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1. Introduction. The application of interior point methods to optimal control
problems has received a good deal of interest in the past years. This parallels the fast
development of numerical methods in large scale optimization where interior point
methods play an important role. In the context of PDE control, their performance
was carefully tested by Haddoux et al. [8] for discretized versions of elliptic control
problems. Similarly, Grund and Rösch [7] considered different codes of interior point
methods for elliptic control problems with pointwise state-constraints. Trust-region
interior point techniques have been considered by M. Ulbrich, S. Ulbrich and M.
Heinkenschloss in [15] for the optimal control of semilinear parabolic equations in a
function space setting. Moreover, affine-scaling interior-point methods were presented
for semilinear parabolic boundary control in [14].

In [17, 16] primal-dual interior point methods have been analysed for ODE prob-
lems in the infinite dimensional function space setting and their computational real-
ization by inexact pathfollowing methods has been suggested. In [18] this method has
been enhanced on the control of elliptic PDE problems with control constrains.

A satisfactory convergence theory, however, had only been obtained for control
constraints, whereas results for state constraints are scarce. The difficulty arises from
the fact that Lagrange multipliers for state constraints are usually only measures,
which hampers theoretical convergence analysis and affects the numerical solution.

Concerning the regularity of Lagrange multipliers, the situation changes for mixed
control-state constraints such as constraints of bottleneck type. Under natural as-
sumptions, their multipliers can shown to be functions in certain Lp-spaces, we only
mention [12, 4, 3]. In [9], the idea came up to add a tiny fraction of the control
to the state constraint such that a mixed control-state constraint results. The La-
grange multiplier to this mixed constraint is a bounded and measurable function.
This Lavrentiev-regularization for state constraints has been analyzed in the context
of primal-dual active set methods for elliptic control problems. Some results concern-
ing the convergence of the solutions of the regularized problem to that of the origine
state constrained can be found in [9].

∗Supported by the DFG Research Center ”Mathematics for key technologies” (Matheon) in Berlin.
†Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, D-10623,

Germany
‡Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustraße 7, D-14195 Berlin-Dahlem,

Germany

1



In the current paper, both ideas are combined. We analyze a primal interior
point method applied to a Lavrentiev regularized state constrained optimal control
problem defined in §2. We are able to show existence and convergence of the central
path defined by the interior point method in §3 and §4, respectively. In §5, we turn
to the linear convergence of an implementable short-step pathfollowing method. The
paper is concluded with a set of numerical examples in §6.

2. Problem setting. In this paper, we consider the optimal control problem

min J(y, u) :=
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) (2.1)

subject to the elliptic boundary value problem

Ay = u in Ω (2.2)

∂ny + αy = 0 on Γ (2.3)

and to the pointwise mixed control-state constraints

y + λu ≥ yc a.e. in Ω. (2.4)

In an appendix, we briefly discus the pass to the limit λ ↓ 0. In this setting, Ω ⊂ R
N ,

N ∈ {2, 3}, is a bounded domain with C0,1−boundary Γ, yc, yd ∈ L∞(Ω) and α ∈
L∞(Γ) are fixed functions, and ν, λ ∈ R, λ > 0, are given constants. By A we denote
the differential operator

(Ay)(x) = −
N
∑

i,j=1

∂

∂xi

(

aij(x)
∂

∂xj
y(x)

)

+ c0(x)y(x)

with coefficients aij ∈ C1,1(Ω), c0 ∈ L∞(Ω) satisfying aij(x) = aji(x) and the condi-
tion of uniform ellipticity

N
∑

i,j=1

aij(x)ξiξj ≥ δ|ξ|2 ∀ξ ∈ R
N .

Moreover, we require c0(x) ≥ 0, α(x) ≥ 0 and assume that one of these two functions
is not vanishing identically. Let us introduce the following
Notations. By ‖ · ‖ = ‖ · ‖L2(Ω) and (·, ·) we denote the natural norm and the
associated inner product of L2(Ω), respectively. We use ‖B‖Lp→Lq to denote the
norm of a linear continuous operator B : Lp(Ω) → Lq(Ω). In the case p = q = 2, this
norm is just denoted by ‖B‖. For ‖B‖Lp→Lp we write ‖B‖Lp . Throughout the paper,
c is a generic constant. Moreover we write Lp for Lp(Ω) to shorten the notation. If
no confusion is possible, we write S + v instead of S + vI, although S is an operator
and v a function.
If v ∈ L2(Ω) is a given function, then v ≤ 0 means v(x) ≤ 0 for a.a. x ∈ Ω. In (2.3),
∂n denotes the outward co-normal derivative at Γ. The main scope of our paper is to
discuss the convergence of the standard interior point method for the problem (2.1)–
(2.4) in function space. The simplest and well known idea of introducing this method
is the elimination of the mixed control-state constraint y + λu ≥ yc by a logarithmic
barrier function. We substitute (2.1)–(2.4) by the problem

min Jµ(y, u) :=
1

2
‖y − yd‖2 +

ν

2
‖u‖2 − µ

∫

Ω

ln ((y + λu − yc)(x)) dx (2.5)
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subject to u ∈ L2 and

Ay = u in Ω (2.6)

∂ny + αy = 0 on Γ. (2.7)

In our analysis, we shall transform the state-constrained problem (2.1)–(2.4) to
the problem (3.4)–(3.5) with control constraints. We have two reasons for this trans-
formation: The analysis of this transformed problem is simpler than that for (2.1)–
(2.4), since we are able to prove the necessary regularity of Lagrange multipliers.
Moreover, it is easier to show the existence of the central path for the transformed
problem.

3. Existence of the central path. In this section we establish the existence of
unique minima uµ of (2.4)–(2.7) for all µ > 0. To do this, we show the existence of a
unique solution vµ of the transformed problem (Pµ) below. We refer to the mappings
µ 7→ uµ and µ 7→ vµ as the central path, even though continuity is proved only in
Section 4. First we recall some known facts about the state-equation (2.2)–(2.3).

Theorem 3.1. Under our assumptions, for all u ∈ Lr(Ω) with r > N
2 , equa-

tion (2.2) has a unique solution y ∈ H1(Ω) ∩ C(Ω̄). There is a constant c(Ω, r) such
that

‖y‖H1(Ω) + ‖y‖C(Ω̄) ≤ c ‖u‖Lr(Ω).

We refer to Casas [5], Alibert and Raymond [1]. The reader might also consult the
presentation of these results in the monography [13]. It ensures that, for N ≤ 3,
the mapping G : u 7→ y is continuous from L2 to H1(Ω) ∩ C(Ω̄). In particular, it is
continuous in L2. We denote the associated mapping by S = EG, where E : H1(Ω) →
L2 is the embedding operator from H1∩C(Ω̄) in L2. Therefore, we have S : L2 → L2,
continuously.

By S, problem (2.1)–(2.4) becomes equivalent to

min
1

2
‖Su − yd‖2 +

ν

2
‖u‖2 (3.1)

subject to

λu + Su − yc ≥ 0 a.e. in Ω. (3.2)

Remark. S is known to be compact. By λ > 0, −λ is not an eigenvalue of S. In fact,
since λ > 0, we have λu + Su = 0 ⇔ λu + y = 0 ⇔ u = − 1

λy. This means Ay = − 1
λy,

hence Ay + 1
λy = 0 and ∂ny +αy = 0. By coercivity, this equation has only the trivial

solution.

To transform (3.1)–(3.2) into a control-constrained problem, we substitute

v := Su + λu.

By our assumption,

D := (S + λI)−1 (3.3)

exists as a continuous linear operator in L2. After this substitution, (3.1)–(3.2) is
equivalent to

(P) min f(v) :=
1

2
‖SDv − yd‖2 +

ν

2
‖Dv‖2 (3.4)
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subject to the constraints on the new control v ∈ L2,

v − yc ≥ 0. (3.5)

This simplification to a control-constrained problem can be made more explicit: By
v = Su + λu = y + λu, we have u = λ−1(v − y). Inserting this in the state equation
and in J , we see that (3.4)–(3.5) is equivalent to

min J̃(y, v) =
1

2
‖y − yd‖2 +

ν

2λ2
‖v − y‖2 (3.6)

subject to

Ay +
1

λ
y =

1

λ
v

∂ny + αy = 0 (3.7)

and v − yc ≥ 0.
For the special choice D = I, our analysis of (3.4)–(3.5) covers problems with

simple bounds on the control v. The interior point method for (3.4)–(3.5) (or (2.1)–
(2.3), respectively) is equivalent to solving

min fµ(v) := f(v) − µ

∫

Ω

ln (v(x) − yc(x)) dx. (3.8)

Obviously, the quadratic functional f is continuously differentiable in L2. Its deriva-
tive is given by

f ′(v)h = (p̃ + νD∗Dv , h)

with p̃ = D∗S∗(SDv − yd). Here, S∗, D∗ : L2 → L2 are the Hilbert space adjoints to
S, D, respectively. If vε(x) − yc(x) ≥ ε > 0 holds a.e. on Ω, then the functional

φ(v) = µ

∫

Ω

ln (v(x) − yc(x)) dx

is directionally differentiable in any direction h ∈ L∞(Ω), since vε + t h− yc ≥ ε/2 for
sufficiently small t. In this case,

φ′(vε)h =

∫

µ

vε(x) − yc
h dx.

Suppose now that (3.8) admits a solution ṽε = vε(µ) ∈ L2 satisfying vε(x) −
yc(x) ≥ ε > 0. Then we get from the differentiability properties mentioned above

fµ(vε) = f ′(vε) − φ′(vε) = 0, (3.9)

since in this case ṽ + th, h ∈ L∞, has distance ε/2 for all small t. Therefore, it holds

p̃ + νD∗Dvε −
µ

vε − yc
= 0 a.e. in Ω.

Define η ∈ L∞(Ω) by

η(x) :=
µ

vε(x) − yc(x)
. (3.10)

4



Then we have η ≥ 0, vε − yc ≥ 0 and η(vε − yc) = µ for almost all x ∈ Ω. This
function η will tend to a Lagrange multiplier for (2.1)–(2.4) as µ ↓ 0. However, we
have to show that (3.8) is solvable, i.e. that the central path exists. Notice that, by
u = D v, (3.8) and (2.4)–(2.7) are equivalent.

To verify this, we consider for fixed µ > 0, ε > 0 the auxiliary problem

(Pε
µ) min

v(x)−yc(x)≥ε
fµ(v),

where v ∈ L2. We first prove that this problem is solvable. Next we show that the
solution is not active for all sufficiently small ε > 0. In this way, finally a solution
uµ = (λI + S)−1vµ of (2.4)–(2.7) is found.

Lemma 3.2. For all µ ≥ 0, it holds that fµ(v) → ∞ if ‖v‖L2 → ∞ and v(x) ≥
yc(x) + ε.

Proof. Since ‖v‖ = ‖D−1Dv‖ ≤ ‖S + λI‖ ‖Dv‖, we have

fµ(v) =
1

2
‖SDv − yd‖2

L2 +
ν

2
‖Dv‖2

L2 − µ

∫

Ω

ln (v − yc) dx

≥ ν

2
‖Dv‖2

L2 − µ

∫

Ω

(v − yc) dx (3.11)

≥ νδ0

2
‖v‖2

L2 − µ ‖v − yc‖L1 ≥ νδ0

2
‖v‖2

L2 − µ c ‖v − yc‖L2. (3.12)

In (3.11), we have used ln (x) < x for all x > 0. With δ0 = ‖S +λI‖−2 > 0 we observe
that ‖v‖ → ∞ implies fµ(v) → ∞.

Theorem 3.3. For all µ ≥ 0 and 0 < ε ≤ 1, problem (Pε
µ) has a unique solution

vε(µ). There is a constant cv < ∞ independent of µ and ε such that ‖vε(µ)‖ ≤ cv.
Proof. Obviously, fµ is convex and continuous on the convex and closed subset

Cε ⊂ L2 defined by

Cε = {v ∈ L2(Ω) | v(x) − yc(x) ≥ ε > 0 for a.a. x ∈ Ω} .

Therefore, fµ is lower semicontinuous on Cε. Lemma 3.2 yields the existence of cv > 0
such that all v ∈ Cε with ‖v‖ > cv can be neglected for the search of the infinimum
of fµ: We take ṽ := yc + 1, then the logarithmic term vanishes and

fµ(v) ≥ fµ(yc + 1) =
1

2
‖SDṽ − yd‖2 +

ν

2
‖Dṽ‖2

for all sufficiently large ‖v‖. On Cε∩
{

v ∈ L2 | ‖v‖ ≤ cv

}

, the functional fµ is bounded,
hence

j(ε) := inf
v∈Cε

fµ(v)

is finite. Here and in what follows, we suppress for a while the dependence of the
problem and its solutions on µ.

Let vn ∈ Cε, ‖vn‖ ≤ cv, be an infimal sequence, i.e. fµ(vn) → j(ε) for n → ∞. We
can assume w.l.o.g. weak convergence in L2, vn ⇀ vε ∈ Cε. By lower semicontinuity,
a standard argument yields

fµ(vε) = j(ε),

hence vε is the solution vε(µ) of (Pε
µ).
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We recall problem (Pε
µ),

min fµ(v) :=
1

2
‖SDv − yd‖2 +

ν

2
‖Dv‖2 − µ

∫

Ω

ln (v − yc) dx

v(x) − yc(x) ≥ ε a.e. in Ω.

To shorten the notation, we continue to denote the optimal solution vε(µ) of (Pε
µ)

by vε. Take any other v ∈ Cε and t ∈ [0, 1]. Then vε + t(v − vε) ∈ Cε, hence
fµ(vε + t(v − vε)) is defined. Note that fµ is not Gâteaux-differentiable in L2, since
fµ(vε + ht) may be undefined for h ∈ L2. However, it is directionally differentiable in
the direction v − vε. From

0 ≤ fµ(vε + t(v − vε)) − fµ(vε)

t

we find by t ↓ 0 for the directional derivative

f ′
µ(vε)(v − vε) ≥ 0 ∀v ∈ Cǫ.

In terms of our transformation, this can be written as

(

D∗S∗(SDvε − yd) + νD∗Dvε −
µ

vε − yc
, v − vε

)

≥ 0 ∀v ∈ Cε. (3.13)

Define pε := D∗S∗(SDvε − yd). Then we can re-write (3.13) as

(

pε + νD∗Dvε −
µ

vε − yc
, v − vε

)

≥ 0 ∀v ∈ Cε. (3.14)

In terms of a PDE, pε is given by

Apε +
1

λ
pε = yε − yd − ν

λ2
(vε − yε)

∂npε + αpε = 0,

where yε solves (3.7). Note, this is the adjoint to the problem (3.6)–(3.7). We shall
show that ‖pε‖∞ is bounded, independently of ε:
The operator S is self-adjoint, S = S∗. Moreover, as S = EG, S is even linear and
continuous from L2 to L∞. The same holds for S∗.

Let us discuss the form and the regularity properties of the operator D. We have
D = (S+λI)−1. Put w = Dz. Then z = Sw+λIw. It follows λw = z−Sw = z−SDz
and w = λ−1z − λ−1SDz. Therefore D admits the form

D = λ−1(I − SD). (3.15)

From this representation we easily get the additional regularity property D : L∞ →
L∞, continuously. This is also visible from (3.6)–(3.7) since v 7→ y is continuous from
L∞ to L∞ and therefore also v 7→ u = λ−1(v − y(v)) : L∞ → L∞.

We know from Lemma 3.2 that ‖vε‖ is bounded by a constant cv that does not
depend on ε. Now we estimate ‖pε‖∞ by

‖pε‖∞ = ‖D∗S∗(SDvε − yd)‖∞
≤ ‖D∗‖L∞ ‖S∗‖L2→L∞ ‖SDvε − yd‖ ≤ cp, (3.16)
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where cp does not depend on ε, since ‖SDvε − yd‖ ≤ ‖S‖L2‖D‖L2‖cv‖ + ‖yd‖. Next
we evaluate (3.13). Let us define the sets

M+(ε) :=
{

x ∈ Ω
∣

∣

∣ pε(x) + ν(D∗Dvε)(x) − µ

vε(x) − yc(x)
> 0
}

M0(ε) :=
{

x ∈ Ω
∣

∣

∣ pε(x) + ν(D∗Dvε)(x) − µ

vε(x) − yc(x)
= 0
}

.

Due to (3.13), M+(ε) ∪ M0(ε) cover Ω up to a set of measure zero. Clearly, the
variational inequality (3.13) implies vε(x) − yc = ε for almost all x ∈ M+(ε).

Theorem 3.4. There exist constants a, b > 0, εM such that the set M+(ε) has
measure zero for all 0 < ε < εM .

Proof. For almost all x ∈ M+(ε), the constraint is active, i.e. vε(x) − yc(x) = ε.
Thus, by (3.16), we have for almost all x ∈ M+(ε)

cp + ν (D∗Dvε)(x) − µ

ε
≥ pε(x) + ν(D∗Dvε)(x) − µ

vε(x) − yc(x)
> 0. (3.17)

By (3.15),

D∗D = λ−2(I − S∗D∗)(I − SD) = λ−2I + K

with bounded K : L2 → L∞,

K = λ−2 {S∗D∗DS − (S∗D∗ + SD)} .

Almost everywhere on M+(ε) it holds vε(x) = yc(x) + ε, hence

cp + ν (D∗Dvε)(x) = cp + ν (λ−2(yc(x) + ε) + (K vε)(x)).

With the left-hand side of (3.17), Theorem 3.3 yields

cp + ν(λ−2(‖yc‖∞ + ε) + cv ‖K‖L2→L∞) >
µ

ε
.

Clearly, the right hand side tends to infinity as ε ↓ 0 while the left hand side
remains bounded. Therefore, the inequality cannot be satisfied for small ε.

Solving this quadratic inequality for ε, we get from

ε2 +

(

cp
λ2

ν
+ ‖yc‖∞ + cvλ

2 .‖K‖L2→L∞

)

ε − λ2

ν
µ > 0

ε > −1

2

(

cp
λ2

ν
+ ‖yc‖∞ + ‖K‖L2→L∞cvλ

2

)

+

√

1

4

(

cp
λ2

ν
+ ‖yc‖∞ + ‖K‖L2→L∞cvλ2

)2

+
λ2

ν
µ.

Setting

a =
1

2

(

cp
λ2

ν
+ ‖yc‖∞ + ‖K‖L2→L∞cvλ2

)

(3.18)
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and

b =
λ2

ν
a−2 (3.19)

we can write this as ε > a(
√

1 + bµ − 1) with a, b > 0. For smaller ε, M+(ε) must
therefore have measure zero.

Corollary 3.5. For all 0 < ε < εM , the solution vε(µ) of (Pε
µ) is the unique

solution to (Pµ).
Proof. For these ε, the set M+(ε) has measure zero. Therefore, it holds

pε(x) + ν(D∗Dvε)(x) − µ

vε(x) − yc(x)
= 0

almost everywhere on Ω, hence vε(µ) satisfies the first order necessary optimality
conditions for the optimization problem (Pµ). This is a problem with convex objective
functional; the necessary conditions are sufficient for optimality. Strong convexity
yields uniqueness (notice that ν > 0). Therefore, vε(µ) is the unique solution v(µ) of
(Pµ).

Corollary 3.6. There exists a constant cµ > 0 such that for µ ≤ 1 the unique
solution vµ of (3.8) satisfies vµ ≥ yc + cµµ a.e. on Ω.

Proof. Let vµ be the solution of (Pµ). Then an ε > 0 exists such that vµ is
a solution of (Pε

µ) too. For that ε it holds vµ ≥ yc + ε. Choosing cµ = ε
µ yields

vµ ≥ yc + cµµ.

4. Convergence of the central path. Having established the existence of the
central path µ 7→ vµ for all µ > 0, we can proceed with proving continuity of the path
and convergence towards a solution.

The unique minimizer of (3.8) can be characterized by (3.9) as

F (vµ; µ) = (D∗S∗SD + νD∗D)vµ − D∗S∗yd −
µ

vµ − yc
= 0 a.e. on Ω (4.1)

Since vµ − yc ≥ cµµ holds for µ ≤ 1 by Corollary 3.6, F is directionally differentiable
in all directions v ∈ L∞. We denote the partial derivatives w.r.t. v and µ by ∂vF and
∂µF , respectively. The derivative ∂vF is

∂vF (v; µ) = (D∗S∗SD + νD∗D) +
µ

(v − yc)2
(4.2)

= (D∗S∗SD + νK) +

(

ν

λ2
+

µ

(v − yc)2

)

= K̄ +

(

ν

λ2
+

µ

(v − yc)2

)

, (4.3)

where

K̄ = D∗S∗SD + νK

is a bounded operator from L2 to L∞. From (4.2) and (3.3) we see immediately that,
for all v ≥ yc + ǫ, ∂vF (v; µ) ∈ L(L2, L2) is a symmetric positive definite operator with

〈ξ, ∂vF (v; µ)ξ〉 ≥ ν〈Dξ, Dξ〉 ≥ ν‖S + λI‖−2‖ξ‖2.
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The Lax-Milgram theorem guarantees the existence of a bounded inverse ∂vF (v; µ)−1 :
L2 → L2 with

‖∂vF (v; µ)−1‖ ≤ 1

ν
(‖S‖ + |λ|)2. (4.4)

In the next lemma we prove a further regularity property of ∂vF .
Lemma 4.1. The derivative ∂vF (v; µ) : L∞ → L∞ with v > yc is a bijective oper-

ator with bounded inverse ∂vF (v; µ)−1 : L∞ → L∞, where ‖∂vF (v; µ)−1‖L∞→L∞ ≤ ci

is bounded independently of µ.
Proof. Due to (4.4), for each z ∈ L∞ ⊂ L2 there is a solution ξ ∈ L2 to

∂vF (v; µ)ξ = z with

‖ξ‖ ≤ 1

ν
(‖S‖ + |λ|)2‖z‖ ≤

√

|Ω|
ν

(‖S‖ + |λ|)2‖z‖∞. (4.5)

Now we have by (4.3)

(

ν

λ2
+

µ

(v − yc)2

)

ξ = z − K̄ξ

and hence by (4.5)

‖ξ‖∞ ≤ λ2

ν

(

‖z‖∞ + ‖K̄‖L2→L∞‖ξ‖
)

≤ λ2

ν

(

1 + ‖K̄‖L2→L∞

√

|Ω|
ν

(‖S‖ + |λ|)2
)

‖z‖∞

=: ci‖z‖∞.

Thus, ξ ∈ L∞ holds, such that ∂vF (v; µ) : L∞ → L∞ is bijective and has a bounded
inverse ‖∂vF (v; µ)−1‖L∞→L∞ ≤ ci.

With the invertibility of ∂vF at hand we make use of the implicit function theorem
in order to justify the notion of a central path. We obtain the

Corollary 4.2. The mapping µ 7→ vµ is continuously differentiable from R+ to
L∞.

Now we turn to convergence of the central path towards a solution of (3.1).
Theorem 4.3. For µ → 0, the central path converges towards a KKT point v0

of (3.1). There exists a constant c0 < ∞ such that the following error estimate holds
for all µ ≤ 1:

‖v0 − vµ‖L∞ ≤ c0
√

µ (4.6)

Proof. First we will establish an L2-bound on v′µ = −∂vF (vµ; µ)−1∂µF (vµ; µ)
and infer an L∞-bound from that. From this we will determine the existence of and
distance to the limit point v0, and finally check the first order necessary conditions
for v0.
(i) L2-estimate. We introduce the diagonal preconditioner

zµ =

√

ν

λ2
+

µ

(vµ − yc)2
(4.7)
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and write (4.7) as

zµv′µ =

(

z−1
µ

(

K̄ +
ν

λ2
+

µ

(vµ − yc)2

)

z−1
µ

)−1

z−1
µ

1

vµ − yc

=
(

z−1
µ K̄z−1

µ + I
)−1

(

ν(vµ − yc)
2

λ2
+ µ

)−1/2

.

Since z−1
µ K̄z−1

µ is positive semidefinite, we may conclude that ‖zµv′µ‖L2 ≤
√

|Ω|/µ.
From zµ ≥ √

ν/λ a.e. we finally obtain

‖v′µ‖L2 ≤
√

ν|Ω|
µλ

.

(ii) L∞-estimates. Using the splitting (4.3) to move the coupling term K̄v′µ in
∂vF (vµ; µ)v′µ = −∂µF (vµ; µ) to the right hand side, and the fact that

ax +
b

x
≥ 2

√
ab

holds for arbitrary a, b, x > 0, we obtain

‖v′µ‖L∞ ≤
∥

∥

∥

∥

∥

(

ν

λ2
+

µ

(vµ − yc)2

)−1
1

vµ − yc

∥

∥

∥

∥

∥

L∞

+

∥

∥

∥

∥

∥

(

ν

λ2
+

µ

(vµ − yc)2

)−1

K̄v′µ

∥

∥

∥

∥

∥

L∞

≤
∥

∥

∥

∥

∥

(

2

√

νµ

λ2

)−1
∥

∥

∥

∥

∥

L∞

+

∥

∥

∥

∥

∥

(

ν

λ2
+

µ

(vµ − yc)2

)−1
∥

∥

∥

∥

∥

L∞

‖K̄‖L2→L∞‖v′µ‖

and infer

‖v′µ‖L∞ ≤
∥

∥

∥

∥

λ

2
√

νµ

∥

∥

∥

∥

L∞

+
λ2

ν
‖K̄‖L2→L∞

√

ν|Ω|
µλ

≤ c0√
µ

for some c0 < ∞.
(iii) Distance to the limit point. The distance between two points on the central path
is therefore bounded by

‖vµ1
− vµ2

‖L∞ ≤
∫ µ2

µ1

‖v′µ‖L∞ dµ ≤ c0

2
(
√

µ2 −
√

µ1). (4.8)

Since for any sequence µk → 0 the corresponding sequence vµk
of central path points

forms a Cauchy sequence, the path converges towards some limit point v0. Performing
the limit process µ1 → 0 verifies the error bound (4.6).
(iv) First order necessary conditions. Recalling the Lagrange multiplier approxima-
tions ηµ from (3.10) we write (3.9) as f ′(vµ) = ηµ. Due to the continuity of f ′ and
the convergence of vµ → v0 in L2, the multiplier approximations converge towards
η0 = f ′(v0) in L2. Since ηµ ≥ 0 and ηµ(vµ − yc) = µ for almost all x ∈ Ω and
therefore 〈ηµ, vµ − yc〉 = µ|Ω|, the same holds by continuity for η0, i.e. η0 ≥ 0 and
〈η0, v0 − yc〉 = 0. Since the first order necessary conditions are satisfied, v0 is a KKT
point for (3.4).
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5. Convergence of a short step pathfollowing method. For the analysis
of interior point methods, local norms are an invaluable tool. Here we use the scaled
norm

‖v‖µ = ‖zµv‖L∞

with the scaling zµ defined in (4.7), which is closely connected to the energy norms
used in the theory of self-concordant barrier functionals [10, 11].

We consider a short-step pathfollowing method with classical predictor. Since
we are interested in actually implementable algorithms, we have to use an inexact
Newton corrector, which replaces the infinite dimensional Newton equation

∂vF (vk; µk+1)∆vk = −F (vk; µk+1)

for the exact correction ∆vk by a suitably discretized finite dimensional counterpart

∂vF (vk; µk+1)∆vk
h = −F (vk; µk+1) + rk.

for the inexact correction ∆vk
h, such that an inner residual rk remains. The iteration

index is denoted by a superscript. Another source of inexactness is e.g. the iterative
solution of the state equation. The algorithm reads as follows.

Algorithm 5.1.

Choose 0 < σ < 1, δ > 0, µ0 > 0, and v0 > yc

For k = 0, . . .
µk+1 = σµk

solve ∂vF (vk; µk+1)∆vk
h = −F (vk; µk+1)

up to a relative accuracy of ‖∆vk
h − ∆vk‖µk+1 ≤ δ‖∆vk‖µk+1

vk+1 = vk + ∆vk
h

Note that the accuracy matching in Algorithm 5.1 will require mesh refinement
as µ → 0. Alternatively, on a fixed discretization the algorithm can be performed
only up to some µmin > 0 while still meeting the accuracy requirement.

The remainder of the section is devoted to proving that for suitable choices of σ,
δ, µ0, and v0, all iterates of this algorithm are well defined and converge towards the
solution point v0. First we formulate the main result, the proof of which is postponed
to the end of this section.

Theorem 5.2. Let a tolerance ϑ < 1/(18cz), µ0 > 0, and an initial iterate v0

with ‖v0−vµ0‖µ0 ≤ 2ϑ
√

µ0 be given. Choose δ ≤ 1/4 and a reduction factor satisfying

1 − σ ≤ ϑ

3ϑ(cz + 1/2) + cz
.

Then the iterates vk defined by Algorithm 5.1 are all well defined and converge linearly
towards the limit point v0. More precisely,

∥

∥vk − vµk

∥

∥

µk ≤ 2ϑ
√

µk and
∥

∥vk − v0

∥

∥

µk ≤ (c0 + 2ϑ)σk/2
√

µ0.

We stress that this conceptual algorithm is deliberately designed to be simplistic in
order to facilitate convergence analysis. We do not recommend to use it for actual
computation. First, the admissible choice of parameters σ and v0 depends on the
problem specific constant cz, which will usually be unavailable in actual computation.
Second, the bounds given for ϑ and σ are global worst-case bounds that will be
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unnecessarily restrictive locally. Adaptive stepsize and accuracy selection will result
in a far more efficient algorithm.

The proof of Theorem 5.2 will require the usual ingredients for Newton conver-
gence theorems which we will provide now: boundedness of ∂vF

−1, Lipschitz conti-
nuity of the local norms, and Lipschitz continuity of ∂vF . First we turn to ∂vF−1

and derive the analogue of Lemma 4.1 for the scaled norm.
Lemma 5.3. There is some constant 1 ≤ cz < ∞ independent of µ, such that

‖∂vF (v; µ)−1ζ‖µ ≤ cz‖z−1
µ ζ‖L∞ (5.1)

for all v ∈ Bµ(vµ; ϑ
√

µ) = {v ∈ L∞ : ‖v − vµ‖µ ≤ ϑ
√

µ} with ϑ < 1.
Proof. From zµ ≥ √

µ/(vµ − yc) we see that

∥

∥

∥

∥

v − vµ

vµ − yc

∥

∥

∥

∥

L∞
=

∥

∥

∥

∥

v − vµ√
µ

√

µ

(vµ − yc)2

∥

∥

∥

∥

L∞

≤
∥

∥

∥

∥

zµ
v − vµ√

µ

∥

∥

∥

∥

L∞

=
‖v − vµ‖µ√

µ
≤ ϑ

for v ∈ Bµ(vµ; ϑ
√

µ). For almost all x ∈ Ω we therefore have −(v − vµ) ≤ ϑ(vµ − yc),
which implies

v ≥ (1 − ϑ)vµ + ϑyc = (1 − ϑ)(vµ − yc) + yc ≥ (1 − ϑ)cµµ + yc > yc (5.2)

due to Corollary 3.6. Lemma 4.1 now provides the invertibility of ∂vF (v; µ). As in
the proof of Theorem 4.3, we have zµ∂vF (v; µ)−1zµ = (z−1

µ K̄z−1
µ + I)−1 and hence

the L2-estimate

‖zµ∂vF (v; µ)−1ζ‖L2 = ‖(z−1
µ K̄z−1

µ + I)−1z−1
µ ζ‖L2 ≤ ‖z−1

µ ζ‖L2 . (5.3)

Defining φ = ∂vF (v; µ)−1ζ we have (K̄ + z2
µ)φ = ζ and

‖zµ∂vF (v; µ)−1ζ‖L∞ = ‖zµφ‖L∞ = ‖z−1
µ (ζ − K̄φ)‖L∞

≤ ‖z−1
µ ζ‖L∞ +

λ√
ν
‖K̄‖L2→L∞‖φ‖L2 ≤ ‖z−1

µ ζ‖L∞ +
λ2

ν
‖K̄‖L2→L∞‖zµφ‖L2 .

Using (5.3) yields

‖zµ∂vF (v; µ)−1ζ‖L∞ ≤
(

1 +
λ2‖K̄‖L2→L∞

ν
√

|Ω|

)

‖z−1
µ ζ‖L∞

and establishes the constant cz.
Next we prove Lipschitz continuity of the scaled norms.
Lemma 5.4. For all v ∈ L∞ and 0 < σ ≤ 1,

‖v‖σµ ≤ σ−cz‖v‖µ (5.4)

holds. Moreover, the derivative of the central path is bounded by ‖v′µ‖µ ≤ cz/
√

µ.
Proof. We begin with estimating the derivative of the central path in the scaled

norm. Lemma 5.3 applied to v′µ = −∂vF (vµ; µ)−1∂µF (vµ; µ) results in

‖v′µ‖µ ≤ cz‖z−1
µ ∂µF (vµ; µ)‖L∞ = cz‖z−1

µ (vµ − yc)
−1‖L∞ ≤ cz√

µ
. (5.5)
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We proceed with bounding the expression

φ(σ) =
vµ − yc

vσµ − yc
.

Note that since µ 7→ vµ is a differentiable mapping from R+ to L∞, φ maps ]0, 1]
differentiably into L∞. Using zτµ ≥ √

τµ/(vτµ − yc) and (5.5), we start with

‖φ′(τ)‖L∞ =

∥

∥

∥

∥

vµ − yc

(vτµ − yc)2
v′τµµ

∥

∥

∥

∥

L∞
≤
∥

∥

∥

∥

vµ − yc

vτµ − yc

∥

∥

∥

∥

L∞

∥

∥

∥

∥

√
τµ

vτµ − yc
v′τµ

∥

∥

∥

∥

L∞

µ√
τµ

≤ ‖φ(τ)‖L∞‖v′τµ‖τµ
µ√
τµ

≤ ‖φ(τ)‖L∞

cz√
τµ

µ√
τµ

≤ ‖φ(τ)‖L∞

cz

τ

for σ ≤ τ ≤ 1. From this we infer

‖φ(σ)‖L∞ ≤ ‖φ(1)‖L∞ +

∫ 1

σ

‖φ′(τ)‖L∞ dτ ≤ 1 +

∫ 1

σ

‖φ(τ)‖L∞

cz

τ
dτ.

The Bellmann-Gronwall lemma now yields ‖φ(σ)‖L∞ ≤ σ−cz for 0 < σ ≤ 1. Next we
estimate

∥

∥

∥

∥

zσµ

zµ

∥

∥

∥

∥

L∞
=

∥

∥

∥

∥

∥

ν
λ2 + σµ

(vσµ−yc)2

ν
λ2 + µ

(vµ−yc)2

∥

∥

∥

∥

∥

1/2

L∞

≤ max

(

1,
√

σ

∥

∥

∥

∥

vµ − yc

vσµ − yc

∥

∥

∥

∥

L∞

)

, (5.6)

the case depending on whether

σµ

(vσµ − yc)2
≤ µ

(vµ − yc)2

holds. Dropping the factor
√

σ ≤ 1 for simplicity,

‖v‖σµ =

∥

∥

∥

∥

zµ
zσµ

zµ
v

∥

∥

∥

∥

L∞
≤ max

(

1, σ−cz
)

‖v‖µ

proves the claim.

Finally, we prove Lipschitz continuity of ∂vF .

Lemma 5.5. For all 0 < ϑ < 1, the Lipschitz condition

∥

∥∂vF (v; µ)−1(∂vF (v; µ) − ∂vF (v̂; µ))(v − v̂)
∥

∥

µ
≤ 2cz

(1 − ϑ)3
√

µ
‖v − v̂‖2

µ (5.7)

holds for all v, v̂ ∈ Bµ(vµ, ϑ
√

µ).

Proof. Using Lemma 5.3 and in view of the representation (4.2) of ∂vF , we have

∥

∥∂vF (v; µ)−1(∂vF (v; µ) − ∂vF (v̂; µ))(v − v̂)
∥

∥

µ

≤ cz

∥

∥z−1
µ (∂vF (v; µ) − ∂vF (v̂; µ))(v − v̂)

∥

∥

L∞

= cz

∥

∥

∥

∥

z−1
µ

(

µ

(v − yc)2
− µ

(v̂ − yc)2

)

(v − v̂)

∥

∥

∥

∥

L∞
.
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3ϑ

2ϑ

ϑ

0

vk, µk+1

vk, µk

vk + ∆vk, µk+1

vk+1, µk+1

Fig. 5.1. Errors of the iterates during the proof of Theorem 5.2.

Using the fact that the Lipschitz constant of x−2 for x ≥ a > 0 is given by 2a−3, and
that v − yc ≥ (1− ϑ)(vµ − yc) for v ∈ Bµ(vµ, ϑ

√
µ) due to (5.2), we can proceed with

∥

∥∂vF (v; µ)−1(∂vF (v; µ) − ∂vF (v̂; µ))(v − v̂)
∥

∥

µ

≤ cz

∥

∥

∥

∥

z−1
µ µ

2(v − v̂)

((1 − ϑ)(vµ − yc))3
(v − v̂)

∥

∥

∥

∥

L∞

=
2cz

(1 − ϑ)3

∥

∥

∥

∥

µ

z3
µ(vµ − yc)3

z2
µ(v − v̂)2

∥

∥

∥

∥

L∞

≤ 2cz

(1 − ϑ)3

∥

∥

∥

∥

µ

z3
µ(vµ − yc)3

∥

∥

∥

∥

L∞

‖v − v̂‖2
µ

≤ 2cz√
µ(1 − ϑ)3

‖v − v̂‖2
µ,

where the last inequality is a direct consequence of (4.7).
Now we are prepared to prove Theorem 5.2.
Proof. First we give an outline of the proof (see Fig. 5.1). We use induction and

assume that ‖vk − vµk‖µk ≤ 2ϑ
√

µk. Decreasing the homotopy parameter µk by a

factor of σ will lead to an error bound ‖vk−vµk+1‖µk+1 ≤ 3ϑ
√

µk+1. Then the inexact

Newton corrector reduces the error again to ‖vk − vµk+1‖µk+1 ≤ 2ϑ
√

µk+1. We show

this by deriving an error bound ‖vk − vµk+1‖µk+1 ≤ ϑ
√

µk+1 for the exact Newton

corrector and adding an inexactness bounded by ϑ
√

µk+1.
(i) To begin with, we split the error as follows:

‖vk − vµk+1‖µk+1 ≤ ‖vk − vµk‖µk+1 + ‖vµk − vµk+1‖µk+1

≤ ‖vk − vµk‖µk+1 +

∫ µk

µk+1

‖v′τ‖µk+1 dτ

In view of µk+1 = σµk, application of Lemma 5.4 and the induction assumption leads
to

‖vk − vµk+1‖µk+1 ≤ σ−cz‖vk − vµk‖µk +

∫ µk

µk+1

(µk+1/τ)−cz‖v′τ‖τ dτ

≤ σ−cz2ϑ
√

µk +

∫ µk

µk+1

(µk+1/τ)−cz
cz√
τ

dτ. (5.8)
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The integral evaluates to

cz

(µk+1)cz

∫ µk

σµk

τcz−1/2 dτ =
cz

(σµk)cz

(µk)cz+1/2 − (σµk)cz+1/2

cz + 1/2

=
cz

cz + 1/2
σ−cz (1 − σcz+1/2)

√

µk

≤ czσ
−cz (1 − σ)

√

µk. (5.9)

Inserting (5.8) into (5.9) leads to the estimate

‖vk − vµk+1‖µk+1 ≤ σ−cz (2ϑ + cz(1 − σ))
√

µk

= σ−(cz+1/2)(2ϑ + cz(1 − σ))
√

µk+1. (5.10)

Next we rearrange the assumption on σ:

1 − σ ≤ ϑ

3ϑ(cz + 1/2) + cz
⇔ (3ϑ(cz + 1/2) + cz)(1 − σ) ≤ ϑ

⇔ cz(1 − σ) ≤ ϑ − 3ϑ(c + 1/2)(1 − σ)

Adding 2ϑ on both sides leads to

2ϑ + cz(1 − σ) ≤ 3ϑ
(

1 + (cz + 1/2)(σ − 1)
)

≤ 3ϑσcz+1/2. (5.11)

Combining (5.10) and (5.11) yields ‖vk − vµk+1‖µk+1 ≤ 3ϑ
√

µk+1.
(ii) Since cz ≥ 1, the assumption ϑ ≤ 1/(18cz) implies

3ϑ

(1 − 3ϑ)3
≤ 6ϑ ≤ 1

3cz

and thus

‖vk − vµk+1‖µk+1 ≤ 2

3

(1 − 3ϑ)3

2cz

√

µk+1.

This is two third of the Lipschitz constant provided by Lemma 5.5 for the ball
Bµk+1(vµk+1 , 3ϑ

√

µk+1). Thus, the conditions for local convergence of the exact New-
ton corrector as considered in the refined Newton-Mysovskii theorem [6] are satisfied.
The error of the next iterate vk + ∆vk is bounded by

‖vk + ∆vk − vµk+1‖µk+1 ≤ 1

2

2cz

(1 − 3ϑ)3
√

µk+1
‖vk − vµk+1‖2

µk+1

≤ 1

3
‖vk − vµk+1‖µk+1 ≤ ϑ

√

µk+1.

(iii) The length of the Newton step ∆vk by

‖∆vk‖µk+1 ≤ ‖vk + ∆vk − vµk+1‖µk+1 + ‖vk − vµk+1‖µk+1 ≤ 4ϑ
√

µk+1,

and the error of the inexact iterate vk+1 is bounded by

‖vk+1 − vµk+1‖µk+1 ≤ ‖vk + ∆vk − vµk+1‖µk+1 + δ‖∆vk‖µk+1

≤ (1 + 4δ)ϑ
√

µk+1.
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With the accuracy matching δ ≤ 1/4 we obtain ‖vk+1 − vµk+1‖µk+1 ≤ 2ϑ
√

µk+1,
which completes the induction.
(iv) Moreover, together with Theorem 4.3, we obtain

‖v0 − vk‖L∞ ≤ ‖v0 − vµk‖L∞ +
λ√
ν
‖vµk − vk‖µk

≤ c0

√

µk + 2ϑ
√

µk ≤ (c0 + 2ϑ)σk/2
√

µ0,

which proves r-linear convergence of vk to the KKT point v0.

6. Numerical tests. In §5, we have formulated our algorithm in a fairly abstract
way. Now we reformulate it in terms of PDEs. First we consider the numerical
approximation of our state equation

−∆y + y = u (6.1)

∂np = 0. (6.2)

We solved the regularized problems numerically by a short-step pathfollowing
method, using a conform finite element method to solve the state and adjoint equation,
where all variables were discretized by standart linear finite elements based on a
regular triangulation of Ω.

Let Vh ⊂ H1(Ω) be the finite dimensional space of ansatz functions and let K
and M the associated stiffness- and mass matricies. The control uh and the state are
taken from the same space Vh:

uh =
n
∑

i=1

uiφi and yh =
n
∑

i=1

yiφi

where φ is a basis of Vh with φi(xj) = δij . Then the functions uh and yh can be
identified by theirs coeffcient vectors u = (u1,u2, ...,un)T and y = (y1,y2, ...,yn)T

respectively. The coincidence of the notation for these vectors with the original func-
tions u = u(x), y = y(x) will not cause confusion. Then,

(K + M)y = Mu (6.3)

is a finite element approximation of (6.1)–(6.2).
To simplify the contruction of test examples we introduce a desired control ud,(cf.

(6.8) below) which does not change the validity of our theorems. Further, we drop the
transformation D−1 = S + λI, which we established to abbreviate the formulation of
our problem. Written in terms of u, the necessary optimality condition is

S∗

(

Su − yd − µ

Su + λu − yd

)

+ ν(u − ud) −
µλ

Su + λu − yd
= 0 .

Now we are able to formulate a discrete version of our solution operator S:

Sh := (K + M)−1M. (6.4)

From §3 we know S = S∗ (and D∗ = D). From that, we get S∗
h = Sh.

The discrete optimality condition is now

Fh(u) = Sh

(

Shu − yd − µ

(Sh + λI)u − yc

)

+ ν(u − ud) −
(

µλI

(Sh + λI)u − yc

)

= 0.(6.5)
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The matrix Sh is not sparse and we would have to compute the inverse of K +
M , so that this approach is not practicable. For practical use, we retransform the
formulation (4.1) in the following way: We use S = S∗ and D∗ = D. Setting p =

S∗

(

Su − yd −
µ

Su + λu − yd

)

, using Su = y and the definition of S we get the

system of necessary optimality conditions

−∆p + p = y − yd −
µ

y + λu − yd
in Ω −∆y + y = u in Ω

∂np = 0 on ∂Ω ∂ny = 0 on ∂Ω

p + ν(u − ud) −
λµ

y + λu − yd
in Ω.

Using the discretization (6.3), in view of (6.5) we arrive at

F̃h(y,u,p; µ) =





K + M −M 0
−M 0 K + M

0 νI I









y

u

p



 (6.6)

+





0
Myd

−νud



+











0

M

(

µ

y + λu − yc

)

− λµ

y + λu− yc











. (6.7)

This is the discrete optimality system we use for our computations.
We have tested our method by the following example

(PT) min J(y, u; µ) :=
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u − ud‖2

L2(Ω) (6.8)

subject to

−∆y + y = u in Ω (6.9)

∂ny = 0 on Γ (6.10)

and to the pointwise mixed control-state constraints

y + λu ≥ yc a.e. in Ω. (6.11)

with Ω = (0, 1) × (0, 1).

It is easy to verify, that (PT) fits into the setting of (P). For all λ > 0, the
Lagrange multiplier η belongs to L2(Ω). We consider three different examples. In
example 1 and 2, the Lagrange multiplier belongs to L2(Ω) even for λ = 0.

Note that, due to the linearity of the state equation, the computational all-at-
once approach used here is indeed an implementation of the inexact Newton method
described in §5. Using a primal algorithm, we have calculated the Lagrange multiplier
η by the relation

η =
µ

y − yc + εu
.
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We implemented our method using Matlab and its PDE-toolbox for mesh gener-
ation, matrix-assembling etc. The stopping criterion for the outer iteration was
µ ≤ ǫ = 10−12. We used a Friedrichs-Keller triangulation with fixed mesh size
h = 0.025. In the following, the numerical solutions are denoted by (·)µ, the ex-
act optimal control, optimal state, and the optimal adjoint state are denoted by ū, ȳ
and p̄. In some figures, these functions are labeled as u etc. We observe that for fixed
mesh size the numerical solutions converge to the projection of the exact solution onto
the finite element space. All computations were performed on a Pentium IV/2.8GHz
machine with 1GB RAM running under Linux.

6.1. Example 1. This example is a slight update of Example 1 in [9]. We choose
ū = 2, p̄ = −2 and ȳ = 2. The desired state is given by

yd(x1, x2) = 4 − max
{

−20
(

(x1 − 0.5)2 − (x2 − 0.5)2
)

+ 1 − 2λ, 0
}

,

yc is given by

yc(x1, x2) = min
{

−20
(

(x1 − 0.5)2 − (x2 − 0.5)2
)

+ 3, 2 + 2λ
}

and the Lagrange multiplier is

η(x1, x2) = max
{

−20
(

(x1 − 0.5)2 − (x2 − 0.5)2
)

+ 1 − 2λ, 0
}

.

Moreover, we have chosen ud = −λη(x1, x2). In (6.8) we choose ν = 1 and λ = 10−3.
In our computations,we choose in Algorithm 5.1 σ = 0.9 and µ0 = 1.
The following figures show the functions yd, yc and the Lagrange multiplier η.
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The next set of figures shows the numerical solutions yh, uh, ph, and ηh of the
problem regularized with λ = 10−3.
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µ erru erry errp errη

1.0775e-02 8.9940e-03 8.9802e-03 8.9740e-03 5.9016e-01
1.0611e-03 1.1585e-03 1.1293e-03 1.1472e-03 4.9188e-01
1.0450e-04 3.0274e-04 1.2221e-04 2.6728e-04 4.6082e-01
1.0290e-05 1.7956e-04 1.7204e-05 1.5513e-04 3.0395e-01
1.0134e-06 5.2173e-05 3.0048e-06 4.2306e-05 1.4558e-01
1.1088e-07 1.4471e-05 5.6443e-07 9.8070e-06 6.4546e-02
1.0919e-08 3.5160e-06 9.4222e-08 1.8734e-06 2.2455e-02
1.0753e-09 7.3268e-07 1.4464e-08 3.1009e-07 1.0979e-02
1.0589e-10 1.2286e-07 1.9308e-09 4.2994e-08 1.0093e-02
1.0428e-11 1.5516e-08 2.1608e-10 4.8831e-09 1.0096e-02
1.0269e-12 1.6071e-09 2.1836e-11 4.9450e-10 1.0103e-02

Table 6.1

Relative errors for Example 1.
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Fig. 6.7. Lagrange multiplier ηh

In the next tabular, we present the relative errors erru =
‖uµ−ū‖

l2

‖ū‖
l2

, erry =
‖yµ−ȳ‖

l2

‖ȳ‖
l2

, errp =
‖pµ−p̄‖

l2

‖p̄‖
l2

, and errη =
‖ηµ−η̄‖

l2

‖η̄‖
l2

for the regularized problem at λ =

10−3 depending on µ. Table 6.1 shows the linear convergence in u, y, and p. This
also reflected by the figures 6.8–6.11. For a comparison with results computed by a
primal-dual active set strategy we refer to [9]. For µ < 10−10, the discretization error
dominates the values of the error function err(η).

The figures 6.8–6.11 show the differences between the numerical solutions uµ,yµ

pµ and ηµ and the exact solutions ū, ȳ, p̄ and η̄, measured in the L2-norm at a
regularization parameter λ = 10−3 depending on the path-parameter µ. Both axes
are scaled logarithmically. The behavior of the Lagrange multiplier for µ → 0 is
remarkable, see also figures 6.12–6.15.
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Fig. 6.8. err(u) Fig. 6.9. err(y)

Fig. 6.10. err(p) Fig. 6.11. err(η)

The next figures show the evolution of the Lagrange-multiplier ηµ along the central
path.
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Fig. 6.12. Multiplier ηh at µ = 10−2
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Fig. 6.13. Multiplier ηh at µ = 10−6
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Fig. 6.14. Multiplier ηh at µ = 10−7
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Fig. 6.15. Multiplier ηh at µ = 10−10

6.2. Example 2. This example is constructed such that ȳ, ū and p̄ are trigono-
metric functions of the form ϕ(x1, x2) = c cos (πx1) cos (2πx2). We choose c = 1 for
ȳ and c = (−5νπ2) for p̄ . From the state equation and the optimality condition we
get ū = −∆ȳ + ȳ =

(

5π2 + 1
)

ȳ, and ud = ū + 1
ν p̄ − λ

ν η = ȳ − λ
ν η, respectively.

Choosing ŷ = 2 sin (2πx1) − 1.5, η̄ = max {ŷ − ȳ, 0}, and yc = min {ŷ, ȳ} − λū, the
complementary slackness condition is fullfilled. All these functions are continuous.
Therefore the adjoint equation can be treated in a classical way. From the adjoint
equation we get yd = ∆p̄− p̄+ ȳ− η̄ =

((

5νπ2
) (

5π2 + 1
)

+ 1
)

ȳ− η̄. Figures 6.16–6.18
show the functions yd yc and η.
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The following figures show the numerical solutions for ν = 10−3 and λ = 10−3.
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Fig. 6.19. Control uµ
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µ erru erry errp errη

1.0775e-02 1.7515e-02 4.2897e-02 1.4888e-02 3.2848e-01
1.0611e-03 5.0088e-03 6.7794e-03 3.8653e-03 1.4802e-01
1.0450e-04 1.3658e-03 1.1136e-03 9.0134e-04 5.9756e-02
1.0290e-05 4.4222e-04 3.9979e-04 3.0695e-04 2.1376e-02
1.0134e-06 2.8956e-04 3.7943e-04 2.4390e-04 1.1738e-02
1.1088e-07 2.7751e-04 3.8078e-04 2.3967e-04 1.0866e-02
1.0919e-08 2.7666e-04 3.8100e-04 2.3932e-04 1.0830e-02
1.0753e-09 2.7662e-04 3.8102e-04 2.3930e-04 1.0833e-02

Table 6.2

Relative errors for Example 2.
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Fig. 6.22. Multiplier ηµ

Table 6.2 displays the relative error err(·) for u, y, p, and η. Here, the discretization
error dominates err(·) for all values µ < 10−6.

Figures 6.23–6.26 present the differences between the numerical solutions and the
optimal solutions at ν = 10−3 and λ = 10−3.
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The following set of figures shows the evolution of the Lagrange multiplier etaµ along
the central path.
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Fig. 6.27. Control ηmu at µ = 0.001
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Fig. 6.28. Control etaµ at µ = 10−4
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Fig. 6.29. Control ηµ at µ = 10−5
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Fig. 6.30. Control ηµ at µ = 10−6

6.3. Example 3. In this example, we consider the problem (PT) in the following
setting:

yd = cos(πx1) cos (2πx2) (6.12)

yc = min {6 sin (πx1) sin (πx2) − 4, 1} (6.13)

and ud = 0. Here, the optimal control ū is unknown, just as the functions ȳ, p̄ and
the Lagrange-multiplier η. In figures 6.31 and 6.32 we show the functions yd and yc.
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Fig. 6.31. Desired state yd
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Fig. 6.32. State contraints yc

For our computations we choose ν = 10−6 and λ = 10−6. The following set of figures
present the numerical solutions uh1, yh, ph and ηh.
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Fig. 6.36. Lagrange multiplier ηh at

ν = 10−6 and λ = 10−16

7. Pass to the limit λ ↓ 0. We have considered our method for fixed λ > 0.
Nevertheless, we briefly mention for convenience how close the solution ū of the problem
with pure state constraint y ≥ 0 is approximated by ūλ, the one associated to the Lavrentiev
regularized constraint λu + y ≥ 0. It is known from [?] that ‖ū − ūλ‖ → 0 as λ ↓ 0. To get
a convergence rate, we require the following two assumptions:

Uniform boundedness: There is M > 0 such that

‖ūλ‖∞ ≤ M ∀ λ > 0. (7.1)

Notice that (7.1), together with ūλ → ū in L2, implies that ‖ū‖∞ ≤ M .

24



Slater condition: There is some u0 ∈ L∞ and an ε > 0 such that

y0(x) ≥ yc(x) + ε ∀x ∈ Ω̄ (7.2)

holds for the associated state y0 = S u0.

Under these assumptions, the first of them being quite strong, but often satesfied in
concrete examples, the estimate

‖ū − ūλ‖ ≤ C
√

λ (7.3)

is obtained by a fairly standard technique, cf. for instance Alt [2]. We briefly sketch the
main steps: In view of the assumptions (7.1) and (7.2), there exist positive constants c0 and
λ0, and controls ũ(λ), û(λ) with associated states ỹ(λ), ŷ(λ) having the following properties:
For all λ ∈ (0, λ0], it holds

λ ũ(λ) + ỹ(λ) ≥ yc, ‖ū − ũ(λ)‖ ≤ c0 λ (7.4)

ŷ(λ) ≥ yc, ‖ūλ − û(λ)‖ ≤ c0 λ. (7.5)

The upper estimate is obtained as follows: We define ũ(λ) = (1 − ρ)ū + ρu0 with suitable
ρ > 0. Then by ȳ ≥ yc and (7.2)

λ ũ(λ) + ỹ(λ) = λ (1 − ρ)ū + λρu0 + (1 − ρ)ȳ + ρy0

≥ λ (1 − ρ)ū + λρu0 + (1 − ρ)yc + ρ(yc + ε)

= λ (1 − ρ)ū + λρu0 + ρε + yc.

For 0 < ρ ≤ 1, we get ‖λ(1 − ρ)ū + λρu0‖∞ ≤ λ (M + ‖u0‖∞). Take

ρ =
λ

ε
(M + ‖u0‖∞) (7.6)

and assume that λ is so small, say λ ≤ λ0, such that ρ ≤ 1 holds. Then

λ(1 − ρ)ū + λρu0 + ρε + yc ≥ −λ (M + ‖u0‖∞) + ρε + yc ≥ yc

so that λ ũ(λ) + ỹ(λ) ≥ yc. Moreover,

‖ū − ũ(λ)‖ = ‖ū − (1 − ρ)ū − ρu0‖ ≤ ρ(M + ‖u0‖∞) ≤ c0λ

because of (7.6).
In the same way, the relations (7.5) are shown by the ansatz û(λ) = (1 − ρ)ūλ + ρu0

with certain ρ ∈ (0, 1). We exploit λūλ + ȳλ ≥ yc, hence ȳλ ≥ yc −λM . The term −λM can
be compensated by adding a small multiple of y0.

Invoking (7.4), (7.5), the estimate (7.3) is now obtained immediately. The functional
f(u) is uniformly Lipschitz with constant L on the set of all u with ‖u‖∞ ≤ M . We find by
Taylor expansion

f(ūλ) − f(ū) ≥ f
′(ū)(ūλ − ū) +

κ

2
‖ūλ − ū‖2

= f
′(ū)(û(λ) − ū) +

κ

2
‖ūλ − ū‖2 + f

′(ū)(ūλ − û(λ))

≥ κ

2
‖ūλ − ū‖2 − c1 Lλ

since û(λ) satisfies the constraints of (P), and hence the variational inequality is fulfilled.
Moreover, (7.5) was used. On the other hand,

f(ūλ) − f(ū) = f(ūλ) − f(ũ(λ)) + f(ũ(λ)) − f(ū) ≤ 0 + c2Lλ

is found. Altogether, κ‖ūλ − ū‖2 ≤ 2 (c1 + c2)Lλ follows from the last two inequations,

implying the estimate (7.3).
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