L., Lubachevsky, B.D., Nurmela, K.J., Östergȧrd, P.R.J.: Dense packings of congruent circles in a circle. Discrete Math. 181, 139–154 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hifi, M., M’Hallah, R.: Approximate algorithms for constrained circular cutting problems. Comput. Oper. Res. 31, 675–694 (2004)

    Article  MATH  Google Scholar 

  12. Hifi, M., M’Hallah, R.: A dynamic adaptive local search based algorithm for the circular packing problem. Eur. J. Oper. Res., doi: 10.1016/j.ejor.2005.11.069

  13. Hifi, M., Paschos, V.T., Zissimopoulos, V.: A simulated annealing approach for the circular cutting problem. Eur. J. Oper. Res. 159, 430–448 (2004)

    Article  MATH  Google Scholar 

  14. Huang, W.Q., Lee, Y., Xu, R.C.: A quasi-physical method of solving packing problems. In: Proc. of the 4th Metaheuristics International Conference, Porto, Portugal, 16–20 July 2001

  15. Huang, W.Q., Li, Y., Akeb, H., Li, C.M.: Greedy algorithms for unequal circles into a rectangular container. J. Oper. Res. Soc. 56, 539–548 (2005)

    Article  MATH  Google Scholar 

  16. Huang, W.Q., Li, Y., Gerard, S., Li, C.M., Xu, R.C.: A learning from human heuristic for solving unequal circle packing problem. In: Hao, J.K., Liu, B.D. (eds.) Proc. of the 1st International Workshop on Heuristics, Beijing, China, pp. 39–45 (2002)

  17. Huang, W.Q., Li, Y., Li, C.M., Xu, R.C.: New heuristics for packing unequal circles into a circular container. Comput. Oper. Res. 33, 2125–2142 (2006)

    Article  MATH  Google Scholar 

  18. Lubachevsky, D., Graham, R.L.: Curved hexagonal packing of equal circles in a circle. Discrete Comput. Geom. 18, 179–194 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Luger, G.F., Stubblefield, W.A.: Artificial Intelligence—Structures and Strategies for Complex Problem Solving. Addison-Wesley, Reading (1998)

    MATH  Google Scholar 

  20. Mladenovic, N., Plastria, F., Urosevic, D.: Reformulation descent applied to circle packing problems. Comput. Oper. Res. 32, 2419–2434 (2005)

    Article  MATH  Google Scholar 

  21. Rich, E., Knight, K.: Artificial Intelligence. McGraw-Hill, New York (1992)

    Google Scholar 

  22. Stoyan, Y.G.: Mathematical methods for geometric design. In: Advances in CAD/CAM: Proceedings of PROLAMAT’82, Leningrad, USSR, 16–18 May 1982, pp. 67–86. North-Holland, Amsterdam (2003)

    Google Scholar 

  23. Stoyan, Y.G., Terno, J., Scheithauer, G., Romanova, T.: Φ functions for primary 2D-objects, Studia Informatica Universalis. Int. J. Informatics 2, 1–32 (2002) (Special Issue on Cutting, Packing and Knapsacking)

    Google Scholar 

  24. Stoyan, Y.G., Yaskov, G.N.: Mathematical model and solution method of optimization problem of placement of rectangles and circles taking into account special constraints. Int. Trans. Oper. Res. 5(1), 45–57 (1998)

    MATH  Google Scholar 

  25. Stoyan, Y.G., Yaskov, G.N.: A mathematical model and a solution method for the problem of placing various sized circles into a strip. Eur. J. Oper. Res. 156, 590–600 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sugihara, K., Sawai, M., Sano, H., Kim, D.S., Kim, D.: Disk packing for the estimation of the size of wire bundle. Jpn. J. Ind. Appl. Math. 21, 259–278 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sweeney, P.E., Paternoster, E.R.: Cutting and packing problems: a categorized applications-oriented research bibliography. J. Oper. Res. Soc. 43, 691–706 (1992)

    Article  MATH  Google Scholar 

  28. Wang, H., Huang, W., Zhanga, Q., Xua, D.: An improved algorithm for the packing of unequal circles within a larger containing circle. Eur. J. Oper. Res. 141(2), 440–453 (2002)

    Article  MATH  Google Scholar 

  29. Zhang, D., Deng, A.: An effective hybrid algorithm for the problem of packing circles into a larger containing circle. Comput. Oper. Res. 32(8), 1941–1951 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mhand Hifi or Rym M’Hallah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hifi, M., M’Hallah, R. Adaptive and restarting techniques-based algorithms for circular packing problems. Comput Optim Appl 39, 17–35 (2008). https://doi.org/10.1007/s10589-007-9049-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9049-5

Keywords

Navigation